-
1
-
-
0029328549
-
A 200-amino acid ATPase module in search of a basic function
-
Confalonieri F., Duguet M. A 200-amino acid ATPase module in search of a basic function. Bioessays 1995, 17:639-650.
-
(1995)
Bioessays
, vol.17
, pp. 639-650
-
-
Confalonieri, F.1
Duguet, M.2
-
2
-
-
0032969563
-
AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
-
Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999, 9:27-43.
-
(1999)
Genome Res.
, vol.9
, pp. 27-43
-
-
Neuwald, A.F.1
Aravind, L.2
Spouge, J.L.3
Koonin, E.V.4
-
3
-
-
1642325936
-
Evolutionary history and higher order classification of AAA+ ATPases
-
Iyer L.M., Leipe D.D., Koonin E.V., Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 2004, 146:11-31.
-
(2004)
J. Struct. Biol.
, vol.146
, pp. 11-31
-
-
Iyer, L.M.1
Leipe, D.D.2
Koonin, E.V.3
Aravind, L.4
-
5
-
-
27144474906
-
Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines
-
Martin A., Baker T.A., Sauer R.T. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 2005, 437:1115-1120.
-
(2005)
Nature
, vol.437
, pp. 1115-1120
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
6
-
-
0035184442
-
Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU
-
Wang J., Song J.J., Seong I.S., Franklin M.C., Kamtekar S., Eom S.H., Chung C.H. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 2001, 9:1107-1116.
-
(2001)
Structure
, vol.9
, pp. 1107-1116
-
-
Wang, J.1
Song, J.J.2
Seong, I.S.3
Franklin, M.C.4
Kamtekar, S.5
Eom, S.H.6
Chung, C.H.7
-
7
-
-
18744414494
-
Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle
-
Rouiller I., DeLaBarre B., May A.P., Weis W.I., Brunger A.T., Milligan R.A., Wilson-Kubalek E.M. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat. Struct. Biol. 2002, 9:950-957.
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 950-957
-
-
Rouiller, I.1
DeLaBarre, B.2
May, A.P.3
Weis, W.I.4
Brunger, A.T.5
Milligan, R.A.6
Wilson-Kubalek, E.M.7
-
9
-
-
14644415865
-
Nucleotide dependent motion and mechanism of action of p97/VCP
-
DeLaBarre B., Brunger A.T. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 2005, 347:437-452.
-
(2005)
J. Mol. Biol.
, vol.347
, pp. 437-452
-
-
DeLaBarre, B.1
Brunger, A.T.2
-
10
-
-
13844253945
-
Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-ray scattering
-
Davies J.M., Tsuruta H., May A.P., Weis W.I. Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-ray scattering. Structure 2005, 13:183-195.
-
(2005)
Structure
, vol.13
, pp. 183-195
-
-
Davies, J.M.1
Tsuruta, H.2
May, A.P.3
Weis, W.I.4
-
11
-
-
0037434697
-
Dynein structure and power stroke
-
Burgess S.A., Walker M.L., Sakakibara H., Knight P.J., Oiwa K. Dynein structure and power stroke. Nature 2003, 421:715-718.
-
(2003)
Nature
, vol.421
, pp. 715-718
-
-
Burgess, S.A.1
Walker, M.L.2
Sakakibara, H.3
Knight, P.J.4
Oiwa, K.5
-
12
-
-
0036844556
-
Motors and switches: AAA+ machines within the replisome
-
Davey M.J., Jeruzalmi D., Kuriyan J., O'Donnell M. Motors and switches: AAA+ machines within the replisome. Nat. Rev. Mol. Cell Biol. 2002, 3:826-835.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 826-835
-
-
Davey, M.J.1
Jeruzalmi, D.2
Kuriyan, J.3
O'Donnell, M.4
-
14
-
-
39449115385
-
AAA+ proteins: diversity in function, similarity in structure
-
Snider J., Houry W.A. AAA+ proteins: diversity in function, similarity in structure. Biochem. Soc. Trans. 2008, 36:72-77.
-
(2008)
Biochem. Soc. Trans.
, vol.36
, pp. 72-77
-
-
Snider, J.1
Houry, W.A.2
-
15
-
-
79953888421
-
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
-
Aubin-Tam M.E., Olivares A.O., Sauer R.T., Baker T.A., Lang M.J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 2011, 145:257-267.
-
(2011)
Cell
, vol.145
, pp. 257-267
-
-
Aubin-Tam, M.E.1
Olivares, A.O.2
Sauer, R.T.3
Baker, T.A.4
Lang, M.J.5
-
16
-
-
79955534260
-
ClpX(P) generates mechanical force to unfold and translocate its protein substrates
-
Maillard R.A., Chistol G., Sen M., Righini M., Tan J., Kaiser C.M., Hodges C., Martin A., Bustamante C. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 2011, 145:459-469.
-
(2011)
Cell
, vol.145
, pp. 459-469
-
-
Maillard, R.A.1
Chistol, G.2
Sen, M.3
Righini, M.4
Tan, J.5
Kaiser, C.M.6
Hodges, C.7
Martin, A.8
Bustamante, C.9
-
17
-
-
1542344435
-
Proteasomes and their kin: proteases in the machine age
-
Pickart C.M., Cohen R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5:177-187.
-
(2004)
Nat. Rev. Mol. Cell Biol.
, vol.5
, pp. 177-187
-
-
Pickart, C.M.1
Cohen, R.E.2
-
18
-
-
79959389010
-
AAA+ proteases: ATP-fueled machines of protein destruction
-
Sauer R.T., Baker T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 2011, 80:587-612.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 587-612
-
-
Sauer, R.T.1
Baker, T.A.2
-
19
-
-
64549106859
-
Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes
-
Striebel F., Kress W., Weber-Ban E. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr. Opin. Struct. Biol. 2009, 19:209-217.
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 209-217
-
-
Striebel, F.1
Kress, W.2
Weber-Ban, E.3
-
20
-
-
33751228400
-
ATP-dependent proteases of bacteria: recognition logic and operating principles
-
Baker T.A., Sauer R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 2006, 31:647-653.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 647-653
-
-
Baker, T.A.1
Sauer, R.T.2
-
22
-
-
0032568504
-
Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and clpP
-
Maurizi M.R., Singh S.K., Thompson M.W., Kessel M., Ginsburg A. Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and clpP. Biochemistry 1998, 37:7778-7786.
-
(1998)
Biochemistry
, vol.37
, pp. 7778-7786
-
-
Maurizi, M.R.1
Singh, S.K.2
Thompson, M.W.3
Kessel, M.4
Ginsburg, A.5
-
23
-
-
0033517351
-
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
-
Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999, 401:90-93.
-
(1999)
Nature
, vol.401
, pp. 90-93
-
-
Weber-Ban, E.U.1
Reid, B.G.2
Miranker, A.D.3
Horwich, A.L.4
-
24
-
-
0034255124
-
Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP
-
Hoskins J.R., Singh S.K., Maurizi M.R., Wickner S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:8892-8897.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 8892-8897
-
-
Hoskins, J.R.1
Singh, S.K.2
Maurizi, M.R.3
Wickner, S.4
-
25
-
-
0033638255
-
Dynamics of substrate denaturation and translocation by the ClpXP degradation machine
-
Kim Y.I., Burton R.E., Burton B.M., Sauer R.T., Baker T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 2000, 5:639-648.
-
(2000)
Mol. Cell
, vol.5
, pp. 639-648
-
-
Kim, Y.I.1
Burton, R.E.2
Burton, B.M.3
Sauer, R.T.4
Baker, T.A.5
-
26
-
-
0034254908
-
Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP
-
Singh S.K., Grimaud R., Hoskins J.R., Wickner S., Maurizi M.R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:8898-8903.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 8898-8903
-
-
Singh, S.K.1
Grimaud, R.2
Hoskins, J.R.3
Wickner, S.4
Maurizi, M.R.5
-
27
-
-
0031815994
-
The regulatory particle of the Saccharomyces cerevisiae proteasome
-
Glickman M.H., Rubin D.M., Fried V.A., Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 1998, 18:3149-3162.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 3149-3162
-
-
Glickman, M.H.1
Rubin, D.M.2
Fried, V.A.3
Finley, D.4
-
28
-
-
73649128544
-
Structural models for interactions between the 20S proteasome and its PAN/19S activators
-
Stadtmueller B.M., Ferrell K., Whitby F.G., Heroux A., Robinson H., Myszka D.G., Hill C.P. Structural models for interactions between the 20S proteasome and its PAN/19S activators. J. Biol. Chem. 2010, 285:13-17.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13-17
-
-
Stadtmueller, B.M.1
Ferrell, K.2
Whitby, F.G.3
Heroux, A.4
Robinson, H.5
Myszka, D.G.6
Hill, C.P.7
-
29
-
-
0037424629
-
A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome
-
Gille C., Goede A., Schloetelburg C., Preissner R., Kloetzel P.M., Gobel U.B., Frommel C. A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J. Mol. Biol. 2003, 326:1437-1448.
-
(2003)
J. Mol. Biol.
, vol.326
, pp. 1437-1448
-
-
Gille, C.1
Goede, A.2
Schloetelburg, C.3
Preissner, R.4
Kloetzel, P.M.5
Gobel, U.B.6
Frommel, C.7
-
30
-
-
0033033183
-
The proteasome
-
Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 1999, 28:295-317.
-
(1999)
Annu. Rev. Biophys. Biomol. Struct.
, vol.28
, pp. 295-317
-
-
Bochtler, M.1
Ditzel, L.2
Groll, M.3
Hartmann, C.4
Huber, R.5
-
31
-
-
16044367245
-
Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii
-
Bult C.J., White O., Olsen G.J., Zhou L., Fleischmann R.D., Sutton G.G., Blake J.A., FitzGerald L.M., Clayton R.A., Gocayne J.D., Kerlavage A.R., Dougherty B.A., Tomb J.F., Adams M.D., Reich C.I., Overbeek R., Kirkness E.F., Weinstock K.G., Merrick J.M., Glodek A., Scott J.L., Geoghagen N.S., Venter J.C. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996, 273:1058-1073.
-
(1996)
Science
, vol.273
, pp. 1058-1073
-
-
Bult, C.J.1
White, O.2
Olsen, G.J.3
Zhou, L.4
Fleischmann, R.D.5
Sutton, G.G.6
Blake, J.A.7
FitzGerald, L.M.8
Clayton, R.A.9
Gocayne, J.D.10
Kerlavage, A.R.11
Dougherty, B.A.12
Tomb, J.F.13
Adams, M.D.14
Reich, C.I.15
Overbeek, R.16
Kirkness, E.F.17
Weinstock, K.G.18
Merrick, J.M.19
Glodek, A.20
Scott, J.L.21
Geoghagen, N.S.22
Venter, J.C.23
more..
-
32
-
-
0033543648
-
An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes
-
Zwickl P., Ng D., Woo K.M., Klenk H.P., Goldberg A.L. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 1999, 274:26008-26014.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 26008-26014
-
-
Zwickl, P.1
Ng, D.2
Woo, K.M.3
Klenk, H.P.4
Goldberg, A.L.5
-
33
-
-
0035067597
-
The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes
-
Benaroudj N., Tarcsa E., Cascio P., Goldberg A.L. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie 2001, 83:311-318.
-
(2001)
Biochimie
, vol.83
, pp. 311-318
-
-
Benaroudj, N.1
Tarcsa, E.2
Cascio, P.3
Goldberg, A.L.4
-
34
-
-
33749234748
-
Proteasomes and their associated ATPases: a destructive combination
-
Smith D.M., Benaroudj N., Goldberg A. Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol. 2006, 156:72-83.
-
(2006)
J. Struct. Biol.
, vol.156
, pp. 72-83
-
-
Smith, D.M.1
Benaroudj, N.2
Goldberg, A.3
-
35
-
-
0033769733
-
PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone
-
Benaroudj N., Goldberg A.L. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell Biol. 2000, 2:833-839.
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 833-839
-
-
Benaroudj, N.1
Goldberg, A.L.2
-
36
-
-
0034100371
-
Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome
-
Wilson H.L., Ou M.S., Aldrich H.C., Maupin-Furlow J. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. J. Bacteriol. 2000, 182:1680-1692.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 1680-1692
-
-
Wilson, H.L.1
Ou, M.S.2
Aldrich, H.C.3
Maupin-Furlow, J.4
-
38
-
-
0035694696
-
Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome
-
Navon A., Goldberg A.L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 2001, 8:1339-1349.
-
(2001)
Mol. Cell
, vol.8
, pp. 1339-1349
-
-
Navon, A.1
Goldberg, A.L.2
-
39
-
-
0037248908
-
ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
-
Benaroudj N., Zwickl P., Seemuller E., Baumeister W., Goldberg A.L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 2003, 11:69-78.
-
(2003)
Mol. Cell
, vol.11
, pp. 69-78
-
-
Benaroudj, N.1
Zwickl, P.2
Seemuller, E.3
Baumeister, W.4
Goldberg, A.L.5
-
40
-
-
28444452611
-
ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins
-
Smith D.M., Kafri G., Cheng Y., Ng D., Walz T., Goldberg A.L. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 2005, 20:687-698.
-
(2005)
Mol. Cell
, vol.20
, pp. 687-698
-
-
Smith, D.M.1
Kafri, G.2
Cheng, Y.3
Ng, D.4
Walz, T.5
Goldberg, A.L.6
-
41
-
-
79951707743
-
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
-
Smith D.M., Fraga H., Reis C., Kafri G., Goldberg A.L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011, 144:526-538.
-
(2011)
Cell
, vol.144
, pp. 526-538
-
-
Smith, D.M.1
Fraga, H.2
Reis, C.3
Kafri, G.4
Goldberg, A.L.5
-
42
-
-
33749069075
-
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
-
Liu C.W., Li X., Thompson D., Wooding K., Chang T.L., Tang Z., Yu H., Thomas P.J., DeMartino G.N. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell 2006, 24:39-50.
-
(2006)
Mol. Cell
, vol.24
, pp. 39-50
-
-
Liu, C.W.1
Li, X.2
Thompson, D.3
Wooding, K.4
Chang, T.L.5
Tang, Z.6
Yu, H.7
Thomas, P.J.8
DeMartino, G.N.9
-
43
-
-
0342265782
-
A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes
-
Etlinger J.D., Goldberg A.L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl. Acad. Sci. U. S. A. 1977, 74:54-58.
-
(1977)
Proc. Natl. Acad. Sci. U. S. A.
, vol.74
, pp. 54-58
-
-
Etlinger, J.D.1
Goldberg, A.L.2
-
44
-
-
0018676915
-
Protein degradation is stimulated by ATP in extracts of Escherichia coli
-
Murakami K., Voellmy R., Goldberg A.L. Protein degradation is stimulated by ATP in extracts of Escherichia coli. J. Biol. Chem. 1979, 254:8194-8200.
-
(1979)
J. Biol. Chem.
, vol.254
, pp. 8194-8200
-
-
Murakami, K.1
Voellmy, R.2
Goldberg, A.L.3
-
45
-
-
0022533464
-
Size and shape of the multicatalytic proteinase from rat skeletal muscle
-
Kopp F., Steiner R., Dahlmann B., Kuehn L., Reinauer H. Size and shape of the multicatalytic proteinase from rat skeletal muscle. Biochim. Biophys. Acta 1986, 872:253-260.
-
(1986)
Biochim. Biophys. Acta
, vol.872
, pp. 253-260
-
-
Kopp, F.1
Steiner, R.2
Dahlmann, B.3
Kuehn, L.4
Reinauer, H.5
-
46
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4A resolution
-
Lowe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4A resolution. Science 1995, 268:533-539.
-
(1995)
Science
, vol.268
, pp. 533-539
-
-
Lowe, J.1
Stock, D.2
Jap, B.3
Zwickl, P.4
Baumeister, W.5
Huber, R.6
-
47
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4A resolution
-
Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H.D., Huber R. Structure of 20S proteasome from yeast at 2.4A resolution. Nature 1997, 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Lowe, J.3
Stock, D.4
Bochtler, M.5
Bartunik, H.D.6
Huber, R.7
-
48
-
-
0036103598
-
The structure of the mammalian 20S proteasome at 2.75A resolution
-
Unno M., Mizushima T., Morimoto Y., Tomisugi Y., Tanaka K., Yasuoka N., Tsukihara T. The structure of the mammalian 20S proteasome at 2.75A resolution. Structure 2002, 10:609-618.
-
(2002)
Structure
, vol.10
, pp. 609-618
-
-
Unno, M.1
Mizushima, T.2
Morimoto, Y.3
Tomisugi, Y.4
Tanaka, K.5
Yasuoka, N.6
Tsukihara, T.7
-
49
-
-
0018800923
-
Identification and partial purification of an ATP-stimulated alkaline protease in rat liver
-
DeMartino G.N., Goldberg A.L. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J. Biol. Chem. 1979, 254:3712-3715.
-
(1979)
J. Biol. Chem.
, vol.254
, pp. 3712-3715
-
-
DeMartino, G.N.1
Goldberg, A.L.2
-
50
-
-
0020674228
-
Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex
-
Wilk S., Orlowski M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 1983, 40:842-849.
-
(1983)
J. Neurochem.
, vol.40
, pp. 842-849
-
-
Wilk, S.1
Orlowski, M.2
-
51
-
-
0021309541
-
The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins
-
Schmid H.P., Akhayat O., Martins D.S., Puvion F., Koehler K., Scherrer K. The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins. EMBO J. 1984, 3:29-34.
-
(1984)
EMBO J.
, vol.3
, pp. 29-34
-
-
Schmid, H.P.1
Akhayat, O.2
Martins, D.S.3
Puvion, F.4
Koehler, K.5
Scherrer, K.6
-
52
-
-
0024285837
-
Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome)
-
Arrigo A.P., Tanaka K., Goldberg A.L., Welch W.J. Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 1988, 331:192-194.
-
(1988)
Nature
, vol.331
, pp. 192-194
-
-
Arrigo, A.P.1
Tanaka, K.2
Goldberg, A.L.3
Welch, W.J.4
-
53
-
-
0030016595
-
Structure and functions of the 20S and 26S proteasomes
-
Coux O., Tanaka K., Goldberg A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996, 65:801-847.
-
(1996)
Annu. Rev. Biochem.
, vol.65
, pp. 801-847
-
-
Coux, O.1
Tanaka, K.2
Goldberg, A.L.3
-
54
-
-
0020546084
-
ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin
-
Tanaka K., Waxman L., Goldberg A.L. ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J. Cell Biol. 1983, 96:1580-1585.
-
(1983)
J. Cell Biol.
, vol.96
, pp. 1580-1585
-
-
Tanaka, K.1
Waxman, L.2
Goldberg, A.L.3
-
55
-
-
0023655017
-
Purification of two high molecular weight proteases from rabbit reticulocyte lysate
-
Hough R., Pratt G., Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 1987, 262:8303-8313.
-
(1987)
J. Biol. Chem.
, vol.262
, pp. 8303-8313
-
-
Hough, R.1
Pratt, G.2
Rechsteiner, M.3
-
56
-
-
0344687318
-
Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly
-
Kwon Y.D., Nagy I., Adams P.D., Baumeister W., Jap B.K. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol. 2004, 335:233-245.
-
(2004)
J. Mol. Biol.
, vol.335
, pp. 233-245
-
-
Kwon, Y.D.1
Nagy, I.2
Adams, P.D.3
Baumeister, W.4
Jap, B.K.5
-
57
-
-
77953620707
-
Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome
-
Li D., Li H., Wang T., Pan H., Lin G., Li H. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO J. 2010, 29:2037-2047.
-
(2010)
EMBO J.
, vol.29
, pp. 2037-2047
-
-
Li, D.1
Li, H.2
Wang, T.3
Pan, H.4
Lin, G.5
Li, H.6
-
58
-
-
0033920629
-
New crystal forms and low resolution structure analysis of 20S proteasomes from bovine liver
-
Tomisugi Y., Unno M., Mizushima T., Morimoto Y., Tanahashi N., Tanaka K., Tsukihara T., Yasuoka N. New crystal forms and low resolution structure analysis of 20S proteasomes from bovine liver. J. Biochem. 2000, 127:941-943.
-
(2000)
J. Biochem.
, vol.127
, pp. 941-943
-
-
Tomisugi, Y.1
Unno, M.2
Mizushima, T.3
Morimoto, Y.4
Tanahashi, N.5
Tanaka, K.6
Tsukihara, T.7
Yasuoka, N.8
-
59
-
-
0034964524
-
The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
-
Kohler A., Cascio P., Leggett D.S., Woo K.M., Goldberg A.L., Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 2001, 7:1143-1152.
-
(2001)
Mol. Cell
, vol.7
, pp. 1143-1152
-
-
Kohler, A.1
Cascio, P.2
Leggett, D.S.3
Woo, K.M.4
Goldberg, A.L.5
Finley, D.6
-
60
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith D.M., Chang S.C., Park S., Finley D., Cheng Y., Goldberg A.L. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
-
(2007)
Mol. Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
61
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M., Bajorek M., Kohler A., Moroder L., Rubin D.M., Huber R., Glickman M.H., Finley D. A gated channel into the proteasome core particle. Nat. Struct. Biol. 2000, 7:1062-1067.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
Moroder, L.4
Rubin, D.M.5
Huber, R.6
Glickman, M.H.7
Finley, D.8
-
62
-
-
0030774890
-
The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing
-
Heinemeyer W., Fischer M., Krimmer T., Stachon U., Wolf D.H. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 1997, 272:25200-25209.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 25200-25209
-
-
Heinemeyer, W.1
Fischer, M.2
Krimmer, T.3
Stachon, U.4
Wolf, D.H.5
-
63
-
-
0030737501
-
Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation
-
Arendt C.S., Hochstrasser M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:7156-7161.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 7156-7161
-
-
Arendt, C.S.1
Hochstrasser, M.2
-
64
-
-
0034515298
-
Getting in and out of the proteasome
-
Glickman M.H. Getting in and out of the proteasome. Semin. Cell Dev. Biol. 2000, 11:149-158.
-
(2000)
Semin. Cell Dev. Biol.
, vol.11
, pp. 149-158
-
-
Glickman, M.H.1
-
65
-
-
0031927996
-
26S proteasome structure revealed by three-dimensional electron microscopy
-
Walz J., Erdmann A., Kania M., Typke D., Koster A.J., Baumeister W. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 1998, 121:19-29.
-
(1998)
J. Struct. Biol.
, vol.121
, pp. 19-29
-
-
Walz, J.1
Erdmann, A.2
Kania, M.3
Typke, D.4
Koster, A.J.5
Baumeister, W.6
-
66
-
-
0032867676
-
The 26S proteasome: a molecular machine designed for controlled proteolysis
-
Voges D., Zwickl P., Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999, 68:1015-1068.
-
(1999)
Annu. Rev. Biochem.
, vol.68
, pp. 1015-1068
-
-
Voges, D.1
Zwickl, P.2
Baumeister, W.3
-
67
-
-
53149123284
-
Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core
-
da Fonseca P.C., Morris E.P. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 2008, 283:23305-23314.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23305-23314
-
-
da Fonseca, P.C.1
Morris, E.P.2
-
68
-
-
57649140340
-
Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome
-
Gillette T.G., Kumar B., Thompson D., Slaughter C.A., DeMartino G.N. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008, 283:31813-31822.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 31813-31822
-
-
Gillette, T.G.1
Kumar, B.2
Thompson, D.3
Slaughter, C.A.4
DeMartino, G.N.5
-
69
-
-
70350542583
-
The 20S proteasome as an assembly platform for the 19S regulatory complex
-
Hendil K.B., Kriegenburg F., Tanaka K., Murata S., Lauridsen A.M., Johnsen A.H., Hartmann-Petersen R. The 20S proteasome as an assembly platform for the 19S regulatory complex. J. Mol. Biol. 2009, 394:320-328.
-
(2009)
J. Mol. Biol.
, vol.394
, pp. 320-328
-
-
Hendil, K.B.1
Kriegenburg, F.2
Tanaka, K.3
Murata, S.4
Lauridsen, A.M.5
Johnsen, A.H.6
Hartmann-Petersen, R.7
-
70
-
-
78649811815
-
The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation
-
Kumar B., Kim Y.C., DeMartino G.N. The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. J. Biol. Chem. 2010, 285:39523-39535.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 39523-39535
-
-
Kumar, B.1
Kim, Y.C.2
DeMartino, G.N.3
-
71
-
-
44849121398
-
The central unit within the 19S regulatory particle of the proteasome
-
Rosenzweig R., Osmulski P.A., Gaczynska M., Glickman M.H. The central unit within the 19S regulatory particle of the proteasome. Nat. Struct. Mol. Biol. 2008, 15:573-580.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 573-580
-
-
Rosenzweig, R.1
Osmulski, P.A.2
Gaczynska, M.3
Glickman, M.H.4
-
72
-
-
0028087582
-
PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family
-
DeMartino G.N., Moomaw C.R., Zagnitko O.P., Proske R.J., Chu-Ping M., Afendis S.J., Swaffield J.C., Slaughter C.A. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J. Biol. Chem. 1994, 269:20878-20884.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 20878-20884
-
-
DeMartino, G.N.1
Moomaw, C.R.2
Zagnitko, O.P.3
Proske, R.J.4
Chu-Ping, M.5
Afendis, S.J.6
Swaffield, J.C.7
Slaughter, C.A.8
-
73
-
-
0032483546
-
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
-
Glickman M.H., Rubin D.M., Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V.A., Finley D. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998, 94:615-623.
-
(1998)
Cell
, vol.94
, pp. 615-623
-
-
Glickman, M.H.1
Rubin, D.M.2
Coux, O.3
Wefes, I.4
Pfeifer, G.5
Cjeka, Z.6
Baumeister, W.7
Fried, V.A.8
Finley, D.9
-
74
-
-
0033791447
-
Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
-
Verma R., Chen S., Feldman R., Schieltz D., Yates J., Dohmen J., Deshaies R.J. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 2000, 11:3425-3439.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 3425-3439
-
-
Verma, R.1
Chen, S.2
Feldman, R.3
Schieltz, D.4
Yates, J.5
Dohmen, J.6
Deshaies, R.J.7
-
75
-
-
0037129213
-
A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
-
Lam Y.A., Lawson T.G., Velayutham M., Zweier J.L., Pickart C.M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002, 416:763-767.
-
(2002)
Nature
, vol.416
, pp. 763-767
-
-
Lam, Y.A.1
Lawson, T.G.2
Velayutham, M.3
Zweier, J.L.4
Pickart, C.M.5
-
76
-
-
0033176770
-
The base of the proteasome regulatory particle exhibits chaperone-like activity
-
Braun B.C., Glickman M., Kraft R., Dahlmann B., Kloetzel P.M., Finley D., Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1999, 1:221-226.
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 221-226
-
-
Braun, B.C.1
Glickman, M.2
Kraft, R.3
Dahlmann, B.4
Kloetzel, P.M.5
Finley, D.6
Schmidt, M.7
-
77
-
-
0037178895
-
Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome
-
Liu C.W., Millen L., Roman T.B., Xiong H., Gilbert H.F., Noiva R., DeMartino G.N., Thomas P.J. Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J. Biol. Chem. 2002, 277:26815-26820.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 26815-26820
-
-
Liu, C.W.1
Millen, L.2
Roman, T.B.3
Xiong, H.4
Gilbert, H.F.5
Noiva, R.6
DeMartino, G.N.7
Thomas, P.J.8
-
78
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K., Elsasser S., Zhang N., Chen X., Randles L., Shi Y., Hofmann K., Walters K.J., Finley D., Dikic I. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
Elsasser, S.2
Zhang, N.3
Chen, X.4
Randles, L.5
Shi, Y.6
Hofmann, K.7
Walters, K.J.8
Finley, D.9
Dikic, I.10
-
79
-
-
44349094727
-
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
-
Schreiner P., Chen X., Husnjak K., Randles L., Zhang N., Elsasser S., Finley D., Dikic I., Walters K.J., Groll M. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008, 453:548-552.
-
(2008)
Nature
, vol.453
, pp. 548-552
-
-
Schreiner, P.1
Chen, X.2
Husnjak, K.3
Randles, L.4
Zhang, N.5
Elsasser, S.6
Finley, D.7
Dikic, I.8
Walters, K.J.9
Groll, M.10
-
80
-
-
0033972319
-
Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7
-
Gorbea C., Taillandier D., Rechsteiner M. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7. J. Biol. Chem. 2000, 275:875-882.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 875-882
-
-
Gorbea, C.1
Taillandier, D.2
Rechsteiner, M.3
-
81
-
-
0034774617
-
A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome
-
Davy A., Bello P., Thierry-Mieg N., Vaglio P., Hitti J., Doucette-Stamm L., Thierry-Mieg D., Reboul J., Boulton S., Walhout A.J., Coux O., Vidal M. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2001, 2:821-828.
-
(2001)
EMBO Rep.
, vol.2
, pp. 821-828
-
-
Davy, A.1
Bello, P.2
Thierry-Mieg, N.3
Vaglio, P.4
Hitti, J.5
Doucette-Stamm, L.6
Thierry-Mieg, D.7
Reboul, J.8
Boulton, S.9
Walhout, A.J.10
Coux, O.11
Vidal, M.12
-
82
-
-
0035242489
-
Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking
-
Hartmann-Petersen R., Tanaka K., Hendil K.B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys. 2001, 386:89-94.
-
(2001)
Arch. Biochem. Biophys.
, vol.386
, pp. 89-94
-
-
Hartmann-Petersen, R.1
Tanaka, K.2
Hendil, K.B.3
-
83
-
-
0036713383
-
Proteasome subunit Rpn1 binds ubiquitin-like protein domains
-
Elsasser S., Gali R.R., Schwickart M., Larsen C.N., Leggett D.S., Muller B., Feng M.T., Tubing F., Dittmar G.A., Finley D. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 2002, 4:725-730.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 725-730
-
-
Elsasser, S.1
Gali, R.R.2
Schwickart, M.3
Larsen, C.N.4
Leggett, D.S.5
Muller, B.6
Feng, M.T.7
Tubing, F.8
Dittmar, G.A.9
Finley, D.10
-
84
-
-
3042677641
-
Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome
-
Elsasser S., Chandler-Militello D., Muller B., Hanna J., Finley D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 2004, 279:26817-26822.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 26817-26822
-
-
Elsasser, S.1
Chandler-Militello, D.2
Muller, B.3
Hanna, J.4
Finley, D.5
-
85
-
-
77951639210
-
Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3
-
Enchev R.I., Schreiber A., Beuron F., Morris E.P. Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Structure 2010, 18:518-527.
-
(2010)
Structure
, vol.18
, pp. 518-527
-
-
Enchev, R.I.1
Schreiber, A.2
Beuron, F.3
Morris, E.P.4
-
86
-
-
0034725525
-
Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome
-
Kapelari B., Bech-Otschir D., Hegerl R., Schade R., Dumdey R., Dubiel W. Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J. Mol. Biol. 2000, 300:1169-1178.
-
(2000)
J. Mol. Biol.
, vol.300
, pp. 1169-1178
-
-
Kapelari, B.1
Bech-Otschir, D.2
Hegerl, R.3
Schade, R.4
Dumdey, R.5
Dubiel, W.6
-
87
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R., Aravind L., Oania R., McDonald W.H., Yates J.R., Koonin E.V., Deshaies R.J. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002, 298:611-615.
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
McDonald, W.H.4
Yates, J.R.5
Koonin, E.V.6
Deshaies, R.J.7
-
88
-
-
0037179694
-
A cryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T., Cohen R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002, 419:403-407.
-
(2002)
Nature
, vol.419
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
89
-
-
0347087494
-
Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome
-
Guterman A., Glickman M.H. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J. Biol. Chem. 2004, 279:1729-1738.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 1729-1738
-
-
Guterman, A.1
Glickman, M.H.2
-
90
-
-
2442551473
-
Deubiquitinating enzymes are IN/(trinsic to proteasome function)
-
Guterman A., Glickman M.H. Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr. Protein Pept. Sci. 2004, 5:201-211.
-
(2004)
Curr. Protein Pept. Sci.
, vol.5
, pp. 201-211
-
-
Guterman, A.1
Glickman, M.H.2
-
91
-
-
79955470830
-
Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes
-
Lee M.J., Lee B.H., Hanna J., King R.W., Finley D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics 2011, 10:R110.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Lee, M.J.1
Lee, B.H.2
Hanna, J.3
King, R.W.4
Finley, D.5
-
92
-
-
33747347236
-
Structural organization of the 19S proteasome lid: insights from MS of intact complexes
-
Sharon M., Taverner T., Ambroggio X.I., Deshaies R.J., Robinson C.V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 2006, 4:e267.
-
(2006)
PLoS Biol.
, vol.4
-
-
Sharon, M.1
Taverner, T.2
Ambroggio, X.I.3
Deshaies, R.J.4
Robinson, C.V.5
-
93
-
-
0037126632
-
Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome
-
Fu H., Reis N., Lee Y., Glickman M.H., Vierstra R.D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 2001, 20:7096-7107.
-
(2001)
EMBO J.
, vol.20
, pp. 7096-7107
-
-
Fu, H.1
Reis, N.2
Lee, Y.3
Glickman, M.H.4
Vierstra, R.D.5
-
94
-
-
68349157358
-
PCI complexes: beyond the proteasome, CSN, and eIF3 Troika
-
Pick E., Hofmann K., Glickman M.H. PCI complexes: beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell 2009, 35:260-264.
-
(2009)
Mol. Cell
, vol.35
, pp. 260-264
-
-
Pick, E.1
Hofmann, K.2
Glickman, M.H.3
-
95
-
-
77953291910
-
Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae
-
Fukunaga K., Kudo T., Toh-e A., Tanaka K., Saeki Y. Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2010, 396:1048-1053.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.396
, pp. 1048-1053
-
-
Fukunaga, K.1
Kudo, T.2
Toh-e, A.3
Tanaka, K.4
Saeki, Y.5
-
96
-
-
77954314106
-
Assembly, structure, and function of the 26S proteasome
-
Bedford L., Paine S., Sheppard P.W., Mayer R.J., Roelofs J. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 2010, 20:391-401.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 391-401
-
-
Bedford, L.1
Paine, S.2
Sheppard, P.W.3
Mayer, R.J.4
Roelofs, J.5
-
97
-
-
39149145539
-
Subunit-subunit interactions in the human 26S proteasome
-
Chen C., Huang C., Chen S., Liang J., Lin W., Ke G., Zhang H., Wang B., Huang J., Han Z., Ma L., Huo K., Yang X., Yang P., He F., Tao T. Subunit-subunit interactions in the human 26S proteasome. Proteomics 2008, 8:508-520.
-
(2008)
Proteomics
, vol.8
, pp. 508-520
-
-
Chen, C.1
Huang, C.2
Chen, S.3
Liang, J.4
Lin, W.5
Ke, G.6
Zhang, H.7
Wang, B.8
Huang, J.9
Han, Z.10
Ma, L.11
Huo, K.12
Yang, X.13
Yang, P.14
He, F.15
Tao, T.16
-
100
-
-
0030595329
-
Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly
-
Chen P., Hochstrasser M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 1996, 86:961-972.
-
(1996)
Cell
, vol.86
, pp. 961-972
-
-
Chen, P.1
Hochstrasser, M.2
-
101
-
-
8544278166
-
Regulation of proteasome structure and function
-
Rivett A.J., Mason G.G., Murray R.Z., Reidlinger J. Regulation of proteasome structure and function. Mol. Biol. Rep. 1997, 24:99-102.
-
(1997)
Mol. Biol. Rep.
, vol.24
, pp. 99-102
-
-
Rivett, A.J.1
Mason, G.G.2
Murray, R.Z.3
Reidlinger, J.4
-
103
-
-
33745827710
-
Proteasome assembly triggers a switch required for active-site maturation
-
Witt S., Kwon Y.D., Sharon M., Felderer K., Beuttler M., Robinson C.V., Baumeister W., Jap B.K. Proteasome assembly triggers a switch required for active-site maturation. Structure 2006, 14:1179-1188.
-
(2006)
Structure
, vol.14
, pp. 1179-1188
-
-
Witt, S.1
Kwon, Y.D.2
Sharon, M.3
Felderer, K.4
Beuttler, M.5
Robinson, C.V.6
Baumeister, W.7
Jap, B.K.8
-
104
-
-
0032548998
-
Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
-
Ramos P.C., Hockendorff J., Johnson E.S., Varshavsky A., Dohmen R.J. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998, 92:489-499.
-
(1998)
Cell
, vol.92
, pp. 489-499
-
-
Ramos, P.C.1
Hockendorff, J.2
Johnson, E.S.3
Varshavsky, A.4
Dohmen, R.J.5
-
106
-
-
27644554700
-
A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
-
Hirano Y., Hendil K.B., Yashiroda H., Iemura S., Nagane R., Hioki Y., Natsume T., Tanaka K., Murata S. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005, 437:1381-1385.
-
(2005)
Nature
, vol.437
, pp. 1381-1385
-
-
Hirano, Y.1
Hendil, K.B.2
Yashiroda, H.3
Iemura, S.4
Nagane, R.5
Hioki, Y.6
Natsume, T.7
Tanaka, K.8
Murata, S.9
-
107
-
-
40949120953
-
Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes
-
Yashiroda H., Mizushima T., Okamoto K., Kameyama T., Hayashi H., Kishimoto T., Niwa S., Kasahara M., Kurimoto E., Sakata E., Takagi K., Suzuki A., Hirano Y., Murata S., Kato K., Yamane T., Tanaka K. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:228-236.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 228-236
-
-
Yashiroda, H.1
Mizushima, T.2
Okamoto, K.3
Kameyama, T.4
Hayashi, H.5
Kishimoto, T.6
Niwa, S.7
Kasahara, M.8
Kurimoto, E.9
Sakata, E.10
Takagi, K.11
Suzuki, A.12
Hirano, Y.13
Murata, S.14
Kato, K.15
Yamane, T.16
Tanaka, K.17
-
108
-
-
40949117574
-
A multimeric assembly factor controls the formation of alternative 20S proteasomes
-
Kusmierczyk A.R., Kunjappu M.J., Funakoshi M., Hochstrasser M. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:237-244.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 237-244
-
-
Kusmierczyk, A.R.1
Kunjappu, M.J.2
Funakoshi, M.3
Hochstrasser, M.4
-
109
-
-
0031001763
-
Specific interactions between ATPase subunits of the 26 S protease
-
Richmond C., Gorbea C., Rechsteiner M. Specific interactions between ATPase subunits of the 26 S protease. J. Biol. Chem. 1997, 272:13403-13411.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 13403-13411
-
-
Richmond, C.1
Gorbea, C.2
Rechsteiner, M.3
-
111
-
-
79952836890
-
Nuclear import of an intact preassembled proteasome particle
-
Savulescu A.F., Shorer H., Kleifeld O., Cohen I., Gruber R., Glickman M.H., Harel A. Nuclear import of an intact preassembled proteasome particle. Mol. Biol. Cell 2011, 22:880-891.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 880-891
-
-
Savulescu, A.F.1
Shorer, H.2
Kleifeld, O.3
Cohen, I.4
Gruber, R.5
Glickman, M.H.6
Harel, A.7
-
112
-
-
69249099667
-
S-glutathionylation of the Rpn2 regulatory subunit inhibits 26 S proteasomal function
-
Zmijewski J.W., Banerjee S., Abraham E. S-glutathionylation of the Rpn2 regulatory subunit inhibits 26 S proteasomal function. J. Biol. Chem. 2009, 284:22213-22221.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 22213-22221
-
-
Zmijewski, J.W.1
Banerjee, S.2
Abraham, E.3
-
113
-
-
77649243592
-
Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening
-
Sadre-Bazzaz K., Whitby F.G., Robinson H., Formosa T., Hill C.P. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 2010, 37:728-735.
-
(2010)
Mol. Cell
, vol.37
, pp. 728-735
-
-
Sadre-Bazzaz, K.1
Whitby, F.G.2
Robinson, H.3
Formosa, T.4
Hill, C.P.5
-
114
-
-
33846842251
-
The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome
-
Isono E., Nishihara K., Saeki Y., Yashiroda H., Kamata N., Ge L., Ueda T., Kikuchi Y., Tanaka K., Nakano A., Toh-e A. The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol. Biol. Cell 2007, 18:569-580.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 569-580
-
-
Isono, E.1
Nishihara, K.2
Saeki, Y.3
Yashiroda, H.4
Kamata, N.5
Ge, L.6
Ueda, T.7
Kikuchi, Y.8
Tanaka, K.9
Nakano, A.10
Toh-e, A.11
-
115
-
-
59849083960
-
Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
-
Le Tallec B., Barrault M.B., Guerois R., Carre T., Peyroche A. Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol. Cell 2009, 33:389-399.
-
(2009)
Mol. Cell
, vol.33
, pp. 389-399
-
-
Le Tallec, B.1
Barrault, M.B.2
Guerois, R.3
Carre, T.4
Peyroche, A.5
-
116
-
-
67349089027
-
Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
-
Funakoshi M., Tomko R.J., Kobayashi H., Hochstrasser M. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 2009, 137:887-899.
-
(2009)
Cell
, vol.137
, pp. 887-899
-
-
Funakoshi, M.1
Tomko, R.J.2
Kobayashi, H.3
Hochstrasser, M.4
-
117
-
-
65849101541
-
Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
-
Saeki Y., Toh E., Kudo T., Kawamura H., Tanaka K. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009, 137:900-913.
-
(2009)
Cell
, vol.137
, pp. 900-913
-
-
Saeki, Y.1
Toh, E.2
Kudo, T.3
Kawamura, H.4
Tanaka, K.5
-
118
-
-
65849109465
-
Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones
-
Kaneko T., Hamazaki J., Iemura S., Sasaki K., Furuyama K., Natsume T., Tanaka K., Murata S. Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 2009, 137:914-925.
-
(2009)
Cell
, vol.137
, pp. 914-925
-
-
Kaneko, T.1
Hamazaki, J.2
Iemura, S.3
Sasaki, K.4
Furuyama, K.5
Natsume, T.6
Tanaka, K.7
Murata, S.8
-
119
-
-
67149121057
-
Hexameric assembly of the proteasomal ATPases is templated through their C termini
-
Park S., Roelofs J., Kim W., Robert J., Schmidt M., Gygi S.P., Finley D. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 2009, 459:866-870.
-
(2009)
Nature
, vol.459
, pp. 866-870
-
-
Park, S.1
Roelofs, J.2
Kim, W.3
Robert, J.4
Schmidt, M.5
Gygi, S.P.6
Finley, D.7
-
120
-
-
67149112112
-
Chaperone-mediated pathway of proteasome regulatory particle assembly
-
Roelofs J., Park S., Haas W., Tian G., McAllister F.E., Huo Y., Lee B.H., Zhang F., Shi Y., Gygi S.P., Finley D. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 2009, 459:861-865.
-
(2009)
Nature
, vol.459
, pp. 861-865
-
-
Roelofs, J.1
Park, S.2
Haas, W.3
Tian, G.4
McAllister, F.E.5
Huo, Y.6
Lee, B.H.7
Zhang, F.8
Shi, Y.9
Gygi, S.P.10
Finley, D.11
-
121
-
-
67649654465
-
Getting to first base in proteasome assembly
-
Besche H.C., Peth A., Goldberg A.L. Getting to first base in proteasome assembly. Cell 2009, 138:25-28.
-
(2009)
Cell
, vol.138
, pp. 25-28
-
-
Besche, H.C.1
Peth, A.2
Goldberg, A.L.3
-
122
-
-
34250194038
-
Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome
-
Nakamura Y., Umehara T., Tanaka A., Horikoshi M., Padmanabhan B., Yokoyama S. Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem. Biophys. Res. Commun. 2007, 359:503-509.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.359
, pp. 503-509
-
-
Nakamura, Y.1
Umehara, T.2
Tanaka, A.3
Horikoshi, M.4
Padmanabhan, B.5
Yokoyama, S.6
-
123
-
-
33846820426
-
Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome
-
Nakamura Y., Nakano K., Umehara T., Kimura M., Hayashizaki Y., Tanaka A., Horikoshi M., Padmanabhan B., Yokoyama S. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 2007, 15:179-189.
-
(2007)
Structure
, vol.15
, pp. 179-189
-
-
Nakamura, Y.1
Nakano, K.2
Umehara, T.3
Kimura, M.4
Hayashizaki, Y.5
Tanaka, A.6
Horikoshi, M.7
Padmanabhan, B.8
Yokoyama, S.9
-
124
-
-
77952064980
-
Crystal structure of yeast rpn14, a chaperone of the 19 S regulatory particle of the proteasome
-
Kim S., Saeki Y., Fukunaga K., Suzuki A., Takagi K., Yamane T., Tanaka K., Mizushima T., Kato K. Crystal structure of yeast rpn14, a chaperone of the 19 S regulatory particle of the proteasome. J. Biol. Chem. 2010, 285:15159-15166.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 15159-15166
-
-
Kim, S.1
Saeki, Y.2
Fukunaga, K.3
Suzuki, A.4
Takagi, K.5
Yamane, T.6
Tanaka, K.7
Mizushima, T.8
Kato, K.9
-
125
-
-
76449108472
-
Assembly manual for the proteasome regulatory particle: the first draft
-
Park S., Tian G., Roelofs J., Finley D. Assembly manual for the proteasome regulatory particle: the first draft. Biochem. Soc. Trans. 2010, 38:6-13.
-
(2010)
Biochem. Soc. Trans.
, vol.38
, pp. 6-13
-
-
Park, S.1
Tian, G.2
Roelofs, J.3
Finley, D.4
-
126
-
-
0033976299
-
Regulatory subunit interactions of the 26S proteasome, a complex problem
-
Ferrell K., Wilkinson C.R., Dubiel W., Gordon C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 2000, 25:83-88.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 83-88
-
-
Ferrell, K.1
Wilkinson, C.R.2
Dubiel, W.3
Gordon, C.4
-
127
-
-
0030042442
-
Identification, purification, and characterization of a PA700-dependent activator of the proteasome
-
DeMartino G.N., Proske R.J., Moomaw C.R., Strong A.A., Song X., Hisamatsu H., Tanaka K., Slaughter C.A. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J. Biol. Chem. 1996, 271:3112-3118.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 3112-3118
-
-
DeMartino, G.N.1
Proske, R.J.2
Moomaw, C.R.3
Strong, A.A.4
Song, X.5
Hisamatsu, H.6
Tanaka, K.7
Slaughter, C.A.8
-
128
-
-
65649091692
-
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F., Hu M., Tian G., Zhang P., Finley D., Jeffrey P.D., Shi Y. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
-
(2009)
Mol. Cell
, vol.34
, pp. 473-484
-
-
Zhang, F.1
Hu, M.2
Tian, G.3
Zhang, P.4
Finley, D.5
Jeffrey, P.D.6
Shi, Y.7
-
129
-
-
66449131251
-
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
-
Djuranovic S., Hartmann M.D., Habeck M., Ursinus A., Zwickl P., Martin J., Lupas A.N., Zeth K. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 2009, 34:580-590.
-
(2009)
Mol. Cell
, vol.34
, pp. 580-590
-
-
Djuranovic, S.1
Hartmann, M.D.2
Habeck, M.3
Ursinus, A.4
Zwickl, P.5
Martin, J.6
Lupas, A.N.7
Zeth, K.8
-
130
-
-
67749095289
-
Insights into the molecular architecture of the 26S proteasome
-
Nickell S., Beck F., Scheres S.H., Korinek A., Forster F., Lasker K., Mihalache O., Sun N., Nagy I., Sali A., Plitzko J.M., Carazo J.M., Mann M., Baumeister W. Insights into the molecular architecture of the 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:11943-11947.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 11943-11947
-
-
Nickell, S.1
Beck, F.2
Scheres, S.H.3
Korinek, A.4
Forster, F.5
Lasker, K.6
Mihalache, O.7
Sun, N.8
Nagy, I.9
Sali, A.10
Plitzko, J.M.11
Carazo, J.M.12
Mann, M.13
Baumeister, W.14
-
131
-
-
69249217672
-
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome
-
Forster F., Lasker K., Beck F., Nickell S., Sali A., Baumeister W. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem. Biophys. Res. Commun. 2009, 388:228-233.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.388
, pp. 228-233
-
-
Forster, F.1
Lasker, K.2
Beck, F.3
Nickell, S.4
Sali, A.5
Baumeister, W.6
-
132
-
-
77951945222
-
Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly
-
Tomko R.J., Funakoshi M., Schneider K., Wang J., Hochstrasser M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 2010, 38:393-403.
-
(2010)
Mol. Cell
, vol.38
, pp. 393-403
-
-
Tomko, R.J.1
Funakoshi, M.2
Schneider, K.3
Wang, J.4
Hochstrasser, M.5
-
133
-
-
77951972141
-
Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2
-
Chen X., Lee B.H., Finley D., Walters K.J. Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol. Cell 2010, 38:404-415.
-
(2010)
Mol. Cell
, vol.38
, pp. 404-415
-
-
Chen, X.1
Lee, B.H.2
Finley, D.3
Walters, K.J.4
-
134
-
-
33749348820
-
A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
-
Hamazaki J., Iemura S., Natsume T., Yashiroda H., Tanaka K., Murata S. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 2006, 25:4524-4536.
-
(2006)
EMBO J.
, vol.25
, pp. 4524-4536
-
-
Hamazaki, J.1
Iemura, S.2
Natsume, T.3
Yashiroda, H.4
Tanaka, K.5
Murata, S.6
-
135
-
-
0030742610
-
Difference between PA700-like proteasome activator complex and the regulatory complex dissociated from the 26S proteasome implies the involvement of modulating factors in the 26S proteasome assembly
-
Sawada H., Akaishi T., Katsu M., Yokosawa H. Difference between PA700-like proteasome activator complex and the regulatory complex dissociated from the 26S proteasome implies the involvement of modulating factors in the 26S proteasome assembly. FEBS Lett. 1997, 412:521-525.
-
(1997)
FEBS Lett.
, vol.412
, pp. 521-525
-
-
Sawada, H.1
Akaishi, T.2
Katsu, M.3
Yokosawa, H.4
-
136
-
-
69949136026
-
Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
-
Thompson D., Hakala K., DeMartino G.N. Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 2009, 284:24891-24903.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 24891-24903
-
-
Thompson, D.1
Hakala, K.2
DeMartino, G.N.3
-
137
-
-
78650450552
-
Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution
-
Bohn S., Beck F., Sakata E., Walzthoeni T., Beck M., Aebersold R., Forster F., Baumeister W., Nickell S. Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:20992-20997.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 20992-20997
-
-
Bohn, S.1
Beck, F.2
Sakata, E.3
Walzthoeni, T.4
Beck, M.5
Aebersold, R.6
Forster, F.7
Baumeister, W.8
Nickell, S.9
-
138
-
-
19444387760
-
The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Forster A., Masters E.I., Whitby F.G., Robinson H., Hill C.P. The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 2005, 18:589-599.
-
(2005)
Mol. Cell
, vol.18
, pp. 589-599
-
-
Forster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
139
-
-
1642343784
-
Phylogenetic analysis of AAA proteins
-
Frickey T., Lupas A.N. Phylogenetic analysis of AAA proteins. J. Struct. Biol. 2004, 146:2-10.
-
(2004)
J. Struct. Biol.
, vol.146
, pp. 2-10
-
-
Frickey, T.1
Lupas, A.N.2
-
140
-
-
77955405539
-
Toward an integrated structural model of the 26S proteasome
-
Forster F., Lasker K., Nickell S., Sali A., Baumeister W. Toward an integrated structural model of the 26S proteasome. Mol. Cell. Proteomics 2010, 9:1666-1677.
-
(2010)
Mol. Cell. Proteomics
, vol.9
, pp. 1666-1677
-
-
Forster, F.1
Lasker, K.2
Nickell, S.3
Sali, A.4
Baumeister, W.5
-
141
-
-
79955932041
-
Order of the proteasomal ATPases and eukaryotic proteasome assembly
-
Tomko R.J., Hochstrasser M. Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem. Biophys. 2011, 60:13-20.
-
(2011)
Cell Biochem. Biophys.
, vol.60
, pp. 13-20
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
142
-
-
60849118366
-
Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2
-
Effantin G., Rosenzweig R., Glickman M.H., Steven A.C. Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2. J. Mol. Biol. 2009, 386:1204-1211.
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 1204-1211
-
-
Effantin, G.1
Rosenzweig, R.2
Glickman, M.H.3
Steven, A.C.4
-
143
-
-
0037449572
-
Endoproteolytic activity of the proteasome
-
Liu C.W., Corboy M.J., DeMartino G.N., Thomas P.J. Endoproteolytic activity of the proteasome. Science 2003, 299:408-411.
-
(2003)
Science
, vol.299
, pp. 408-411
-
-
Liu, C.W.1
Corboy, M.J.2
DeMartino, G.N.3
Thomas, P.J.4
-
144
-
-
78549254832
-
Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation
-
Wang T., Darwin K.H., Li H. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat. Struct. Mol. Biol. 2010, 17:1352-1357.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1352-1357
-
-
Wang, T.1
Darwin, K.H.2
Li, H.3
-
145
-
-
0024095589
-
Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP
-
Sung P., Higgins D., Prakash L., Prakash S. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 1988, 7:3263-3269.
-
(1988)
EMBO J.
, vol.7
, pp. 3263-3269
-
-
Sung, P.1
Higgins, D.2
Prakash, L.3
Prakash, S.4
-
146
-
-
0032168508
-
Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
-
Rubin D.M., Glickman M.H., Larsen C.N., Dhruvakumar S., Finley D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 1998, 17:4909-4919.
-
(1998)
EMBO J.
, vol.17
, pp. 4909-4919
-
-
Rubin, D.M.1
Glickman, M.H.2
Larsen, C.N.3
Dhruvakumar, S.4
Finley, D.5
-
147
-
-
43149093941
-
A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates
-
Lipson C., Alalouf G., Bajorek M., Rabinovich E., Atir-Lande A., Glickman M., Bar-Nun S. A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates. J. Biol. Chem. 2008, 283:7166-7175.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 7166-7175
-
-
Lipson, C.1
Alalouf, G.2
Bajorek, M.3
Rabinovich, E.4
Atir-Lande, A.5
Glickman, M.6
Bar-Nun, S.7
-
148
-
-
0035070672
-
The substrate translocation channel of the proteasome
-
Kohler A., Bajorek M., Groll M., Moroder L., Rubin D.M., Huber R., Glickman M.H., Finley D. The substrate translocation channel of the proteasome. Biochimie 2001, 83:325-332.
-
(2001)
Biochimie
, vol.83
, pp. 325-332
-
-
Kohler, A.1
Bajorek, M.2
Groll, M.3
Moroder, L.4
Rubin, D.M.5
Huber, R.6
Glickman, M.H.7
Finley, D.8
-
149
-
-
0035096082
-
Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
-
Wang J., Song J.J., Franklin M.C., Kamtekar S., Im Y.J., Rho S.H., Seong I.S., Lee C.S., Chung C.H., Eom S.H. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 2001, 9:177-184.
-
(2001)
Structure
, vol.9
, pp. 177-184
-
-
Wang, J.1
Song, J.J.2
Franklin, M.C.3
Kamtekar, S.4
Im, Y.J.5
Rho, S.H.6
Seong, I.S.7
Lee, C.S.8
Chung, C.H.9
Eom, S.H.10
-
150
-
-
33744552902
-
Structure of the whole cytosolic region of ATP-dependent protease FtsH
-
Suno R., Niwa H., Tsuchiya D., Zhang X., Yoshida M., Morikawa K. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol. Cell 2006, 22:575-585.
-
(2006)
Mol. Cell
, vol.22
, pp. 575-585
-
-
Suno, R.1
Niwa, H.2
Tsuchiya, D.3
Zhang, X.4
Yoshida, M.5
Morikawa, K.6
-
151
-
-
21244482459
-
Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine
-
Hersch G.L., Burton R.E., Bolon D.N., Baker T.A., Sauer R.T. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 2005, 121:1017-1027.
-
(2005)
Cell
, vol.121
, pp. 1017-1027
-
-
Hersch, G.L.1
Burton, R.E.2
Bolon, D.N.3
Baker, T.A.4
Sauer, R.T.5
-
152
-
-
33644764840
-
The molecular architecture of the metalloprotease FtsH
-
Bieniossek C., Schalch T., Bumann M., Meister M., Meier R., Baumann U. The molecular architecture of the metalloprotease FtsH. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:3066-3071.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 3066-3071
-
-
Bieniossek, C.1
Schalch, T.2
Bumann, M.3
Meister, M.4
Meier, R.5
Baumann, U.6
-
153
-
-
79955525976
-
Positive cooperativity of the p97 AAA ATPase is critical for essential functions
-
Nishikori S., Esaki M., Yamanaka K., Sugimoto S., Ogura T. Positive cooperativity of the p97 AAA ATPase is critical for essential functions. J. Biol. Chem. 2011, 286:15815-15820.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 15815-15820
-
-
Nishikori, S.1
Esaki, M.2
Yamanaka, K.3
Sugimoto, S.4
Ogura, T.5
-
154
-
-
55549088522
-
Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
-
Martin A., Baker T.A., Sauer R.T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 2008, 15:1147-1151.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1147-1151
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
155
-
-
0031456970
-
Structure of the proteasome activator REGalpha (PA28alpha)
-
Knowlton J.R., Johnston S.C., Whitby F.G., Realini C., Zhang Z., Rechsteiner M., Hill C.P. Structure of the proteasome activator REGalpha (PA28alpha). Nature 1997, 390:639-643.
-
(1997)
Nature
, vol.390
, pp. 639-643
-
-
Knowlton, J.R.1
Johnston, S.C.2
Whitby, F.G.3
Realini, C.4
Zhang, Z.5
Rechsteiner, M.6
Hill, C.P.7
-
156
-
-
0036646488
-
PA200, a nuclear proteasome activator involved in DNA repair
-
Ustrell V., Hoffman L., Pratt G., Rechsteiner M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002, 21:3516-3525.
-
(2002)
EMBO J.
, vol.21
, pp. 3516-3525
-
-
Ustrell, V.1
Hoffman, L.2
Pratt, G.3
Rechsteiner, M.4
-
157
-
-
0037401695
-
Substrate access and processing by the 20S proteasome core particle
-
Groll M., Huber R. Substrate access and processing by the 20S proteasome core particle. Int. J. Biochem. Cell Biol. 2003, 35:606-616.
-
(2003)
Int. J. Biochem. Cell Biol.
, vol.35
, pp. 606-616
-
-
Groll, M.1
Huber, R.2
-
158
-
-
0027493870
-
PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus
-
Ma C.P., Willy P.J., Slaughter C.A., DeMartino G.N. PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus. J. Biol. Chem. 1993, 268:22514-22519.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 22514-22519
-
-
Ma, C.P.1
Willy, P.J.2
Slaughter, C.A.3
DeMartino, G.N.4
-
159
-
-
0033529596
-
The proteasome, a novel protease regulated by multiple mechanisms
-
DeMartino G.N., Slaughter C.A. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 1999, 274:22123-22126.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 22123-22126
-
-
DeMartino, G.N.1
Slaughter, C.A.2
-
160
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby F.G., Masters E.I., Kramer L., Knowlton J.R., Yao Y., Wang C.C., Hill C.P. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
Masters, E.I.2
Kramer, L.3
Knowlton, J.R.4
Yao, Y.5
Wang, C.C.6
Hill, C.P.7
-
161
-
-
0043192299
-
The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation
-
Forster A., Whitby F.G., Hill C.P. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 2003, 22:4356-4364.
-
(2003)
EMBO J.
, vol.22
, pp. 4356-4364
-
-
Forster, A.1
Whitby, F.G.2
Hill, C.P.3
-
162
-
-
0026498493
-
Purification of an 11 S regulator of the multicatalytic protease
-
Dubiel W., Pratt G., Ferrell K., Rechsteiner M. Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem. 1992, 267:22369-22377.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 22369-22377
-
-
Dubiel, W.1
Pratt, G.2
Ferrell, K.3
Rechsteiner, M.4
-
163
-
-
0032539818
-
Identification of an activation region in the proteasome activator REGalpha
-
Zhang Z., Clawson A., Realini C., Jensen C.C., Knowlton J.R., Hill C.P., Rechsteiner M. Identification of an activation region in the proteasome activator REGalpha. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:2807-2811.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 2807-2811
-
-
Zhang, Z.1
Clawson, A.2
Realini, C.3
Jensen, C.C.4
Knowlton, J.R.5
Hill, C.P.6
Rechsteiner, M.7
-
164
-
-
64549115746
-
Toward an atomic model of the 26S proteasome
-
Cheng Y. Toward an atomic model of the 26S proteasome. Curr. Opin. Struct. Biol. 2009, 19:203-208.
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 203-208
-
-
Cheng, Y.1
-
165
-
-
76349089770
-
Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
-
Yu Y., Smith D.M., Kim H.M., Rodriguez V., Goldberg A.L., Cheng Y. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 2010, 29:692-702.
-
(2010)
EMBO J.
, vol.29
, pp. 692-702
-
-
Yu, Y.1
Smith, D.M.2
Kim, H.M.3
Rodriguez, V.4
Goldberg, A.L.5
Cheng, Y.6
-
166
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J., Smith D.M., Yu Y., Chang S.C., Goldberg A.L., Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 2008, 30:360-368.
-
(2008)
Mol. Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.C.4
Goldberg, A.L.5
Cheng, Y.6
-
167
-
-
0035266072
-
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
-
Lee C., Schwartz M.P., Prakash S., Iwakura M., Matouschek A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 2001, 7:627-637.
-
(2001)
Mol. Cell
, vol.7
, pp. 627-637
-
-
Lee, C.1
Schwartz, M.P.2
Prakash, S.3
Iwakura, M.4
Matouschek, A.5
-
168
-
-
0042329502
-
Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine
-
Kenniston J.A., Baker T.A., Fernandez J.M., Sauer R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 2003, 114:511-520.
-
(2003)
Cell
, vol.114
, pp. 511-520
-
-
Kenniston, J.A.1
Baker, T.A.2
Fernandez, J.M.3
Sauer, R.T.4
-
169
-
-
4344559454
-
An unstructured initiation site is required for efficient proteasome-mediated degradation
-
Prakash S., Tian L., Ratliff K.S., Lehotzky R.E., Matouschek A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 2004, 11:830-837.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 830-837
-
-
Prakash, S.1
Tian, L.2
Ratliff, K.S.3
Lehotzky, R.E.4
Matouschek, A.5
-
170
-
-
73849149089
-
Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii
-
Humbard M.A., Miranda H.V., Lim J.M., Krause D.J., Pritz J.R., Zhou G., Chen S., Wells L., Maupin-Furlow J.A. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 2010, 463:54-60.
-
(2010)
Nature
, vol.463
, pp. 54-60
-
-
Humbard, M.A.1
Miranda, H.V.2
Lim, J.M.3
Krause, D.J.4
Pritz, J.R.5
Zhou, G.6
Chen, S.7
Wells, L.8
Maupin-Furlow, J.A.9
-
171
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
172
-
-
13444306170
-
Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing
-
Kenniston J.A., Baker T.A., Sauer R.T. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:1390-1395.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 1390-1395
-
-
Kenniston, J.A.1
Baker, T.A.2
Sauer, R.T.3
-
173
-
-
2442645033
-
Proteasomes begin ornithine decarboxylase digestion at the C terminus
-
Zhang M., MacDonald A.I., Hoyt M.A., Coffino P. Proteasomes begin ornithine decarboxylase digestion at the C terminus. J. Biol. Chem. 2004, 279:20959-20965.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20959-20965
-
-
Zhang, M.1
MacDonald, A.I.2
Hoyt, M.A.3
Coffino, P.4
-
174
-
-
33646152750
-
Glycine-alanine repeats impair proper substrate unfolding by the proteasome
-
Hoyt M.A., Zich J., Takeuchi J., Zhang M., Govaerts C., Coffino P. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 2006, 25:1720-1729.
-
(2006)
EMBO J.
, vol.25
, pp. 1720-1729
-
-
Hoyt, M.A.1
Zich, J.2
Takeuchi, J.3
Zhang, M.4
Govaerts, C.5
Coffino, P.6
-
175
-
-
0028951190
-
Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway
-
Johnston J.A., Johnson E.S., Waller P.R., Varshavsky A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem. 1995, 270:8172-8178.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 8172-8178
-
-
Johnston, J.A.1
Johnson, E.S.2
Waller, P.R.3
Varshavsky, A.4
-
176
-
-
67650541843
-
ATP-dependent proteases differ substantially in their ability to unfold globular proteins
-
Koodathingal P., Jaffe N.E., Kraut D.A., Prakash S., Fishbain S., Herman C., Matouschek A. ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J. Biol. Chem. 2009, 284:18674-18684.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18674-18684
-
-
Koodathingal, P.1
Jaffe, N.E.2
Kraut, D.A.3
Prakash, S.4
Fishbain, S.5
Herman, C.6
Matouschek, A.7
-
177
-
-
1542305655
-
Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing
-
Zhang M., Coffino P. Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing. J. Biol. Chem. 2004, 279:8635-8641.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 8635-8641
-
-
Zhang, M.1
Coffino, P.2
-
178
-
-
79955947361
-
Dependence of proteasome processing rate on substrate unfolding
-
Henderson C.A., Erales J., Hoyt M.A., Coffino P. Dependence of proteasome processing rate on substrate unfolding. J. Biol. Chem. 2011, 286:17495-17502.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 17495-17502
-
-
Henderson, C.A.1
Erales, J.2
Hoyt, M.A.3
Coffino, P.4
-
179
-
-
0034640110
-
A proteasome howdunit: the case of the missing signal
-
Verma R., Deshaies R.J. A proteasome howdunit: the case of the missing signal. Cell 2000, 101:341-344.
-
(2000)
Cell
, vol.101
, pp. 341-344
-
-
Verma, R.1
Deshaies, R.J.2
-
180
-
-
3242732010
-
Ubiquitin-free routes into the proteasome
-
Hoyt M.A., Coffino P. Ubiquitin-free routes into the proteasome. Cell. Mol. Life Sci. 2004, 61:1596-1600.
-
(2004)
Cell. Mol. Life Sci.
, vol.61
, pp. 1596-1600
-
-
Hoyt, M.A.1
Coffino, P.2
-
181
-
-
33846216003
-
Proteasome substrate degradation requires association plus extended peptide
-
Takeuchi J., Chen H., Coffino P. Proteasome substrate degradation requires association plus extended peptide. EMBO J. 2007, 26:123-131.
-
(2007)
EMBO J.
, vol.26
, pp. 123-131
-
-
Takeuchi, J.1
Chen, H.2
Coffino, P.3
-
182
-
-
0034677361
-
The structures of HsIU and the ATP-dependent protease HsIU-HsIV
-
Bochtler M., Hartmann C., Song H.K., Bourenkov G.P., Bartunik H.D., Huber R. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 2000, 403:800-805.
-
(2000)
Nature
, vol.403
, pp. 800-805
-
-
Bochtler, M.1
Hartmann, C.2
Song, H.K.3
Bourenkov, G.P.4
Bartunik, H.D.5
Huber, R.6
-
183
-
-
0033681249
-
Crystal and solution structures of an HslUV protease-chaperone complex
-
Sousa M.C., Trame C.B., Tsuruta H., Wilbanks S.M., Reddy V.S., McKay D.B. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 2000, 103:633-643.
-
(2000)
Cell
, vol.103
, pp. 633-643
-
-
Sousa, M.C.1
Trame, C.B.2
Tsuruta, H.3
Wilbanks, S.M.4
Reddy, V.S.5
McKay, D.B.6
-
184
-
-
20744457369
-
Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase
-
Park E., Rho Y.M., Koh O.J., Ahn S.W., Seong I.S., Song J.J., Bang O., Seol J.H., Wang J., Eom S.H., Chung C.H. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 2005, 280:22892-22898.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 22892-22898
-
-
Park, E.1
Rho, Y.M.2
Koh, O.J.3
Ahn, S.W.4
Seong, I.S.5
Song, J.J.6
Bang, O.7
Seol, J.H.8
Wang, J.9
Eom, S.H.10
Chung, C.H.11
-
185
-
-
65649123769
-
Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F., Wu Z., Zhang P., Tian G., Finley D., Shi Y. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:485-496.
-
(2009)
Mol. Cell
, vol.34
, pp. 485-496
-
-
Zhang, F.1
Wu, Z.2
Zhang, P.3
Tian, G.4
Finley, D.5
Shi, Y.6
-
186
-
-
66449134270
-
The proteasome's crown for destruction
-
Sakata E., Saeki Y., Tanaka K. The proteasome's crown for destruction. Mol. Cell 2009, 34:519-520.
-
(2009)
Mol. Cell
, vol.34
, pp. 519-520
-
-
Sakata, E.1
Saeki, Y.2
Tanaka, K.3
-
187
-
-
28544434064
-
A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB
-
Tian L., Holmgren R.A., Matouschek A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB. Nat. Struct. Mol. Biol. 2005, 12:1045-1053.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1045-1053
-
-
Tian, L.1
Holmgren, R.A.2
Matouschek, A.3
-
188
-
-
33746375404
-
Mechanism of DNA translocation in a replicative hexameric helicase
-
Enemark E.J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270-275.
-
(2006)
Nature
, vol.442
, pp. 270-275
-
-
Enemark, E.J.1
Joshua-Tor, L.2
-
189
-
-
70350344051
-
Running in reverse: the structural basis for translocation polarity in hexameric helicases
-
Thomsen N.D., Berger J.M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 2009, 139:523-534.
-
(2009)
Cell
, vol.139
, pp. 523-534
-
-
Thomsen, N.D.1
Berger, J.M.2
-
190
-
-
4444226952
-
Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen
-
Gai D., Zhao R., Li D., Finkielstein C.V., Chen X.S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 2004, 119:47-60.
-
(2004)
Cell
, vol.119
, pp. 47-60
-
-
Gai, D.1
Zhao, R.2
Li, D.3
Finkielstein, C.V.4
Chen, X.S.5
-
191
-
-
57749102552
-
Substrate selection by the proteasome during degradation of protein complexes
-
Prakash S., Inobe T., Hatch A.J., Matouschek A. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 2009, 5:29-36.
-
(2009)
Nat. Chem. Biol.
, vol.5
, pp. 29-36
-
-
Prakash, S.1
Inobe, T.2
Hatch, A.J.3
Matouschek, A.4
-
192
-
-
0032441479
-
Ubiquitin and the control of protein fate in the secretory and endocytic pathways
-
Bonifacino J.S., Weissman A.M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 1998, 14:19-57.
-
(1998)
Annu. Rev. Cell Dev. Biol.
, vol.14
, pp. 19-57
-
-
Bonifacino, J.S.1
Weissman, A.M.2
-
193
-
-
77957293977
-
Molecular chaperones and substrate ubiquitination control the efficiency of endoplasmic reticulum-associated degradation
-
Goeckeler J.L., Brodsky J.L. Molecular chaperones and substrate ubiquitination control the efficiency of endoplasmic reticulum-associated degradation. Diabetes Obes. Metab. 2010, 12(Suppl 2):32-38.
-
(2010)
Diabetes Obes. Metab.
, vol.12
, Issue.SUPPL. 2
, pp. 32-38
-
-
Goeckeler, J.L.1
Brodsky, J.L.2
-
194
-
-
77957189436
-
ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum
-
Mehnert M., Sommer T., Jarosch E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 2010, 32:905-913.
-
(2010)
Bioessays
, vol.32
, pp. 905-913
-
-
Mehnert, M.1
Sommer, T.2
Jarosch, E.3
-
195
-
-
0035658442
-
HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins
-
Bays N.W., Wilhovsky S.K., Goradia A., Hodgkiss-Harlow K., Hampton R.Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 2001, 12:4114-4128.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 4114-4128
-
-
Bays, N.W.1
Wilhovsky, S.K.2
Goradia, A.3
Hodgkiss-Harlow, K.4
Hampton, R.Y.5
-
196
-
-
0035818999
-
The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol
-
Ye Y., Meyer H.H., Rapoport T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001, 414:652-656.
-
(2001)
Nature
, vol.414
, pp. 652-656
-
-
Ye, Y.1
Meyer, H.H.2
Rapoport, T.A.3
-
197
-
-
0036136901
-
AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation
-
Rabinovich E., Kerem A., Frohlich K.U., Diamant N., Bar-Nun S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 2002, 22:626-634.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 626-634
-
-
Rabinovich, E.1
Kerem, A.2
Frohlich, K.U.3
Diamant, N.4
Bar-Nun, S.5
-
198
-
-
0036173013
-
Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48
-
Jarosch E., Taxis C., Volkwein C., Bordallo J., Finley D., Wolf D.H., Sommer T. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 2002, 4:134-139.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 134-139
-
-
Jarosch, E.1
Taxis, C.2
Volkwein, C.3
Bordallo, J.4
Finley, D.5
Wolf, D.H.6
Sommer, T.7
-
199
-
-
30344460667
-
The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast
-
Bar-Nun S. The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast. Curr. Top. Microbiol. Immunol. 2005, 300:95-125.
-
(2005)
Curr. Top. Microbiol. Immunol.
, vol.300
, pp. 95-125
-
-
Bar-Nun, S.1
-
200
-
-
67749116062
-
Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation
-
Leichner G.S., Avner R., Harats D., Roitelman J. Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation. Mol. Biol. Cell 2009, 20:3330-3341.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3330-3341
-
-
Leichner, G.S.1
Avner, R.2
Harats, D.3
Roitelman, J.4
-
201
-
-
1042278180
-
Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplasmic reticulum-bound p97/Cdc48p and proteasome
-
Elkabetz Y., Shapira I., Rabinovich E., Bar-Nun S. Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplasmic reticulum-bound p97/Cdc48p and proteasome. J. Biol. Chem. 2004, 279:3980-3989.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 3980-3989
-
-
Elkabetz, Y.1
Shapira, I.2
Rabinovich, E.3
Bar-Nun, S.4
-
202
-
-
0038143181
-
Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway
-
Elkabetz Y., Kerem A., Tencer L., Winitz D., Kopito R.R., Bar-Nun S. Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway. J. Biol. Chem. 2003, 278:18922-18929.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 18922-18929
-
-
Elkabetz, Y.1
Kerem, A.2
Tencer, L.3
Winitz, D.4
Kopito, R.R.5
Bar-Nun, S.6
-
203
-
-
79851515002
-
Protein dislocation from the ER
-
Bagola K., Mehnert M., Jarosch E., Sommer T. Protein dislocation from the ER. Biochim. Biophys. Acta 2011, 1808:925-936.
-
(2011)
Biochim. Biophys. Acta
, vol.1808
, pp. 925-936
-
-
Bagola, K.1
Mehnert, M.2
Jarosch, E.3
Sommer, T.4
-
204
-
-
3042543543
-
Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein
-
Lee R.J., Liu C.W., Harty C., McCracken A.A., Latterich M., Romisch K., DeMartino G.N., Thomas P.J., Brodsky J.L. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J. 2004, 23:2206-2215.
-
(2004)
EMBO J.
, vol.23
, pp. 2206-2215
-
-
Lee, R.J.1
Liu, C.W.2
Harty, C.3
McCracken, A.A.4
Latterich, M.5
Romisch, K.6
DeMartino, G.N.7
Thomas, P.J.8
Brodsky, J.L.9
-
205
-
-
34249069585
-
Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system
-
Wahlman J., DeMartino G.N., Skach W.R., Bulleid N.J., Brodsky J.L., Johnson A.E. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 2007, 129:943-955.
-
(2007)
Cell
, vol.129
, pp. 943-955
-
-
Wahlman, J.1
DeMartino, G.N.2
Skach, W.R.3
Bulleid, N.J.4
Brodsky, J.L.5
Johnson, A.E.6
-
206
-
-
0029838640
-
ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway
-
Hiller M.M., Finger A., Schweiger M., Wolf D.H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 1996, 273:1725-1728.
-
(1996)
Science
, vol.273
, pp. 1725-1728
-
-
Hiller, M.M.1
Finger, A.2
Schweiger, M.3
Wolf, D.H.4
-
207
-
-
0032526433
-
Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein
-
Mayer T.U., Braun T., Jentsch S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J. 1998, 17:3251-3257.
-
(1998)
EMBO J.
, vol.17
, pp. 3251-3257
-
-
Mayer, T.U.1
Braun, T.2
Jentsch, S.3
-
208
-
-
0034651604
-
Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system
-
Hill K., Cooper A.A. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J. 2000, 19:550-561.
-
(2000)
EMBO J.
, vol.19
, pp. 550-561
-
-
Hill, K.1
Cooper, A.A.2
-
209
-
-
77955106651
-
Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum
-
Li S., Spooner R.A., Allen S.C., Guise C.P., Ladds G., Schnoder T., Schmitt M.J., Lord J.M., Roberts L.M. Folding-competent and folding-defective forms of ricin A chain have different fates after retrotranslocation from the endoplasmic reticulum. Mol. Biol. Cell 2010, 21:2543-2554.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2543-2554
-
-
Li, S.1
Spooner, R.A.2
Allen, S.C.3
Guise, C.P.4
Ladds, G.5
Schnoder, T.6
Schmitt, M.J.7
Lord, J.M.8
Roberts, L.M.9
|