-
1
-
-
84860181809
-
Dual functions of the Hsm33 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly
-
Barrault MB, Richet N, Godard C, Murciano B, Le Tallec B, et al. 2012. Dual functions of the Hsm33 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc. Natl. Acad. Sci. USA 109:E1001-100
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
-
-
Barrault, M.B.1
Richet, N.2
Godard, C.3
Murciano, B.4
Le Tallec, B.5
-
2
-
-
84865094127
-
Identification of the Cdc48*20S proteasome as an ancient AAA++ proteolytic machine
-
Barthelme D, Sauer RT. 2012. Identification of the Cdc48*20S proteasome as an ancient AAA++ proteolytic machine. Science 337:843-466
-
(2012)
Science
, vol.337
, pp. 843-466
-
-
Barthelme, D.1
Sauer, R.T.2
-
3
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, et al. 2012. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. USA 109:14870-755
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 14870-14765
-
-
Beck, F.1
Unverdorben, P.2
Bohn, S.3
Schweitzer, A.4
Pfeifer, G.5
-
4
-
-
0037248908
-
ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
-
Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL. 2003. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11: 69-788
-
(2003)
Mol. Cell
, vol.11
, pp. 69-788
-
-
Benaroudj, N.1
Zwickl, P.2
Seemuller, E.3
Baumeister, W.4
Goldberg, A.L.5
-
5
-
-
64849084080
-
Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain fromHHR23Breveals novel proteasome-associated proteins
-
Besche HC, Haas W, Gygi SP, Goldberg AL. 2009. Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain fromHHR23Breveals novel proteasome-associated proteins. Biochemistry 48:2538-499
-
(2009)
Biochemistry
, vol.48
, pp. 2538-2499
-
-
Besche, H.C.1
Haas, W.2
Gygi, S.P.3
Goldberg, A.L.4
-
6
-
-
84867838277
-
Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation
-
Boehringer J, Riedinger C, Paraskevopoulos K, Johnson EO, Lowe ED, et al. 2012. Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation. Biochem. J. 448:55-655
-
(2012)
Biochem. J.
, Issue.448
, pp. 55-655
-
-
Boehringer, J.1
Riedinger, C.2
Paraskevopoulos, K.3
Johnson, E.O.4
Lowe, E.D.5
-
7
-
-
78650450552
-
From the cover: Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution
-
Bohn S, Beck F, Sakata E, WalzthoeniT, BeckM, et al. 2010. From the cover: Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc.Natl. Acad. Sci. USA107:20992-977
-
(2010)
Proc.Natl. Acad. Sci. USA
, vol.107
, pp. 20992-20987
-
-
Bohn, S.1
Beck, F.2
Sakata, E.3
Walzthoeni, T.4
Beck, M.5
-
9
-
-
34250342888
-
Ubiquitin-independent degradation of cell-cycle inhibitors by the REGγproteasome
-
Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM. 2007. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGγproteasome. Mol. Cell 26:843-522
-
(2007)
Mol. Cell
, vol.26
, pp. 843-522
-
-
Chen, X.1
Barton, L.F.2
Chi, Y.3
Clurman, B.E.4
Roberts, J.M.5
-
10
-
-
77951972141
-
Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2
-
Chen X, Lee BH, Finley D, Walters KJ. 2010. Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol. Cell 38:404-155
-
(2010)
Mol. Cell
, vol.38
, pp. 404-155
-
-
Chen, X.1
Lee, B.H.2
Finley, D.3
Walters, K.J.4
-
11
-
-
84859702750
-
Molecular model of the human 26S proteasome
-
da Fonseca PC, He J, Morris EP. 2012. Molecular model of the human 26S proteasome. Mol. Cell 46:54-666
-
(2012)
Mol. Cell
, vol.46
, pp. 54-666
-
-
Da Fonseca, P.C.1
He, J.2
Morris, E.P.3
-
12
-
-
83355169695
-
Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism
-
Dange T, Smith D, Noy T, Rommel PC, Jurzitza L, et al. 2011. Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J. Biol. Chem. 286:42830-399
-
(2011)
J. Biol. Chem
, Issue.286
, pp. 42830-42399
-
-
Dange, T.1
Smith, D.2
Noy, T.3
Rommel, P.C.4
Jurzitza, L.5
-
13
-
-
66449131251
-
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
-
Djuranovic S, Hartmann MD, HabeckM, Ursinus A, Zwickl P, et al. 2009. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 34:580-900
-
(2009)
Mol. Cell
, vol.34
, pp. 580-900
-
-
Djuranovic, S.1
Hartmann, M.D.2
Habeck, M.3
Ursinus, A.4
Zwickl, P.5
-
14
-
-
0036713383
-
Proteasome subunit Rpn1 binds ubiquitin-like protein domains
-
Elsasser S,Gali RR, SchwickartM, Larsen CN, Leggett DS, et al. 2002. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4:725-300
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 725-300
-
-
Elsasser, S.1
Gali, R.R.2
Schwickart, M.3
Larsen, C.N.4
Leggett, D.S.5
-
15
-
-
33746375404
-
Mechanism of DNA translocation in a replicative hexameric helicase
-
Enemark EJ, Joshua-Tor L. 2006. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270-755
-
(2006)
Nature
, vol.442
, pp. 270-755
-
-
Enemark, E.J.1
Joshua Tor, L.2
-
16
-
-
33745041480
-
Evolutionary relationships and structuralmechanisms of AAA+proteins
-
Erzberger JP, Berger JM. 2006. Evolutionary relationships and structuralmechanisms of AAA+proteins. Annu. Rev. Biophys. Biomol. Struct. 35:93-1144
-
(2006)
Annu. Rev. Biophys. Biomol. Struct
, vol.35
, pp. 93-1144
-
-
Erzberger, J.P.1
Berger, J.M.2
-
17
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477-5133
-
(2009)
Annu. Rev. Biochem
, vol.78
, pp. 477-5133
-
-
Finley, D.1
-
18
-
-
19444387760
-
The 1.9 ̊a structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Forster A,Masters EI,Whitby FG, Robinson H, Hill CP. 2005. The 1.9 ̊A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 18:589-999
-
(2005)
Mol. Cell
, vol.18
, pp. 589-999
-
-
Forster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
19
-
-
0043192299
-
The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation
-
Forster A, Whitby FG, Hill CP. 2003. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 22:4356-644
-
(2003)
EMBO J.
, vol.22
, pp. 4356-4644
-
-
Forster, A.1
Whitby, F.G.2
Hill, C.P.3
-
20
-
-
69249217672
-
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome
-
Forster F, Lasker K, Beck F,Nickell S, Sali A, Baumeister W. 2009. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem. Biophys. Res. Commun. 388:228-333
-
(2009)
Biochem. Biophys. Res. Commun
, vol.388
, pp. 228-333
-
-
Forster, F.1
Lasker, K.2
Beck, F.3
Nickell, S.4
Sali, A.5
Baumeister, W.6
-
21
-
-
0032483546
-
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
-
Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, et al. 1998. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615-233
-
(1998)
Cell
, vol.94
, pp. 615-233
-
-
Glickman, M.H.1
Rubin, D.M.2
Coux, O.3
Wefes, I.4
Pfeifer, G.5
-
22
-
-
70350772363
-
Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
-
Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. 2009. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139:744-566
-
(2009)
Cell
, vol.139
, pp. 744-566
-
-
Glynn, S.E.1
Martin, A.2
Nager, A.R.3
Baker, T.A.4
Sauer, R.T.5
-
23
-
-
40849113190
-
Components of the ubiquitinproteasome pathway compete for surfaces on Rad23 family proteins
-
Goh AM, Walters KJ, Elsasser S, Verma R, Deshaies RJ, et al. 2008. Components of the ubiquitinproteasome pathway compete for surfaces on Rad23 family proteins. BMC Biochem. 9:44
-
(2008)
BMC Biochem
, vol.9
, pp. 44
-
-
Goh, A.M.1
Walters, K.J.2
Elsasser, S.3
Verma, R.4
Deshaies, R.J.5
-
24
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 ̊a resolution
-
GrollM, Ditzel L, Lowe J, Stock D, Bochtler M, et al. 1997. Structure of 20S proteasome from yeast at 2.4 ̊A resolution. Nature 386:463-711
-
(1997)
Nature
, vol.386
, pp. 463-711
-
-
Grollm Ditzel, L.1
Lowe, J.2
Stock, D.3
Bochtler, M.4
-
25
-
-
33749348820
-
A novel proteasome interacting protein recruits the deubiquitinating enzymeUCH37to 26S proteasomes
-
Hamazaki J, Iemura S, Natsume T, Yashiroda H, Tanaka K, Murata S. 2006. A novel proteasome interacting protein recruits the deubiquitinating enzymeUCH37to 26S proteasomes.EMBOJ. 25:4524- 366
-
(2006)
EMBOJ
, vol.25
, pp. 4524-4376
-
-
Hamazaki, J.1
Iemura, S.2
Natsume, T.3
Yashiroda, H.4
Tanaka, K.5
Murata, S.6
-
26
-
-
33749049581
-
Deubiquitinating enzyme Ubp66 functions noncatalytically to delay proteasomal degradation
-
Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, et al. 2006. Deubiquitinating enzyme Ubp66 functions noncatalytically to delay proteasomal degradation. Cell 127:99-1111
-
(2006)
Cell
, vol.127
, pp. 99-1111
-
-
Hanna, J.1
Hathaway, N.A.2
Tone, Y.3
Crosas, B.4
Elsasser, S.5
-
27
-
-
84857935771
-
The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings
-
He J, Kulkarni K, da Fonseca PC, Krutauz D, Glickman MH, et al. 2012. The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings. Structure 20:513-211
-
(2012)
Structure
, vol.20
, pp. 513-211
-
-
He, J.1
Kulkarni, K.2
Da Fonseca, P.C.3
Krutauz, D.4
Glickman, M.H.5
-
28
-
-
34547963061
-
ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
-
Horwitz AA, Navon A, Groll M, Smith DM, Reis C, Goldberg AL. 2007. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J. Biol. Chem. 282:22921- 299
-
(2007)
J. Biol. Chem
, vol.282
, pp. 22921-22299
-
-
Horwitz, A.A.1
Navon, A.2
Groll, M.3
Smith, D.M.4
Reis, C.5
Goldberg, A.L.6
-
29
-
-
27744516748
-
Structure and mechanisms of the proteasomeassociated deubiquitinating enzyme USP14
-
Hu M, Li P, Song L, Jeffrey PD, Chenova TA, et al. 2005. Structure and mechanisms of the proteasomeassociated deubiquitinating enzyme USP14. EMBO J. 24:3747-566
-
(2005)
EMBO J.
, vol.24
, pp. 3747-3576
-
-
Hu, M.1
Li, P.2
Song, L.3
Jeffrey, P.D.4
Chenova, T.A.5
-
30
-
-
84857313367
-
Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity
-
Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, et al. 2012. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148:727-388
-
(2012)
Cell
, vol.148
, pp. 727-388
-
-
Huber, E.M.1
Basler, M.2
Schwab, R.3
Heinemeyer, W.4
Kirk, C.J.5
-
31
-
-
84865405382
-
Inhibitors for the immuno- and constitutive proteasome: Current and future trends in drug development
-
Huber EM, GrollM. 2012. Inhibitors for the immuno- and constitutive proteasome: Current and future trends in drug development. Angew. Chem. Int. Ed. Engl. 51:8708-200
-
(2012)
Angew. Chem. Int. Ed. Engl
, Issue.51
, pp. 8708-8210
-
-
Huber, E.M.1
Groll, M.2
-
32
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, et al. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481-888
-
(2008)
Nature
, vol.453
, pp. 481-888
-
-
Husnjak, K.1
Elsasser, S.2
Zhang, N.3
Chen, X.4
Randles, L.5
-
34
-
-
33749265270
-
Structure of the Blm10- 20 S proteasome complex by cryo-electron microscopy insights into the mechanism of activation of mature yeast proteasomes
-
Iwanczyk J, Sadre-Bazzaz K, Ferrell K, Kondrashkina E, Formosa T, et al. 2006. Structure of the Blm10- 20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes. J. Mol. Biol. 363:648-599
-
(2006)
J. Mol. Biol
, vol.363
, pp. 648-599
-
-
Iwanczyk, J.1
Sadre-Bazzaz, K.2
Ferrell, K.3
Kondrashkina, E.4
Formosa, T.5
-
35
-
-
79955910554
-
SolutionNMRspectroscopy of supra-molecular systems, why bother? Amethyl-TROSY view
-
Kay LE. 2011. SolutionNMRspectroscopy of supra-molecular systems, why bother? Amethyl-TROSY view. J. Magn. Reson. 210:159-700
-
(2011)
J. Magn. Reson
, Issue.210
, pp. 159-700
-
-
Kay, L.E.1
-
36
-
-
77952064980
-
Crystal structure of yeast Rpn14, a chaperone of the 19 S regulatory particle of the proteasome
-
Kim S, Saeki Y, Fukunaga K, Suzuki A, Takagi K, et al. 2010. Crystal structure of yeast Rpn14, a chaperone of the 19 S regulatory particle of the proteasome. J. Biol. Chem. 285:15159-666
-
(2010)
J. Biol. Chem
, Issue.285
, pp. 15159-15666
-
-
Kim, S.1
Saeki, Y.2
Fukunaga, K.3
Suzuki, A.4
Takagi, K.5
-
37
-
-
0031456970
-
Structure of the proteasome activator REGα PA28α)
-
Knowlton JR, Johnston SC, Whitby FG, Realini C, Zhang Z, et al. 1997. Structure of the proteasome activator REGα(PA28α). Nature 390:639-433
-
(1997)
Nature
, vol.390
, pp. 639-433
-
-
Knowlton, J.R.1
Johnston, S.C.2
Whitby, F.G.3
Realini, C.4
Zhang, Z.5
-
39
-
-
85027955696
-
A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding
-
Kusmierczyk AR, Kunjappu MJ, Kim RY,HochstrasserM. 2011. A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat. Struct. Mol. Biol. 18:622-299
-
(2011)
Nat. Struct. Mol. Biol
, Issue.18
, pp. 622-299
-
-
Kusmierczyk, A.R.1
Kunjappu, M.J.2
Kim, R.Y.3
Hochstrasser, M.4
-
40
-
-
0344687318
-
Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: Implications for the role of the pro-peptide in proteasome assembly
-
Kwon YD, Nagy I, Adams PD, Baumeister W, Jap BK. 2004. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: Implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol. 335:233-455
-
(2004)
J. Mol. Biol
, vol.335
, pp. 233-455
-
-
Kwon, Y.D.1
Nagy, I.2
Adams, P.D.3
Baumeister, W.4
Jap, B.K.5
-
41
-
-
0030699383
-
Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes
-
Lam YA, DeMartino GN, Pickart CM, Cohen RE. 1997. Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. J. Biol. Chem. 272:28438-466
-
(1997)
J. Biol. Chem
, vol.272
, pp. 28438-28466
-
-
Lam, Y.A.1
Demartino, G.N.2
Pickart, C.M.3
Cohen, R.E.4
-
42
-
-
0031038169
-
Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome
-
Lam YA, Xu W, DeMartino GN, Cohen RE. 1997. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385:737-400
-
(1997)
Nature
, vol.385
, pp. 737-400
-
-
Lam, Y.A.1
Xu, W.2
Demartino, G.N.3
Cohen, R.E.4
-
43
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, Estrin E,MatyskielaME, Bashore C, Nogales E,Martin A. 2012. Complete subunit architecture of the proteasome regulatory particle. Nature 482:186-911
-
(2012)
Nature
, vol.482
, pp. 186-911
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
44
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, et al. 2012. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. USA 109:1380- 877
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 1380-1877
-
-
Lasker, K.1
Forster, F.2
Bohn, S.3
Walzthoeni, T.4
Villa, E.5
-
45
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179-844
-
(2010)
Nature
, vol.467
, pp. 179-844
-
-
Lee, B.H.1
Lee, M.J.2
Park, S.3
Oh, D.C.4
Elsasser, S.5
-
46
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, et al. 2002. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10:495-5077
-
(2002)
Mol. Cell
, vol.10
, pp. 495-5077
-
-
Leggett, D.S.1
Hanna, J.2
Borodovsky, A.3
Crosas, B.4
Schmidt, M.5
-
47
-
-
77953620707
-
Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome
-
Li D, Li H, Wang T, PanH, Lin G. 2010. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO J. 29:2037-477
-
(2010)
EMBO J.
, Issue.29
, pp. 2037-2477
-
-
Li, D.1
Li, H.2
Wang, T.3
Panh Lin, G.4
-
48
-
-
34250339984
-
Ubiquitin- and ATPindependent proteolytic turnover of p21 by the REGγ-proteasome pathway
-
Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW. 2007. Ubiquitin- and ATPindependent proteolytic turnover of p21 by the REGγ-proteasome pathway. Mol. Cell 26:831-422
-
(2007)
Mol. Cell
, vol.26
, pp. 831-422
-
-
Li, X.1
Amazit, L.2
Long, W.3
Lonard, D.M.4
Monaco, J.J.5
O'Malley, B.W.6
-
49
-
-
70349658267
-
Inhibitors selective for mycobacterial versus human proteasomes
-
Lin G, Li D, de Carvalho LP, Deng H, Tao H, et al. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461:621-266
-
(2009)
Nature
, vol.461
, pp. 621-266
-
-
Lin, G.1
Li, D.2
De Carvalho, L.P.3
Deng, H.4
Tao, H.5
-
51
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 ̊a resolution
-
Lowe J, Stock D, Jap B, Zwickl P, BaumeisterW,HuberR. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 ̊A resolution. Science 268:533-399
-
(1995)
Science
, vol.268
, pp. 533-399
-
-
Lowe, J.1
Stock, D.2
Jap, B.3
Zwickl, P.4
Baumeister, W.5
Huber, R.6
-
52
-
-
76449099938
-
Chaperone-assisted assembly of the proteasome core particle
-
Matias AC, Ramos PC,Dohmen RJ. 2010. Chaperone-assisted assembly of the proteasome core particle. Biochem. Soc. Trans. 38:29-333
-
(2010)
Biochem. Soc. Trans
, Issue.38
, pp. 29-333
-
-
Matias, A.C.1
Ramos Pcdohmen, R.J.2
-
54
-
-
33846820426
-
Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome
-
Nakamura Y, Nakano K, Umehara T, Kimura M, Hayashizaki Y, et al. 2007. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 15:179-899
-
(2007)
Structure
, vol.15
, pp. 179-899
-
-
Nakamura, Y.1
Nakano, K.2
Umehara, T.3
Kimura, M.4
Hayashizaki, Y.5
-
55
-
-
76449108472
-
Assembly manual for the proteasome regulatory particle: The first draft
-
Park S, Tian G, Roelofs J, Finley D. 2010. Assembly manual for the proteasome regulatory particle: The first draft. Biochem. Soc. Trans. 38:6-133
-
(2010)
Biochem. Soc. Trans
, Issue.38
, pp. 6-133
-
-
Park, S.1
Tian, G.2
Roelofs, J.3
Finley, D.4
-
56
-
-
84856023509
-
The proteasomal subunit Rpn66 is a molecular clamp holding the core and regulatory subcomplexes together
-
Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A, et al. 2012. The proteasomal subunit Rpn66 is a molecular clamp holding the core and regulatory subcomplexes together. Proc. Natl. Acad. Sci. USA 109:149-544
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 149-544
-
-
Pathare, G.R.1
Nagy, I.2
Bohn, S.3
Unverdorben, P.4
Hubert, A.5
-
57
-
-
78649289427
-
ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation
-
Peth A, Uchiki T, Goldberg AL. 2010. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell 40:671-811
-
(2010)
Mol. Cell
, vol.40
, pp. 671-811
-
-
Peth, A.1
Uchiki, T.2
Goldberg, A.L.3
-
58
-
-
57749102552
-
Substrate selection by the proteasome during degradation of protein complexes
-
Prakash S, Inobe T, Hatch AJ, Matouschek A. 2009. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 5:29-366
-
(2009)
Nat. Chem. Biol
, vol.5
, pp. 29-366
-
-
Prakash, S.1
Inobe, T.2
Hatch, A.J.3
Matouschek, A.4
-
59
-
-
4344559454
-
An unstructured initiation site is required for efficient proteasome-mediated degradation
-
Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. 2004. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11:830-377
-
(2004)
Nat. Struct. Mol. Biol
, vol.11
, pp. 830-377
-
-
Prakash, S.1
Tian, L.2
Ratliff, K.S.3
Lehotzky, R.E.4
Matouschek, A.5
-
60
-
-
33845713194
-
Hrpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37
-
Qiu XB, Ouyang SY, Li CJ, Miao S, Wang L, Goldberg AL. 2006. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25:5742-533
-
(2006)
EMBO J.
, vol.25
, pp. 5742-5543
-
-
Qiu, X.B.1
Ouyang, S.Y.2
Li, C.J.3
Miao, S.4
Wang, L.5
Goldberg, A.L.6
-
61
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. 2008. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30:360-688
-
(2008)
Mol. Cell
, vol.30
, pp. 360-688
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.C.4
Goldberg, A.L.5
Cheng, Y.6
-
62
-
-
0036091848
-
Taking a bite: Proteasomal protein processing
-
Rape M, Jentsch S. 2002. Taking a bite: Proteasomal protein processing. Nat. Cell Biol. 4:E113-166
-
(2002)
Nat. Cell Biol
, vol.4
-
-
Rape, M.1
Jentsch, S.2
-
63
-
-
11844287006
-
Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors
-
Rechsteiner M, Hill CP. 2005. Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 15:27-333
-
(2005)
Trends Cell Biol
, vol.15
, pp. 27-333
-
-
Rechsteiner, M.1
Hill, C.P.2
-
64
-
-
77950497745
-
Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR
-
Religa TL, Sprangers R, Kay LE. 2010. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98-1022
-
(2010)
Science
, vol.328
, pp. 98-1022
-
-
Religa, T.L.1
Sprangers, R.2
Kay, L.E.3
-
65
-
-
77958604450
-
Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12
-
Riedinger C, Boehringer J, Trempe JF, Lowe ED, Brown NR, et al. 2010. Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12. J. Biol. Chem. 285:33992-40033
-
(2010)
J. Biol. Chem
, Issue.285
, pp. 33992-40033
-
-
Riedinger, C.1
Boehringer, J.2
Trempe, J.F.3
Lowe, E.D.4
Brown, N.R.5
-
66
-
-
84860376787
-
Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome
-
Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH. 2012. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J. Biol. Chem. 287:14659-711
-
(2012)
J. Biol. Chem
, Issue.287
, pp. 14659-14711
-
-
Rosenzweig, R.1
Bronner, V.2
Zhang, D.3
Fushman, D.4
Glickman, M.H.5
-
67
-
-
77957970501
-
The proteasome antechamber maintains substrates in an unfolded state
-
Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE. 2010. The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868-711
-
(2010)
Nature
, vol.467
, pp. 868-711
-
-
Ruschak, A.M.1
Religa, T.L.2
Breuer, S.3
Witt, S.4
Kay, L.E.5
-
68
-
-
77649243592
-
Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening
-
Sadre-Bazzaz K, Whitby FG, Robinson H, Formosa T, Hill CP. 2010. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37:728-355
-
(2010)
Mol. Cell
, vol.37
, pp. 728-355
-
-
Sadre-Bazzaz, K.1
Whitby, F.G.2
Robinson, H.3
Formosa, T.4
Hill, C.P.5
-
69
-
-
84863115607
-
Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy
-
Sakata E, Bohn S, Mihalache O, Kiss P, Beck F, et al. 2012. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 109:1479-844
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 1479-1844
-
-
Sakata, E.1
Bohn, S.2
Mihalache, O.3
Kiss, P.4
Beck, F.5
-
70
-
-
34250187773
-
The crystal structure of the human Mov344 MPN domain reveals a metal-free dimer
-
Sanches M, Alves BS, Zanchin NI, Guimaraes BG. 2007. The crystal structure of the human Mov344 MPN domain reveals a metal-free dimer. J. Mol. Biol. 370:846-555
-
(2007)
J. Mol. Biol
, vol.370
, pp. 846-555
-
-
Sanches, M.1
Alves, B.S.2
Zanchin, N.I.3
Guimaraes, B.G.4
-
71
-
-
52149103164
-
Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains
-
Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, et al. 2008. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455:358-622
-
(2008)
Nature
, vol.455
, pp. 358-622
-
-
Sato, Y.1
Yoshikawa, A.2
Yamagata, A.3
Mimura, H.4
Yamashita, M.5
-
73
-
-
18744391955
-
The HEAT repeat protein Blm100 regulates the yeast proteasome by capping the core particle
-
SchmidtM, Haas W, Crosas B, Santamaria PG, Gygi SP, et al. 2005. The HEAT repeat protein Blm100 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 12:294-3033
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 294-3033
-
-
Schmidt, M.1
Haas, W.2
Crosas, B.3
Santamaria, P.G.4
Gygi, S.P.5
-
74
-
-
44349094727
-
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
-
Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, et al. 2008. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548-522
-
(2008)
Nature
, vol.453
, pp. 548-522
-
-
Schreiner, P.1
Chen, X.2
Husnjak, K.3
Randles, L.4
Zhang, N.5
-
75
-
-
0029060166
-
Proteasome from Thermoplasma acidophilum: A threonine protease
-
Seemuller E, Lupas A, Stock D, Lowe J,Huber R, BaumeisterW. 1995. Proteasome from Thermoplasma acidophilum: A threonine protease. Science 268:579-822
-
(1995)
Science
, vol.268
, pp. 579-822
-
-
Seemuller, E.1
Lupas, A.2
Stock, D.3
Lowe, J.4
Huber, R.5
Baumeister, W.6
-
76
-
-
79958772781
-
The role of the proteasome in the generation of MHC class i ligands and immune responses
-
Sijts EJ, Kloetzel PM. 2011. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol. Life Sci. 68:1491-5022
-
(2011)
Cell Mol. Life Sci
, Issue.68
, pp. 1491-5022
-
-
Sijts, E.J.1
Kloetzel, P.M.2
-
77
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's αring opens the gate for substrate entry
-
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. 2007. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's αring opens the gate for substrate entry. Mol. Cell 27:731-444
-
(2007)
Mol. Cell
, vol.27
, pp. 731-444
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
78
-
-
79951707743
-
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
-
Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL. 2011. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144:526-388
-
(2011)
Cell
, vol.144
, pp. 526-388
-
-
Smith, D.M.1
Fraga, H.2
Reis, C.3
Kafri, G.4
Goldberg, A.L.5
-
79
-
-
33846928691
-
Quantitative dynamics and binding studies of the 20S proteasome by NMR
-
Sprangers R, Kay LE. 2007. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618-222
-
(2007)
Nature
, vol.445
, pp. 618-222
-
-
Sprangers, R.1
Kay, L.E.2
-
80
-
-
46049107832
-
TROSY-basedNMR evidence for a novel class of 20S proteasome inhibitors
-
Sprangers R, Li X,Mao X, Rubinstein JL, Schimmer AD, Kay LE. 2008. TROSY-basedNMR evidence for a novel class of 20S proteasome inhibitors. Biochemistry 47:6727-344
-
(2008)
Biochemistry
, vol.47
, pp. 6727-6354
-
-
Sprangers, R.1
Li, X.2
Mao, X.3
Rubinstein, J.L.4
Schimmer, A.D.5
Kay, L.E.6
-
81
-
-
73649128544
-
Structural models for interactions between the 20S proteasome and its PAN/19S activators
-
Stadtmueller BM, Ferrell K, Whitby FG, Heroux A, Robinson H, et al. 2010. Structural models for interactions between the 20S proteasome and its PAN/19S activators. J. Biol. Chem. 285:13-177
-
(2010)
J. Biol. Chem
, Issue.285
, pp. 13-177
-
-
Stadtmueller, B.M.1
Ferrell, K.2
Whitby, F.G.3
Heroux, A.4
Robinson, H.5
-
83
-
-
84868238774
-
Structure of a proteasome-Pba1-Pba2 complex: Implications for proteasome assembly, activation, and biological function
-
Stadtmueller BM, Kish-Trier E, Ferrell K, Petersen CN, Robinson H, et al. 2012. Structure of a proteasome-Pba1-Pba2 complex: Implications for proteasome assembly, activation, and biological function. J. Biol. Chem. 287:37371-822
-
(2012)
J. Biol. Chem
, Issue.287
, pp. 37371-37822
-
-
Stadtmueller, B.M.1
Kish-Trier, E.2
Ferrell, K.3
Petersen, C.N.4
Robinson, H.5
-
84
-
-
84859487212
-
Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p
-
Takagi K, Kim S, Yukii H, Ueno M, Morishita R, et al. 2012. Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p. J. Biol. Chem. 287:12172-822
-
(2012)
J. Biol. Chem
, Issue.287
, pp. 12172-12822
-
-
Takagi, K.1
Kim, S.2
Yukii, H.3
Ueno, M.4
Morishita, R.5
-
85
-
-
33846216003
-
Proteasome substrate degradation requires association plus extended peptide
-
Takeuchi J, Chen H, Coffino P. 2007. Proteasome substrate degradation requires association plus extended peptide. EMBO J. 26:123-311
-
(2007)
EMBO J.
, vol.26
, pp. 123-311
-
-
Takeuchi, J.1
Chen, H.2
Coffino, P.3
-
86
-
-
70350344051
-
Running in reverse: The structural basis for translocation polarity in hexameric helicases
-
Thomsen ND, Berger JM. 2009. Running in reverse: The structural basis for translocation polarity in hexameric helicases. Cell 139:523-344
-
(2009)
Cell
, vol.139
, pp. 523-344
-
-
Thomsen, N.D.1
Berger, J.M.2
-
87
-
-
80555130924
-
An asymmetric interface between the regulatory and core particles of the proteasome
-
Tian G, Park S, Lee MJ, Huck B, McAllister F, et al. 2011. An asymmetric interface between the regulatory and core particles of the proteasome. Nat. Struct. Mol. Biol. 18:1259-677
-
(2011)
Nat. Struct. Mol. Biol
, Issue.18
, pp. 1259-1677
-
-
Tian, G.1
Park, S.2
Lee, M.J.3
Huck, B.4
McAllister, F.5
-
88
-
-
28544434064
-
A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB
-
Tian L, Holmgren RA, Matouschek A. 2005. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat. Struct. Mol. Biol. 12:1045-533
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 1045-1533
-
-
Tian, L.1
Holmgren, R.A.2
Matouschek, A.3
-
89
-
-
77951945222
-
Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly
-
Tomko RJ Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M. 2010. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly. Mol. Cell 38:393-4033
-
(2010)
Mol. Cell
, vol.38
, pp. 393-4033
-
-
Tomko Jr., R.J.1
Funakoshi, M.2
Schneider, K.3
Wang, J.4
Hochstrasser, M.5
-
90
-
-
0036103598
-
The structure of themammalian 20S proteasome at 2.75 ̊a resolution
-
UnnoM,MizushimaT,MorimotoY,Tomisugi Y, Tanaka K, et al. 2002. The structure of themammalian 20S proteasome at 2.75 ̊A resolution. Structure 10:609-188
-
(2002)
Structure
, vol.10
, pp. 609-188
-
-
Unno, M.1
Mizushima, T.2
Morimoto, Y.3
Tomisugi, Y.4
Tanaka, K.5
-
91
-
-
0033791447
-
Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
-
Verma R, Chen S, Feldman R, Schieltz D, Yates J, et al. 2000. Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11:3425-399
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 3425-3399
-
-
Verma, R.1
Chen, S.2
Feldman, R.3
Schieltz, D.4
Yates, J.5
-
92
-
-
84866182143
-
RPN-6 determines C elegans longevity under proteotoxic stress conditions
-
Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, et al. 2012. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489:263-688
-
(2012)
Nature
, vol.489
, pp. 263-688
-
-
Vilchez, D.1
Morantte, I.2
Liu, Z.3
Douglas, P.M.4
Merkwirth, C.5
-
93
-
-
0242300114
-
DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a
-
Walters KJ, Lech PJ, Goh AM, Wang Q, Howley PM. 2003. DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc. Natl. Acad. Sci. USA 100:12694-999
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 12694-12999
-
-
Walters, K.J.1
Lech, P.J.2
Goh, A.M.3
Wang, Q.4
Howley, P.M.5
-
94
-
-
78549254832
-
Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation
-
Wang T, Darwin KH, Li H. 2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat. Struct. Mol. Biol. 17:1352-577
-
(2010)
Nat. Struct. Mol. Biol
, Issue.17
, pp. 1352-1577
-
-
Wang, T.1
Darwin, K.H.2
Li, H.3
-
95
-
-
70349770896
-
Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa
-
Wang T, Li H, Lin G, Tang C, Li D, et al. 2009. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17:1377-855
-
(2009)
Structure
, vol.17
, pp. 1377-1855
-
-
Wang, T.1
Li, H.2
Lin, G.3
Tang, C.4
Li, D.5
-
96
-
-
0028985861
-
Conformational constraints in protein degradation by the 20S proteasome
-
Wenzel T, Baumeister W. 1995. Conformational constraints in protein degradation by the 20S proteasome. Nat. Struct. Biol. 2:199-2044
-
(1995)
Nat. Struct. Biol
, vol.2
, pp. 199-2044
-
-
Wenzel, T.1
Baumeister, W.2
-
97
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, et al. 2000. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115-200
-
(2000)
Nature
, vol.408
, pp. 115-200
-
-
Whitby, F.G.1
Masters, E.I.2
Kramer, L.3
Knowlton, J.R.4
Yao, Y.5
-
98
-
-
33745827710
-
Proteasome assembly triggers a switch required for active-site maturation
-
Witt S, Kwon YD, SharonM, Felderer K, Beuttler M, et al. 2006. Proteasome assembly triggers a switch required for active-site maturation. Structure 14:1179-888
-
(2006)
Structure
, vol.14
, pp. 1179-1888
-
-
Witt, S.1
Kwon, Y.D.2
Sharonm Felderer, K.3
Beuttler, M.4
-
99
-
-
33748188085
-
Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
-
Yao T, Song L, XuW, DeMartino GN, Florens L, et al. 2006. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 8:994-10022
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 994-10022
-
-
Yao, T.1
Song, L.2
Xuw Demartino, G.N.3
Florens, L.4
-
100
-
-
40949120953
-
Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes
-
Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, et al. 2008. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 15:228-366
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 228-366
-
-
Yashiroda, H.1
Mizushima, T.2
Okamoto, K.3
Kameyama, T.4
Hayashi, H.5
-
101
-
-
76349089770
-
Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
-
Yu Y, SmithDM, KimHM, RodriguezV,Goldberg AL,Cheng Y. 2010. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 29:692-7022
-
(2010)
EMBO J.
, Issue.29
, pp. 692-7022
-
-
Yu, Y.1
Smith, D.M.2
Kim, H.M.3
Rodriguez, V.4
Goldberg, A.L.5
Cheng, Y.6
-
102
-
-
65649091692
-
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F, Hu M, Tian G, Zhang P, Finley D, et al. 2009. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34:473-844
-
(2009)
Mol. Cell
, vol.34
, pp. 473-844
-
-
Zhang, F.1
Hu, M.2
Tian, G.3
Zhang, P.4
Finley, D.5
-
103
-
-
65649123769
-
Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y. 2009. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34:485-966
-
(2009)
Mol. Cell
, vol.34
, pp. 485-966
-
-
Zhang, F.1
Wu, Z.2
Zhang, P.3
Tian, G.4
Finley, D.5
Shi, Y.6
-
104
-
-
68349135106
-
Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13
-
Zhang N, Wang Q, Ehlinger A, Randles L, Lary JW, et al. 2009. Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13. Mol. Cell 35:280-900
-
(2009)
Mol. Cell
, vol.35
, pp. 280-900
-
-
Zhang, N.1
Wang, Q.2
Ehlinger, A.3
Randles, L.4
Lary, J.W.5
|