메뉴 건너뛰기




Volumn 1823, Issue 1, 2012, Pages 67-82

Proteasomal AAA-ATPases: Structure and function

Author keywords

19S regulatory particle; AAA ATPase; PAN; Proteasome

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ATPASE ASSOCIATED WITH VARIOUS CELLULAR ACTIVITY; CELL PROTEIN; DNA 26S; PROTEASOME; UNCLASSIFIED DRUG;

EID: 84855199977     PISSN: 01674889     EISSN: 18792596     Source Type: Journal    
DOI: 10.1016/j.bbamcr.2011.07.009     Document Type: Review
Times cited : (107)

References (209)
  • 1
    • 0029328549 scopus 로고
    • A 200-amino acid ATPase module in search of a basic function
    • Confalonieri F., Duguet M. A 200-amino acid ATPase module in search of a basic function. Bioessays 1995, 17:639-650.
    • (1995) Bioessays , vol.17 , pp. 639-650
    • Confalonieri, F.1    Duguet, M.2
  • 2
    • 0032969563 scopus 로고    scopus 로고
    • AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
    • Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999, 9:27-43.
    • (1999) Genome Res. , vol.9 , pp. 27-43
    • Neuwald, A.F.1    Aravind, L.2    Spouge, J.L.3    Koonin, E.V.4
  • 3
    • 1642325936 scopus 로고    scopus 로고
    • Evolutionary history and higher order classification of AAA+ ATPases
    • Iyer L.M., Leipe D.D., Koonin E.V., Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 2004, 146:11-31.
    • (2004) J. Struct. Biol. , vol.146 , pp. 11-31
    • Iyer, L.M.1    Leipe, D.D.2    Koonin, E.V.3    Aravind, L.4
  • 5
    • 27144474906 scopus 로고    scopus 로고
    • Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines
    • Martin A., Baker T.A., Sauer R.T. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 2005, 437:1115-1120.
    • (2005) Nature , vol.437 , pp. 1115-1120
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 9
    • 14644415865 scopus 로고    scopus 로고
    • Nucleotide dependent motion and mechanism of action of p97/VCP
    • DeLaBarre B., Brunger A.T. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 2005, 347:437-452.
    • (2005) J. Mol. Biol. , vol.347 , pp. 437-452
    • DeLaBarre, B.1    Brunger, A.T.2
  • 10
    • 13844253945 scopus 로고    scopus 로고
    • Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-ray scattering
    • Davies J.M., Tsuruta H., May A.P., Weis W.I. Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-ray scattering. Structure 2005, 13:183-195.
    • (2005) Structure , vol.13 , pp. 183-195
    • Davies, J.M.1    Tsuruta, H.2    May, A.P.3    Weis, W.I.4
  • 14
    • 39449115385 scopus 로고    scopus 로고
    • AAA+ proteins: diversity in function, similarity in structure
    • Snider J., Houry W.A. AAA+ proteins: diversity in function, similarity in structure. Biochem. Soc. Trans. 2008, 36:72-77.
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 72-77
    • Snider, J.1    Houry, W.A.2
  • 15
    • 79953888421 scopus 로고    scopus 로고
    • Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
    • Aubin-Tam M.E., Olivares A.O., Sauer R.T., Baker T.A., Lang M.J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 2011, 145:257-267.
    • (2011) Cell , vol.145 , pp. 257-267
    • Aubin-Tam, M.E.1    Olivares, A.O.2    Sauer, R.T.3    Baker, T.A.4    Lang, M.J.5
  • 17
    • 1542344435 scopus 로고    scopus 로고
    • Proteasomes and their kin: proteases in the machine age
    • Pickart C.M., Cohen R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5:177-187.
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 177-187
    • Pickart, C.M.1    Cohen, R.E.2
  • 18
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer R.T., Baker T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 2011, 80:587-612.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 19
    • 64549106859 scopus 로고    scopus 로고
    • Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes
    • Striebel F., Kress W., Weber-Ban E. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr. Opin. Struct. Biol. 2009, 19:209-217.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 209-217
    • Striebel, F.1    Kress, W.2    Weber-Ban, E.3
  • 20
    • 33751228400 scopus 로고    scopus 로고
    • ATP-dependent proteases of bacteria: recognition logic and operating principles
    • Baker T.A., Sauer R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 2006, 31:647-653.
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 647-653
    • Baker, T.A.1    Sauer, R.T.2
  • 22
    • 0032568504 scopus 로고    scopus 로고
    • Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and clpP
    • Maurizi M.R., Singh S.K., Thompson M.W., Kessel M., Ginsburg A. Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and clpP. Biochemistry 1998, 37:7778-7786.
    • (1998) Biochemistry , vol.37 , pp. 7778-7786
    • Maurizi, M.R.1    Singh, S.K.2    Thompson, M.W.3    Kessel, M.4    Ginsburg, A.5
  • 23
    • 0033517351 scopus 로고    scopus 로고
    • Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
    • Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999, 401:90-93.
    • (1999) Nature , vol.401 , pp. 90-93
    • Weber-Ban, E.U.1    Reid, B.G.2    Miranker, A.D.3    Horwich, A.L.4
  • 24
    • 0034255124 scopus 로고    scopus 로고
    • Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP
    • Hoskins J.R., Singh S.K., Maurizi M.R., Wickner S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:8892-8897.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 8892-8897
    • Hoskins, J.R.1    Singh, S.K.2    Maurizi, M.R.3    Wickner, S.4
  • 25
    • 0033638255 scopus 로고    scopus 로고
    • Dynamics of substrate denaturation and translocation by the ClpXP degradation machine
    • Kim Y.I., Burton R.E., Burton B.M., Sauer R.T., Baker T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 2000, 5:639-648.
    • (2000) Mol. Cell , vol.5 , pp. 639-648
    • Kim, Y.I.1    Burton, R.E.2    Burton, B.M.3    Sauer, R.T.4    Baker, T.A.5
  • 27
    • 0031815994 scopus 로고    scopus 로고
    • The regulatory particle of the Saccharomyces cerevisiae proteasome
    • Glickman M.H., Rubin D.M., Fried V.A., Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 1998, 18:3149-3162.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 3149-3162
    • Glickman, M.H.1    Rubin, D.M.2    Fried, V.A.3    Finley, D.4
  • 32
    • 0033543648 scopus 로고    scopus 로고
    • An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes
    • Zwickl P., Ng D., Woo K.M., Klenk H.P., Goldberg A.L. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 1999, 274:26008-26014.
    • (1999) J. Biol. Chem. , vol.274 , pp. 26008-26014
    • Zwickl, P.1    Ng, D.2    Woo, K.M.3    Klenk, H.P.4    Goldberg, A.L.5
  • 33
    • 0035067597 scopus 로고    scopus 로고
    • The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes
    • Benaroudj N., Tarcsa E., Cascio P., Goldberg A.L. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie 2001, 83:311-318.
    • (2001) Biochimie , vol.83 , pp. 311-318
    • Benaroudj, N.1    Tarcsa, E.2    Cascio, P.3    Goldberg, A.L.4
  • 34
    • 33749234748 scopus 로고    scopus 로고
    • Proteasomes and their associated ATPases: a destructive combination
    • Smith D.M., Benaroudj N., Goldberg A. Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol. 2006, 156:72-83.
    • (2006) J. Struct. Biol. , vol.156 , pp. 72-83
    • Smith, D.M.1    Benaroudj, N.2    Goldberg, A.3
  • 35
    • 0033769733 scopus 로고    scopus 로고
    • PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone
    • Benaroudj N., Goldberg A.L. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell Biol. 2000, 2:833-839.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 833-839
    • Benaroudj, N.1    Goldberg, A.L.2
  • 36
    • 0034100371 scopus 로고    scopus 로고
    • Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome
    • Wilson H.L., Ou M.S., Aldrich H.C., Maupin-Furlow J. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. J. Bacteriol. 2000, 182:1680-1692.
    • (2000) J. Bacteriol. , vol.182 , pp. 1680-1692
    • Wilson, H.L.1    Ou, M.S.2    Aldrich, H.C.3    Maupin-Furlow, J.4
  • 38
    • 0035694696 scopus 로고    scopus 로고
    • Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome
    • Navon A., Goldberg A.L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 2001, 8:1339-1349.
    • (2001) Mol. Cell , vol.8 , pp. 1339-1349
    • Navon, A.1    Goldberg, A.L.2
  • 39
    • 0037248908 scopus 로고    scopus 로고
    • ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
    • Benaroudj N., Zwickl P., Seemuller E., Baumeister W., Goldberg A.L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 2003, 11:69-78.
    • (2003) Mol. Cell , vol.11 , pp. 69-78
    • Benaroudj, N.1    Zwickl, P.2    Seemuller, E.3    Baumeister, W.4    Goldberg, A.L.5
  • 40
    • 28444452611 scopus 로고    scopus 로고
    • ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins
    • Smith D.M., Kafri G., Cheng Y., Ng D., Walz T., Goldberg A.L. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 2005, 20:687-698.
    • (2005) Mol. Cell , vol.20 , pp. 687-698
    • Smith, D.M.1    Kafri, G.2    Cheng, Y.3    Ng, D.4    Walz, T.5    Goldberg, A.L.6
  • 41
    • 79951707743 scopus 로고    scopus 로고
    • ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
    • Smith D.M., Fraga H., Reis C., Kafri G., Goldberg A.L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011, 144:526-538.
    • (2011) Cell , vol.144 , pp. 526-538
    • Smith, D.M.1    Fraga, H.2    Reis, C.3    Kafri, G.4    Goldberg, A.L.5
  • 43
    • 0342265782 scopus 로고
    • A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes
    • Etlinger J.D., Goldberg A.L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl. Acad. Sci. U. S. A. 1977, 74:54-58.
    • (1977) Proc. Natl. Acad. Sci. U. S. A. , vol.74 , pp. 54-58
    • Etlinger, J.D.1    Goldberg, A.L.2
  • 44
    • 0018676915 scopus 로고
    • Protein degradation is stimulated by ATP in extracts of Escherichia coli
    • Murakami K., Voellmy R., Goldberg A.L. Protein degradation is stimulated by ATP in extracts of Escherichia coli. J. Biol. Chem. 1979, 254:8194-8200.
    • (1979) J. Biol. Chem. , vol.254 , pp. 8194-8200
    • Murakami, K.1    Voellmy, R.2    Goldberg, A.L.3
  • 46
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4A resolution
    • Lowe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4A resolution. Science 1995, 268:533-539.
    • (1995) Science , vol.268 , pp. 533-539
    • Lowe, J.1    Stock, D.2    Jap, B.3    Zwickl, P.4    Baumeister, W.5    Huber, R.6
  • 49
    • 0018800923 scopus 로고
    • Identification and partial purification of an ATP-stimulated alkaline protease in rat liver
    • DeMartino G.N., Goldberg A.L. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J. Biol. Chem. 1979, 254:3712-3715.
    • (1979) J. Biol. Chem. , vol.254 , pp. 3712-3715
    • DeMartino, G.N.1    Goldberg, A.L.2
  • 50
    • 0020674228 scopus 로고
    • Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex
    • Wilk S., Orlowski M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 1983, 40:842-849.
    • (1983) J. Neurochem. , vol.40 , pp. 842-849
    • Wilk, S.1    Orlowski, M.2
  • 51
    • 0021309541 scopus 로고
    • The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins
    • Schmid H.P., Akhayat O., Martins D.S., Puvion F., Koehler K., Scherrer K. The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins. EMBO J. 1984, 3:29-34.
    • (1984) EMBO J. , vol.3 , pp. 29-34
    • Schmid, H.P.1    Akhayat, O.2    Martins, D.S.3    Puvion, F.4    Koehler, K.5    Scherrer, K.6
  • 52
    • 0024285837 scopus 로고
    • Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome)
    • Arrigo A.P., Tanaka K., Goldberg A.L., Welch W.J. Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 1988, 331:192-194.
    • (1988) Nature , vol.331 , pp. 192-194
    • Arrigo, A.P.1    Tanaka, K.2    Goldberg, A.L.3    Welch, W.J.4
  • 53
    • 0030016595 scopus 로고    scopus 로고
    • Structure and functions of the 20S and 26S proteasomes
    • Coux O., Tanaka K., Goldberg A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996, 65:801-847.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 801-847
    • Coux, O.1    Tanaka, K.2    Goldberg, A.L.3
  • 54
    • 0020546084 scopus 로고
    • ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin
    • Tanaka K., Waxman L., Goldberg A.L. ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J. Cell Biol. 1983, 96:1580-1585.
    • (1983) J. Cell Biol. , vol.96 , pp. 1580-1585
    • Tanaka, K.1    Waxman, L.2    Goldberg, A.L.3
  • 55
    • 0023655017 scopus 로고
    • Purification of two high molecular weight proteases from rabbit reticulocyte lysate
    • Hough R., Pratt G., Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 1987, 262:8303-8313.
    • (1987) J. Biol. Chem. , vol.262 , pp. 8303-8313
    • Hough, R.1    Pratt, G.2    Rechsteiner, M.3
  • 56
    • 0344687318 scopus 로고    scopus 로고
    • Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly
    • Kwon Y.D., Nagy I., Adams P.D., Baumeister W., Jap B.K. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol. 2004, 335:233-245.
    • (2004) J. Mol. Biol. , vol.335 , pp. 233-245
    • Kwon, Y.D.1    Nagy, I.2    Adams, P.D.3    Baumeister, W.4    Jap, B.K.5
  • 57
    • 77953620707 scopus 로고    scopus 로고
    • Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome
    • Li D., Li H., Wang T., Pan H., Lin G., Li H. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO J. 2010, 29:2037-2047.
    • (2010) EMBO J. , vol.29 , pp. 2037-2047
    • Li, D.1    Li, H.2    Wang, T.3    Pan, H.4    Lin, G.5    Li, H.6
  • 59
    • 0034964524 scopus 로고    scopus 로고
    • The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
    • Kohler A., Cascio P., Leggett D.S., Woo K.M., Goldberg A.L., Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 2001, 7:1143-1152.
    • (2001) Mol. Cell , vol.7 , pp. 1143-1152
    • Kohler, A.1    Cascio, P.2    Leggett, D.S.3    Woo, K.M.4    Goldberg, A.L.5    Finley, D.6
  • 60
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
    • Smith D.M., Chang S.C., Park S., Finley D., Cheng Y., Goldberg A.L. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
    • (2007) Mol. Cell , vol.27 , pp. 731-744
    • Smith, D.M.1    Chang, S.C.2    Park, S.3    Finley, D.4    Cheng, Y.5    Goldberg, A.L.6
  • 62
    • 0030774890 scopus 로고    scopus 로고
    • The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing
    • Heinemeyer W., Fischer M., Krimmer T., Stachon U., Wolf D.H. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 1997, 272:25200-25209.
    • (1997) J. Biol. Chem. , vol.272 , pp. 25200-25209
    • Heinemeyer, W.1    Fischer, M.2    Krimmer, T.3    Stachon, U.4    Wolf, D.H.5
  • 63
    • 0030737501 scopus 로고    scopus 로고
    • Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation
    • Arendt C.S., Hochstrasser M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:7156-7161.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 7156-7161
    • Arendt, C.S.1    Hochstrasser, M.2
  • 64
    • 0034515298 scopus 로고    scopus 로고
    • Getting in and out of the proteasome
    • Glickman M.H. Getting in and out of the proteasome. Semin. Cell Dev. Biol. 2000, 11:149-158.
    • (2000) Semin. Cell Dev. Biol. , vol.11 , pp. 149-158
    • Glickman, M.H.1
  • 66
    • 0032867676 scopus 로고    scopus 로고
    • The 26S proteasome: a molecular machine designed for controlled proteolysis
    • Voges D., Zwickl P., Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999, 68:1015-1068.
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 1015-1068
    • Voges, D.1    Zwickl, P.2    Baumeister, W.3
  • 67
    • 53149123284 scopus 로고    scopus 로고
    • Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core
    • da Fonseca P.C., Morris E.P. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 2008, 283:23305-23314.
    • (2008) J. Biol. Chem. , vol.283 , pp. 23305-23314
    • da Fonseca, P.C.1    Morris, E.P.2
  • 68
    • 57649140340 scopus 로고    scopus 로고
    • Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome
    • Gillette T.G., Kumar B., Thompson D., Slaughter C.A., DeMartino G.N. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008, 283:31813-31822.
    • (2008) J. Biol. Chem. , vol.283 , pp. 31813-31822
    • Gillette, T.G.1    Kumar, B.2    Thompson, D.3    Slaughter, C.A.4    DeMartino, G.N.5
  • 70
    • 78649811815 scopus 로고    scopus 로고
    • The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation
    • Kumar B., Kim Y.C., DeMartino G.N. The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. J. Biol. Chem. 2010, 285:39523-39535.
    • (2010) J. Biol. Chem. , vol.285 , pp. 39523-39535
    • Kumar, B.1    Kim, Y.C.2    DeMartino, G.N.3
  • 73
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
    • Glickman M.H., Rubin D.M., Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V.A., Finley D. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998, 94:615-623.
    • (1998) Cell , vol.94 , pp. 615-623
    • Glickman, M.H.1    Rubin, D.M.2    Coux, O.3    Wefes, I.4    Pfeifer, G.5    Cjeka, Z.6    Baumeister, W.7    Fried, V.A.8    Finley, D.9
  • 74
    • 0033791447 scopus 로고    scopus 로고
    • Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
    • Verma R., Chen S., Feldman R., Schieltz D., Yates J., Dohmen J., Deshaies R.J. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 2000, 11:3425-3439.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 3425-3439
    • Verma, R.1    Chen, S.2    Feldman, R.3    Schieltz, D.4    Yates, J.5    Dohmen, J.6    Deshaies, R.J.7
  • 75
    • 0037129213 scopus 로고    scopus 로고
    • A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
    • Lam Y.A., Lawson T.G., Velayutham M., Zweier J.L., Pickart C.M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002, 416:763-767.
    • (2002) Nature , vol.416 , pp. 763-767
    • Lam, Y.A.1    Lawson, T.G.2    Velayutham, M.3    Zweier, J.L.4    Pickart, C.M.5
  • 77
    • 0037178895 scopus 로고    scopus 로고
    • Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome
    • Liu C.W., Millen L., Roman T.B., Xiong H., Gilbert H.F., Noiva R., DeMartino G.N., Thomas P.J. Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J. Biol. Chem. 2002, 277:26815-26820.
    • (2002) J. Biol. Chem. , vol.277 , pp. 26815-26820
    • Liu, C.W.1    Millen, L.2    Roman, T.B.3    Xiong, H.4    Gilbert, H.F.5    Noiva, R.6    DeMartino, G.N.7    Thomas, P.J.8
  • 80
    • 0033972319 scopus 로고    scopus 로고
    • Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7
    • Gorbea C., Taillandier D., Rechsteiner M. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7. J. Biol. Chem. 2000, 275:875-882.
    • (2000) J. Biol. Chem. , vol.275 , pp. 875-882
    • Gorbea, C.1    Taillandier, D.2    Rechsteiner, M.3
  • 82
    • 0035242489 scopus 로고    scopus 로고
    • Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking
    • Hartmann-Petersen R., Tanaka K., Hendil K.B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys. 2001, 386:89-94.
    • (2001) Arch. Biochem. Biophys. , vol.386 , pp. 89-94
    • Hartmann-Petersen, R.1    Tanaka, K.2    Hendil, K.B.3
  • 84
  • 85
    • 77951639210 scopus 로고    scopus 로고
    • Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3
    • Enchev R.I., Schreiber A., Beuron F., Morris E.P. Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Structure 2010, 18:518-527.
    • (2010) Structure , vol.18 , pp. 518-527
    • Enchev, R.I.1    Schreiber, A.2    Beuron, F.3    Morris, E.P.4
  • 86
    • 0034725525 scopus 로고    scopus 로고
    • Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome
    • Kapelari B., Bech-Otschir D., Hegerl R., Schade R., Dumdey R., Dubiel W. Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J. Mol. Biol. 2000, 300:1169-1178.
    • (2000) J. Mol. Biol. , vol.300 , pp. 1169-1178
    • Kapelari, B.1    Bech-Otschir, D.2    Hegerl, R.3    Schade, R.4    Dumdey, R.5    Dubiel, W.6
  • 88
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T., Cohen R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002, 419:403-407.
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 89
    • 0347087494 scopus 로고    scopus 로고
    • Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome
    • Guterman A., Glickman M.H. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J. Biol. Chem. 2004, 279:1729-1738.
    • (2004) J. Biol. Chem. , vol.279 , pp. 1729-1738
    • Guterman, A.1    Glickman, M.H.2
  • 90
    • 2442551473 scopus 로고    scopus 로고
    • Deubiquitinating enzymes are IN/(trinsic to proteasome function)
    • Guterman A., Glickman M.H. Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr. Protein Pept. Sci. 2004, 5:201-211.
    • (2004) Curr. Protein Pept. Sci. , vol.5 , pp. 201-211
    • Guterman, A.1    Glickman, M.H.2
  • 91
    • 79955470830 scopus 로고    scopus 로고
    • Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes
    • Lee M.J., Lee B.H., Hanna J., King R.W., Finley D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics 2011, 10:R110.
    • (2011) Mol. Cell. Proteomics , vol.10
    • Lee, M.J.1    Lee, B.H.2    Hanna, J.3    King, R.W.4    Finley, D.5
  • 92
    • 33747347236 scopus 로고    scopus 로고
    • Structural organization of the 19S proteasome lid: insights from MS of intact complexes
    • Sharon M., Taverner T., Ambroggio X.I., Deshaies R.J., Robinson C.V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 2006, 4:e267.
    • (2006) PLoS Biol. , vol.4
    • Sharon, M.1    Taverner, T.2    Ambroggio, X.I.3    Deshaies, R.J.4    Robinson, C.V.5
  • 93
    • 0037126632 scopus 로고    scopus 로고
    • Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome
    • Fu H., Reis N., Lee Y., Glickman M.H., Vierstra R.D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 2001, 20:7096-7107.
    • (2001) EMBO J. , vol.20 , pp. 7096-7107
    • Fu, H.1    Reis, N.2    Lee, Y.3    Glickman, M.H.4    Vierstra, R.D.5
  • 94
    • 68349157358 scopus 로고    scopus 로고
    • PCI complexes: beyond the proteasome, CSN, and eIF3 Troika
    • Pick E., Hofmann K., Glickman M.H. PCI complexes: beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell 2009, 35:260-264.
    • (2009) Mol. Cell , vol.35 , pp. 260-264
    • Pick, E.1    Hofmann, K.2    Glickman, M.H.3
  • 95
    • 77953291910 scopus 로고    scopus 로고
    • Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae
    • Fukunaga K., Kudo T., Toh-e A., Tanaka K., Saeki Y. Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2010, 396:1048-1053.
    • (2010) Biochem. Biophys. Res. Commun. , vol.396 , pp. 1048-1053
    • Fukunaga, K.1    Kudo, T.2    Toh-e, A.3    Tanaka, K.4    Saeki, Y.5
  • 100
    • 0030595329 scopus 로고    scopus 로고
    • Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly
    • Chen P., Hochstrasser M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 1996, 86:961-972.
    • (1996) Cell , vol.86 , pp. 961-972
    • Chen, P.1    Hochstrasser, M.2
  • 104
    • 0032548998 scopus 로고    scopus 로고
    • Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
    • Ramos P.C., Hockendorff J., Johnson E.S., Varshavsky A., Dohmen R.J. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998, 92:489-499.
    • (1998) Cell , vol.92 , pp. 489-499
    • Ramos, P.C.1    Hockendorff, J.2    Johnson, E.S.3    Varshavsky, A.4    Dohmen, R.J.5
  • 109
    • 0031001763 scopus 로고    scopus 로고
    • Specific interactions between ATPase subunits of the 26 S protease
    • Richmond C., Gorbea C., Rechsteiner M. Specific interactions between ATPase subunits of the 26 S protease. J. Biol. Chem. 1997, 272:13403-13411.
    • (1997) J. Biol. Chem. , vol.272 , pp. 13403-13411
    • Richmond, C.1    Gorbea, C.2    Rechsteiner, M.3
  • 110
    • 0033119210 scopus 로고    scopus 로고
    • Assembly of the regulatory complex of the 26S proteasome
    • Gorbea C., Taillandier D., Rechsteiner M. Assembly of the regulatory complex of the 26S proteasome. Mol. Biol. Rep. 1999, 26:15-19.
    • (1999) Mol. Biol. Rep. , vol.26 , pp. 15-19
    • Gorbea, C.1    Taillandier, D.2    Rechsteiner, M.3
  • 112
    • 69249099667 scopus 로고    scopus 로고
    • S-glutathionylation of the Rpn2 regulatory subunit inhibits 26 S proteasomal function
    • Zmijewski J.W., Banerjee S., Abraham E. S-glutathionylation of the Rpn2 regulatory subunit inhibits 26 S proteasomal function. J. Biol. Chem. 2009, 284:22213-22221.
    • (2009) J. Biol. Chem. , vol.284 , pp. 22213-22221
    • Zmijewski, J.W.1    Banerjee, S.2    Abraham, E.3
  • 113
    • 77649243592 scopus 로고    scopus 로고
    • Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening
    • Sadre-Bazzaz K., Whitby F.G., Robinson H., Formosa T., Hill C.P. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 2010, 37:728-735.
    • (2010) Mol. Cell , vol.37 , pp. 728-735
    • Sadre-Bazzaz, K.1    Whitby, F.G.2    Robinson, H.3    Formosa, T.4    Hill, C.P.5
  • 115
    • 59849083960 scopus 로고    scopus 로고
    • Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
    • Le Tallec B., Barrault M.B., Guerois R., Carre T., Peyroche A. Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol. Cell 2009, 33:389-399.
    • (2009) Mol. Cell , vol.33 , pp. 389-399
    • Le Tallec, B.1    Barrault, M.B.2    Guerois, R.3    Carre, T.4    Peyroche, A.5
  • 116
    • 67349089027 scopus 로고    scopus 로고
    • Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
    • Funakoshi M., Tomko R.J., Kobayashi H., Hochstrasser M. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 2009, 137:887-899.
    • (2009) Cell , vol.137 , pp. 887-899
    • Funakoshi, M.1    Tomko, R.J.2    Kobayashi, H.3    Hochstrasser, M.4
  • 117
    • 65849101541 scopus 로고    scopus 로고
    • Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
    • Saeki Y., Toh E., Kudo T., Kawamura H., Tanaka K. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009, 137:900-913.
    • (2009) Cell , vol.137 , pp. 900-913
    • Saeki, Y.1    Toh, E.2    Kudo, T.3    Kawamura, H.4    Tanaka, K.5
  • 118
    • 65849109465 scopus 로고    scopus 로고
    • Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones
    • Kaneko T., Hamazaki J., Iemura S., Sasaki K., Furuyama K., Natsume T., Tanaka K., Murata S. Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 2009, 137:914-925.
    • (2009) Cell , vol.137 , pp. 914-925
    • Kaneko, T.1    Hamazaki, J.2    Iemura, S.3    Sasaki, K.4    Furuyama, K.5    Natsume, T.6    Tanaka, K.7    Murata, S.8
  • 119
    • 67149121057 scopus 로고    scopus 로고
    • Hexameric assembly of the proteasomal ATPases is templated through their C termini
    • Park S., Roelofs J., Kim W., Robert J., Schmidt M., Gygi S.P., Finley D. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 2009, 459:866-870.
    • (2009) Nature , vol.459 , pp. 866-870
    • Park, S.1    Roelofs, J.2    Kim, W.3    Robert, J.4    Schmidt, M.5    Gygi, S.P.6    Finley, D.7
  • 121
    • 67649654465 scopus 로고    scopus 로고
    • Getting to first base in proteasome assembly
    • Besche H.C., Peth A., Goldberg A.L. Getting to first base in proteasome assembly. Cell 2009, 138:25-28.
    • (2009) Cell , vol.138 , pp. 25-28
    • Besche, H.C.1    Peth, A.2    Goldberg, A.L.3
  • 125
    • 76449108472 scopus 로고    scopus 로고
    • Assembly manual for the proteasome regulatory particle: the first draft
    • Park S., Tian G., Roelofs J., Finley D. Assembly manual for the proteasome regulatory particle: the first draft. Biochem. Soc. Trans. 2010, 38:6-13.
    • (2010) Biochem. Soc. Trans. , vol.38 , pp. 6-13
    • Park, S.1    Tian, G.2    Roelofs, J.3    Finley, D.4
  • 126
    • 0033976299 scopus 로고    scopus 로고
    • Regulatory subunit interactions of the 26S proteasome, a complex problem
    • Ferrell K., Wilkinson C.R., Dubiel W., Gordon C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 2000, 25:83-88.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 83-88
    • Ferrell, K.1    Wilkinson, C.R.2    Dubiel, W.3    Gordon, C.4
  • 128
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., Hu M., Tian G., Zhang P., Finley D., Jeffrey P.D., Shi Y. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
    • (2009) Mol. Cell , vol.34 , pp. 473-484
    • Zhang, F.1    Hu, M.2    Tian, G.3    Zhang, P.4    Finley, D.5    Jeffrey, P.D.6    Shi, Y.7
  • 132
    • 77951945222 scopus 로고    scopus 로고
    • Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly
    • Tomko R.J., Funakoshi M., Schneider K., Wang J., Hochstrasser M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 2010, 38:393-403.
    • (2010) Mol. Cell , vol.38 , pp. 393-403
    • Tomko, R.J.1    Funakoshi, M.2    Schneider, K.3    Wang, J.4    Hochstrasser, M.5
  • 133
    • 77951972141 scopus 로고    scopus 로고
    • Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2
    • Chen X., Lee B.H., Finley D., Walters K.J. Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol. Cell 2010, 38:404-415.
    • (2010) Mol. Cell , vol.38 , pp. 404-415
    • Chen, X.1    Lee, B.H.2    Finley, D.3    Walters, K.J.4
  • 134
    • 33749348820 scopus 로고    scopus 로고
    • A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
    • Hamazaki J., Iemura S., Natsume T., Yashiroda H., Tanaka K., Murata S. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 2006, 25:4524-4536.
    • (2006) EMBO J. , vol.25 , pp. 4524-4536
    • Hamazaki, J.1    Iemura, S.2    Natsume, T.3    Yashiroda, H.4    Tanaka, K.5    Murata, S.6
  • 135
    • 0030742610 scopus 로고    scopus 로고
    • Difference between PA700-like proteasome activator complex and the regulatory complex dissociated from the 26S proteasome implies the involvement of modulating factors in the 26S proteasome assembly
    • Sawada H., Akaishi T., Katsu M., Yokosawa H. Difference between PA700-like proteasome activator complex and the regulatory complex dissociated from the 26S proteasome implies the involvement of modulating factors in the 26S proteasome assembly. FEBS Lett. 1997, 412:521-525.
    • (1997) FEBS Lett. , vol.412 , pp. 521-525
    • Sawada, H.1    Akaishi, T.2    Katsu, M.3    Yokosawa, H.4
  • 136
    • 69949136026 scopus 로고    scopus 로고
    • Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
    • Thompson D., Hakala K., DeMartino G.N. Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 2009, 284:24891-24903.
    • (2009) J. Biol. Chem. , vol.284 , pp. 24891-24903
    • Thompson, D.1    Hakala, K.2    DeMartino, G.N.3
  • 138
    • 19444387760 scopus 로고    scopus 로고
    • The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
    • Forster A., Masters E.I., Whitby F.G., Robinson H., Hill C.P. The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 2005, 18:589-599.
    • (2005) Mol. Cell , vol.18 , pp. 589-599
    • Forster, A.1    Masters, E.I.2    Whitby, F.G.3    Robinson, H.4    Hill, C.P.5
  • 139
    • 1642343784 scopus 로고    scopus 로고
    • Phylogenetic analysis of AAA proteins
    • Frickey T., Lupas A.N. Phylogenetic analysis of AAA proteins. J. Struct. Biol. 2004, 146:2-10.
    • (2004) J. Struct. Biol. , vol.146 , pp. 2-10
    • Frickey, T.1    Lupas, A.N.2
  • 141
    • 79955932041 scopus 로고    scopus 로고
    • Order of the proteasomal ATPases and eukaryotic proteasome assembly
    • Tomko R.J., Hochstrasser M. Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem. Biophys. 2011, 60:13-20.
    • (2011) Cell Biochem. Biophys. , vol.60 , pp. 13-20
    • Tomko, R.J.1    Hochstrasser, M.2
  • 142
    • 60849118366 scopus 로고    scopus 로고
    • Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2
    • Effantin G., Rosenzweig R., Glickman M.H., Steven A.C. Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2. J. Mol. Biol. 2009, 386:1204-1211.
    • (2009) J. Mol. Biol. , vol.386 , pp. 1204-1211
    • Effantin, G.1    Rosenzweig, R.2    Glickman, M.H.3    Steven, A.C.4
  • 144
    • 78549254832 scopus 로고    scopus 로고
    • Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation
    • Wang T., Darwin K.H., Li H. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat. Struct. Mol. Biol. 2010, 17:1352-1357.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1352-1357
    • Wang, T.1    Darwin, K.H.2    Li, H.3
  • 145
    • 0024095589 scopus 로고
    • Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP
    • Sung P., Higgins D., Prakash L., Prakash S. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 1988, 7:3263-3269.
    • (1988) EMBO J. , vol.7 , pp. 3263-3269
    • Sung, P.1    Higgins, D.2    Prakash, L.3    Prakash, S.4
  • 146
    • 0032168508 scopus 로고    scopus 로고
    • Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
    • Rubin D.M., Glickman M.H., Larsen C.N., Dhruvakumar S., Finley D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 1998, 17:4909-4919.
    • (1998) EMBO J. , vol.17 , pp. 4909-4919
    • Rubin, D.M.1    Glickman, M.H.2    Larsen, C.N.3    Dhruvakumar, S.4    Finley, D.5
  • 147
    • 43149093941 scopus 로고    scopus 로고
    • A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates
    • Lipson C., Alalouf G., Bajorek M., Rabinovich E., Atir-Lande A., Glickman M., Bar-Nun S. A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates. J. Biol. Chem. 2008, 283:7166-7175.
    • (2008) J. Biol. Chem. , vol.283 , pp. 7166-7175
    • Lipson, C.1    Alalouf, G.2    Bajorek, M.3    Rabinovich, E.4    Atir-Lande, A.5    Glickman, M.6    Bar-Nun, S.7
  • 150
    • 33744552902 scopus 로고    scopus 로고
    • Structure of the whole cytosolic region of ATP-dependent protease FtsH
    • Suno R., Niwa H., Tsuchiya D., Zhang X., Yoshida M., Morikawa K. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol. Cell 2006, 22:575-585.
    • (2006) Mol. Cell , vol.22 , pp. 575-585
    • Suno, R.1    Niwa, H.2    Tsuchiya, D.3    Zhang, X.4    Yoshida, M.5    Morikawa, K.6
  • 151
    • 21244482459 scopus 로고    scopus 로고
    • Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine
    • Hersch G.L., Burton R.E., Bolon D.N., Baker T.A., Sauer R.T. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 2005, 121:1017-1027.
    • (2005) Cell , vol.121 , pp. 1017-1027
    • Hersch, G.L.1    Burton, R.E.2    Bolon, D.N.3    Baker, T.A.4    Sauer, R.T.5
  • 153
    • 79955525976 scopus 로고    scopus 로고
    • Positive cooperativity of the p97 AAA ATPase is critical for essential functions
    • Nishikori S., Esaki M., Yamanaka K., Sugimoto S., Ogura T. Positive cooperativity of the p97 AAA ATPase is critical for essential functions. J. Biol. Chem. 2011, 286:15815-15820.
    • (2011) J. Biol. Chem. , vol.286 , pp. 15815-15820
    • Nishikori, S.1    Esaki, M.2    Yamanaka, K.3    Sugimoto, S.4    Ogura, T.5
  • 154
    • 55549088522 scopus 로고    scopus 로고
    • Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
    • Martin A., Baker T.A., Sauer R.T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 2008, 15:1147-1151.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1147-1151
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 156
    • 0036646488 scopus 로고    scopus 로고
    • PA200, a nuclear proteasome activator involved in DNA repair
    • Ustrell V., Hoffman L., Pratt G., Rechsteiner M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002, 21:3516-3525.
    • (2002) EMBO J. , vol.21 , pp. 3516-3525
    • Ustrell, V.1    Hoffman, L.2    Pratt, G.3    Rechsteiner, M.4
  • 157
    • 0037401695 scopus 로고    scopus 로고
    • Substrate access and processing by the 20S proteasome core particle
    • Groll M., Huber R. Substrate access and processing by the 20S proteasome core particle. Int. J. Biochem. Cell Biol. 2003, 35:606-616.
    • (2003) Int. J. Biochem. Cell Biol. , vol.35 , pp. 606-616
    • Groll, M.1    Huber, R.2
  • 158
    • 0027493870 scopus 로고
    • PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus
    • Ma C.P., Willy P.J., Slaughter C.A., DeMartino G.N. PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus. J. Biol. Chem. 1993, 268:22514-22519.
    • (1993) J. Biol. Chem. , vol.268 , pp. 22514-22519
    • Ma, C.P.1    Willy, P.J.2    Slaughter, C.A.3    DeMartino, G.N.4
  • 159
    • 0033529596 scopus 로고    scopus 로고
    • The proteasome, a novel protease regulated by multiple mechanisms
    • DeMartino G.N., Slaughter C.A. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 1999, 274:22123-22126.
    • (1999) J. Biol. Chem. , vol.274 , pp. 22123-22126
    • DeMartino, G.N.1    Slaughter, C.A.2
  • 161
    • 0043192299 scopus 로고    scopus 로고
    • The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation
    • Forster A., Whitby F.G., Hill C.P. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 2003, 22:4356-4364.
    • (2003) EMBO J. , vol.22 , pp. 4356-4364
    • Forster, A.1    Whitby, F.G.2    Hill, C.P.3
  • 162
    • 0026498493 scopus 로고
    • Purification of an 11 S regulator of the multicatalytic protease
    • Dubiel W., Pratt G., Ferrell K., Rechsteiner M. Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem. 1992, 267:22369-22377.
    • (1992) J. Biol. Chem. , vol.267 , pp. 22369-22377
    • Dubiel, W.1    Pratt, G.2    Ferrell, K.3    Rechsteiner, M.4
  • 164
    • 64549115746 scopus 로고    scopus 로고
    • Toward an atomic model of the 26S proteasome
    • Cheng Y. Toward an atomic model of the 26S proteasome. Curr. Opin. Struct. Biol. 2009, 19:203-208.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 203-208
    • Cheng, Y.1
  • 165
    • 76349089770 scopus 로고    scopus 로고
    • Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
    • Yu Y., Smith D.M., Kim H.M., Rodriguez V., Goldberg A.L., Cheng Y. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 2010, 29:692-702.
    • (2010) EMBO J. , vol.29 , pp. 692-702
    • Yu, Y.1    Smith, D.M.2    Kim, H.M.3    Rodriguez, V.4    Goldberg, A.L.5    Cheng, Y.6
  • 166
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
    • Rabl J., Smith D.M., Yu Y., Chang S.C., Goldberg A.L., Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 2008, 30:360-368.
    • (2008) Mol. Cell , vol.30 , pp. 360-368
    • Rabl, J.1    Smith, D.M.2    Yu, Y.3    Chang, S.C.4    Goldberg, A.L.5    Cheng, Y.6
  • 167
    • 0035266072 scopus 로고    scopus 로고
    • ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
    • Lee C., Schwartz M.P., Prakash S., Iwakura M., Matouschek A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 2001, 7:627-637.
    • (2001) Mol. Cell , vol.7 , pp. 627-637
    • Lee, C.1    Schwartz, M.P.2    Prakash, S.3    Iwakura, M.4    Matouschek, A.5
  • 168
    • 0042329502 scopus 로고    scopus 로고
    • Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine
    • Kenniston J.A., Baker T.A., Fernandez J.M., Sauer R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 2003, 114:511-520.
    • (2003) Cell , vol.114 , pp. 511-520
    • Kenniston, J.A.1    Baker, T.A.2    Fernandez, J.M.3    Sauer, R.T.4
  • 169
  • 171
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 172
    • 13444306170 scopus 로고    scopus 로고
    • Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing
    • Kenniston J.A., Baker T.A., Sauer R.T. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:1390-1395.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 1390-1395
    • Kenniston, J.A.1    Baker, T.A.2    Sauer, R.T.3
  • 173
    • 2442645033 scopus 로고    scopus 로고
    • Proteasomes begin ornithine decarboxylase digestion at the C terminus
    • Zhang M., MacDonald A.I., Hoyt M.A., Coffino P. Proteasomes begin ornithine decarboxylase digestion at the C terminus. J. Biol. Chem. 2004, 279:20959-20965.
    • (2004) J. Biol. Chem. , vol.279 , pp. 20959-20965
    • Zhang, M.1    MacDonald, A.I.2    Hoyt, M.A.3    Coffino, P.4
  • 174
    • 33646152750 scopus 로고    scopus 로고
    • Glycine-alanine repeats impair proper substrate unfolding by the proteasome
    • Hoyt M.A., Zich J., Takeuchi J., Zhang M., Govaerts C., Coffino P. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 2006, 25:1720-1729.
    • (2006) EMBO J. , vol.25 , pp. 1720-1729
    • Hoyt, M.A.1    Zich, J.2    Takeuchi, J.3    Zhang, M.4    Govaerts, C.5    Coffino, P.6
  • 175
    • 0028951190 scopus 로고
    • Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway
    • Johnston J.A., Johnson E.S., Waller P.R., Varshavsky A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem. 1995, 270:8172-8178.
    • (1995) J. Biol. Chem. , vol.270 , pp. 8172-8178
    • Johnston, J.A.1    Johnson, E.S.2    Waller, P.R.3    Varshavsky, A.4
  • 177
    • 1542305655 scopus 로고    scopus 로고
    • Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing
    • Zhang M., Coffino P. Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing. J. Biol. Chem. 2004, 279:8635-8641.
    • (2004) J. Biol. Chem. , vol.279 , pp. 8635-8641
    • Zhang, M.1    Coffino, P.2
  • 178
    • 79955947361 scopus 로고    scopus 로고
    • Dependence of proteasome processing rate on substrate unfolding
    • Henderson C.A., Erales J., Hoyt M.A., Coffino P. Dependence of proteasome processing rate on substrate unfolding. J. Biol. Chem. 2011, 286:17495-17502.
    • (2011) J. Biol. Chem. , vol.286 , pp. 17495-17502
    • Henderson, C.A.1    Erales, J.2    Hoyt, M.A.3    Coffino, P.4
  • 179
    • 0034640110 scopus 로고    scopus 로고
    • A proteasome howdunit: the case of the missing signal
    • Verma R., Deshaies R.J. A proteasome howdunit: the case of the missing signal. Cell 2000, 101:341-344.
    • (2000) Cell , vol.101 , pp. 341-344
    • Verma, R.1    Deshaies, R.J.2
  • 180
    • 3242732010 scopus 로고    scopus 로고
    • Ubiquitin-free routes into the proteasome
    • Hoyt M.A., Coffino P. Ubiquitin-free routes into the proteasome. Cell. Mol. Life Sci. 2004, 61:1596-1600.
    • (2004) Cell. Mol. Life Sci. , vol.61 , pp. 1596-1600
    • Hoyt, M.A.1    Coffino, P.2
  • 181
    • 33846216003 scopus 로고    scopus 로고
    • Proteasome substrate degradation requires association plus extended peptide
    • Takeuchi J., Chen H., Coffino P. Proteasome substrate degradation requires association plus extended peptide. EMBO J. 2007, 26:123-131.
    • (2007) EMBO J. , vol.26 , pp. 123-131
    • Takeuchi, J.1    Chen, H.2    Coffino, P.3
  • 183
  • 185
    • 65649123769 scopus 로고    scopus 로고
    • Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., Wu Z., Zhang P., Tian G., Finley D., Shi Y. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:485-496.
    • (2009) Mol. Cell , vol.34 , pp. 485-496
    • Zhang, F.1    Wu, Z.2    Zhang, P.3    Tian, G.4    Finley, D.5    Shi, Y.6
  • 186
    • 66449134270 scopus 로고    scopus 로고
    • The proteasome's crown for destruction
    • Sakata E., Saeki Y., Tanaka K. The proteasome's crown for destruction. Mol. Cell 2009, 34:519-520.
    • (2009) Mol. Cell , vol.34 , pp. 519-520
    • Sakata, E.1    Saeki, Y.2    Tanaka, K.3
  • 187
    • 28544434064 scopus 로고    scopus 로고
    • A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB
    • Tian L., Holmgren R.A., Matouschek A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB. Nat. Struct. Mol. Biol. 2005, 12:1045-1053.
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1045-1053
    • Tian, L.1    Holmgren, R.A.2    Matouschek, A.3
  • 188
    • 33746375404 scopus 로고    scopus 로고
    • Mechanism of DNA translocation in a replicative hexameric helicase
    • Enemark E.J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270-275.
    • (2006) Nature , vol.442 , pp. 270-275
    • Enemark, E.J.1    Joshua-Tor, L.2
  • 189
    • 70350344051 scopus 로고    scopus 로고
    • Running in reverse: the structural basis for translocation polarity in hexameric helicases
    • Thomsen N.D., Berger J.M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 2009, 139:523-534.
    • (2009) Cell , vol.139 , pp. 523-534
    • Thomsen, N.D.1    Berger, J.M.2
  • 190
    • 4444226952 scopus 로고    scopus 로고
    • Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen
    • Gai D., Zhao R., Li D., Finkielstein C.V., Chen X.S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 2004, 119:47-60.
    • (2004) Cell , vol.119 , pp. 47-60
    • Gai, D.1    Zhao, R.2    Li, D.3    Finkielstein, C.V.4    Chen, X.S.5
  • 191
    • 57749102552 scopus 로고    scopus 로고
    • Substrate selection by the proteasome during degradation of protein complexes
    • Prakash S., Inobe T., Hatch A.J., Matouschek A. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 2009, 5:29-36.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 29-36
    • Prakash, S.1    Inobe, T.2    Hatch, A.J.3    Matouschek, A.4
  • 192
    • 0032441479 scopus 로고    scopus 로고
    • Ubiquitin and the control of protein fate in the secretory and endocytic pathways
    • Bonifacino J.S., Weissman A.M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 1998, 14:19-57.
    • (1998) Annu. Rev. Cell Dev. Biol. , vol.14 , pp. 19-57
    • Bonifacino, J.S.1    Weissman, A.M.2
  • 193
    • 77957293977 scopus 로고    scopus 로고
    • Molecular chaperones and substrate ubiquitination control the efficiency of endoplasmic reticulum-associated degradation
    • Goeckeler J.L., Brodsky J.L. Molecular chaperones and substrate ubiquitination control the efficiency of endoplasmic reticulum-associated degradation. Diabetes Obes. Metab. 2010, 12(Suppl 2):32-38.
    • (2010) Diabetes Obes. Metab. , vol.12 , Issue.SUPPL. 2 , pp. 32-38
    • Goeckeler, J.L.1    Brodsky, J.L.2
  • 194
    • 77957189436 scopus 로고    scopus 로고
    • ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum
    • Mehnert M., Sommer T., Jarosch E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 2010, 32:905-913.
    • (2010) Bioessays , vol.32 , pp. 905-913
    • Mehnert, M.1    Sommer, T.2    Jarosch, E.3
  • 196
    • 0035818999 scopus 로고    scopus 로고
    • The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol
    • Ye Y., Meyer H.H., Rapoport T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001, 414:652-656.
    • (2001) Nature , vol.414 , pp. 652-656
    • Ye, Y.1    Meyer, H.H.2    Rapoport, T.A.3
  • 197
    • 0036136901 scopus 로고    scopus 로고
    • AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation
    • Rabinovich E., Kerem A., Frohlich K.U., Diamant N., Bar-Nun S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 2002, 22:626-634.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 626-634
    • Rabinovich, E.1    Kerem, A.2    Frohlich, K.U.3    Diamant, N.4    Bar-Nun, S.5
  • 199
    • 30344460667 scopus 로고    scopus 로고
    • The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast
    • Bar-Nun S. The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast. Curr. Top. Microbiol. Immunol. 2005, 300:95-125.
    • (2005) Curr. Top. Microbiol. Immunol. , vol.300 , pp. 95-125
    • Bar-Nun, S.1
  • 200
    • 67749116062 scopus 로고    scopus 로고
    • Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation
    • Leichner G.S., Avner R., Harats D., Roitelman J. Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation. Mol. Biol. Cell 2009, 20:3330-3341.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 3330-3341
    • Leichner, G.S.1    Avner, R.2    Harats, D.3    Roitelman, J.4
  • 201
    • 1042278180 scopus 로고    scopus 로고
    • Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplasmic reticulum-bound p97/Cdc48p and proteasome
    • Elkabetz Y., Shapira I., Rabinovich E., Bar-Nun S. Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplasmic reticulum-bound p97/Cdc48p and proteasome. J. Biol. Chem. 2004, 279:3980-3989.
    • (2004) J. Biol. Chem. , vol.279 , pp. 3980-3989
    • Elkabetz, Y.1    Shapira, I.2    Rabinovich, E.3    Bar-Nun, S.4
  • 202
    • 0038143181 scopus 로고    scopus 로고
    • Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway
    • Elkabetz Y., Kerem A., Tencer L., Winitz D., Kopito R.R., Bar-Nun S. Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway. J. Biol. Chem. 2003, 278:18922-18929.
    • (2003) J. Biol. Chem. , vol.278 , pp. 18922-18929
    • Elkabetz, Y.1    Kerem, A.2    Tencer, L.3    Winitz, D.4    Kopito, R.R.5    Bar-Nun, S.6
  • 205
    • 34249069585 scopus 로고    scopus 로고
    • Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system
    • Wahlman J., DeMartino G.N., Skach W.R., Bulleid N.J., Brodsky J.L., Johnson A.E. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 2007, 129:943-955.
    • (2007) Cell , vol.129 , pp. 943-955
    • Wahlman, J.1    DeMartino, G.N.2    Skach, W.R.3    Bulleid, N.J.4    Brodsky, J.L.5    Johnson, A.E.6
  • 206
    • 0029838640 scopus 로고    scopus 로고
    • ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway
    • Hiller M.M., Finger A., Schweiger M., Wolf D.H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 1996, 273:1725-1728.
    • (1996) Science , vol.273 , pp. 1725-1728
    • Hiller, M.M.1    Finger, A.2    Schweiger, M.3    Wolf, D.H.4
  • 207
    • 0032526433 scopus 로고    scopus 로고
    • Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein
    • Mayer T.U., Braun T., Jentsch S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J. 1998, 17:3251-3257.
    • (1998) EMBO J. , vol.17 , pp. 3251-3257
    • Mayer, T.U.1    Braun, T.2    Jentsch, S.3
  • 208
    • 0034651604 scopus 로고    scopus 로고
    • Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system
    • Hill K., Cooper A.A. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J. 2000, 19:550-561.
    • (2000) EMBO J. , vol.19 , pp. 550-561
    • Hill, K.1    Cooper, A.A.2
  • 209
    • 77955106651 scopus 로고    scopus 로고
    • Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum
    • Li S., Spooner R.A., Allen S.C., Guise C.P., Ladds G., Schnoder T., Schmitt M.J., Lord J.M., Roberts L.M. Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum. Mol. Biol. Cell 2010, 21:2543-2554.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2543-2554
    • Li, S.1    Spooner, R.A.2    Allen, S.C.3    Guise, C.P.4    Ladds, G.5    Schnoder, T.6    Schmitt, M.J.7    Lord, J.M.8    Roberts, L.M.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.