메뉴 건너뛰기




Volumn 112, Issue 52, 2015, Pages 15790-15797

MTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy

Author keywords

Autophagy; MTOR; Proteasome; Ubiquitination

Indexed keywords

CHOLESTEROL; ESSENTIAL AMINO ACID; HYDROXYMETHYLGLUTARYL COENZYME A SYNTHASE; INITIATION FACTOR 4E BINDING PROTEIN; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; PROTEASOME; PROTEIN; PROTEIN ULK1; PROTEIN ULK2; RAPAMYCIN; S6 KINASE; TORIN1; UBIQUITIN; UBIQUITINATED PROTEIN; UNCLASSIFIED DRUG; 1-(4-(4-PROPIONYLPIPERAZIN-1-YL)-3-(TRIFLUOROMETHYL)PHENYL)-9-(QUINOLIN-3-YL)BENZO(H)(1,6)NAPHTHYRIDIN-2(1H)-ONE; IMMUNOSUPPRESSIVE AGENT; MTOR PROTEIN, HUMAN; NAPHTHYRIDINE DERIVATIVE; TARGET OF RAPAMYCIN KINASE;

EID: 84952705310     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1521919112     Document Type: Article
Times cited : (342)

References (49)
  • 1
    • 0016908233 scopus 로고
    • Intracellular protein degradation in mammalian and bacterial cells: Part 2
    • Goldberg AL, St John AC (1976) Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem 45:747-803.
    • (1976) Annu Rev Biochem , vol.45 , pp. 747-803
    • Goldberg, A.L.1    St John, A.C.2
  • 2
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307-318.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , Issue.5 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 3
    • 84929502727 scopus 로고    scopus 로고
    • How to control self-digestion: Transcriptional, posttranscriptional, and post-translational regulation of autophagy
    • Feng Y, Yao Z, Klionsky DJ (2015) How to control self-digestion: Transcriptional, posttranscriptional, and post-translational regulation of autophagy. Trends Cell Biol 25(6):354-363.
    • (2015) Trends Cell Biol , vol.25 , Issue.6 , pp. 354-363
    • Feng, Y.1    Yao, Z.2    Klionsky, D.J.3
  • 4
    • 84925873653 scopus 로고    scopus 로고
    • Nutrient-sensing mechanisms across evolution
    • Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161(1):67-83.
    • (2015) Cell , vol.161 , Issue.1 , pp. 67-83
    • Chantranupong, L.1    Wolfson, R.L.2    Sabatini, D.M.3
  • 5
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: The mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN (2014) Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155-162.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , Issue.3 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 6
    • 84940467267 scopus 로고    scopus 로고
    • Regulation of mTORC1 by PI3K signaling
    • Dibble CC, Cantley LC (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25(9):545-555.
    • (2015) Trends Cell Biol , vol.25 , Issue.9 , pp. 545-555
    • Dibble, C.C.1    Cantley, L.C.2
  • 7
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023-8032.
    • (2009) J Biol Chem , vol.284 , Issue.12 , pp. 8023-8032
    • Thoreen, C.C.1
  • 8
    • 84860527756 scopus 로고    scopus 로고
    • A unifying model for mTORC1-mediated regulation of mRNA translation
    • Thoreen CC, et al. (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485(7396):109-113.
    • (2012) Nature , vol.485 , Issue.7396 , pp. 109-113
    • Thoreen, C.C.1
  • 9
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 2(67):pe24.
    • (2009) Sci Signal , vol.2 , Issue.67 , pp. e24
    • Guertin, D.A.1    Sabatini, D.M.2
  • 10
  • 11
    • 67650944993 scopus 로고    scopus 로고
    • Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
    • Harrison DE, et al. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392-395.
    • (2009) Nature , vol.460 , Issue.7253 , pp. 392-395
    • Harrison, D.E.1
  • 12
    • 84929903016 scopus 로고    scopus 로고
    • Compromised autophagy and neurodegenerative diseases
    • Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345-357.
    • (2015) Nat Rev Neurosci , vol.16 , Issue.6 , pp. 345-357
    • Menzies, F.M.1    Fleming, A.2    Rubinsztein, D.C.3
  • 13
    • 0027980319 scopus 로고
    • Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules
    • Rock KL, et al. (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5):761-771.
    • (1994) Cell , vol.78 , Issue.5 , pp. 761-771
    • Rock, K.L.1
  • 14
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao J, et al. (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472-483.
    • (2007) Cell Metab , vol.6 , Issue.6 , pp. 472-483
    • Zhao, J.1
  • 15
    • 0036083396 scopus 로고    scopus 로고
    • The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction
    • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev 82(2):373-428.
    • (2002) Physiol Rev , vol.82 , Issue.2 , pp. 373-428
    • Glickman, M.H.1    Ciechanover, A.2
  • 16
    • 33847066706 scopus 로고    scopus 로고
    • Functions of the proteasome: From protein degradation and immune surveillance to cancer therapy
    • Goldberg AL (2007) Functions of the proteasome: From protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35(Pt 1):12-17.
    • (2007) Biochem Soc Trans , vol.35 , pp. 12-17
    • Goldberg, A.L.1
  • 17
    • 84906898355 scopus 로고    scopus 로고
    • Coordinated regulation of protein synthesis and degradation by mTORC1
    • Zhang Y, et al. (2014) Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513(7518):440-443.
    • (2014) Nature , vol.513 , Issue.7518 , pp. 440-443
    • Zhang, Y.1
  • 18
    • 84955446296 scopus 로고    scopus 로고
    • Control of proteasomal proteolysis by mTOR
    • Zhao J, Garcia GA, Goldberg AL (2015) Control of proteasomal proteolysis by mTOR. Nature, 10.1038/nature16472.
    • (2015) Nature
    • Zhao, J.1    Garcia, G.A.2    Goldberg, A.L.3
  • 19
    • 0034864799 scopus 로고    scopus 로고
    • Proteasome inhibitors: From research tools to drug candidates
    • Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: From research tools to drug candidates. Chem Biol 8(8):739-758.
    • (2001) Chem Biol , vol.8 , Issue.8 , pp. 739-758
    • Kisselev, A.F.1    Goldberg, A.L.2
  • 20
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Düvel K, et al. (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171-183.
    • (2010) Mol Cell , vol.39 , Issue.2 , pp. 171-183
    • Düvel, K.1
  • 21
    • 80053083941 scopus 로고    scopus 로고
    • The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile
    • Wang BT, et al. (2011) The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci USA 108(37):15201-15206.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.37 , pp. 15201-15206
    • Wang, B.T.1
  • 22
    • 41249094257 scopus 로고    scopus 로고
    • Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis
    • Kimball SR, Do AN, Kutzler L, Cavener DR, Jefferson LS (2008) Rapid turnover of the mTOR complex 1(mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis. J Biol Chem 283(6):3465-3475.
    • (2008) J Biol Chem , vol.283 , Issue.6 , pp. 3465-3475
    • Kimball, S.R.1    Do, A.N.2    Kutzler, L.3    Cavener, D.R.4    Jefferson, L.S.5
  • 23
    • 84875231510 scopus 로고    scopus 로고
    • Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
    • Nathan JA, Kim HT, Ting L, Gygi SP, Goldberg AL (2013) Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J 32(4):552-565.
    • (2013) EMBO J , vol.32 , Issue.4 , pp. 552-565
    • Nathan, J.A.1    Kim, H.T.2    Ting, L.3    Gygi, S.P.4    Goldberg, A.L.5
  • 24
    • 81755189064 scopus 로고    scopus 로고
    • Mechanistic studies of substrate-assisted inhibition of ubiquitinactivating enzyme by adenosine sulfamate analogues
    • Chen JJ, et al. (2011) Mechanistic studies of substrate-assisted inhibition of ubiquitinactivating enzyme by adenosine sulfamate analogues. J Biol Chem 286(47):40867-40877.
    • (2011) J Biol Chem , vol.286 , Issue.47 , pp. 40867-40877
    • Chen, J.J.1
  • 25
    • 70449084692 scopus 로고    scopus 로고
    • Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities
    • Hjerpe R, et al. (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10(11):1250-1258.
    • (2009) EMBO Rep , vol.10 , Issue.11 , pp. 1250-1258
    • Hjerpe, R.1
  • 26
    • 0025120211 scopus 로고
    • Regulation of the mevalonate pathway
    • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343(6257):425-430.
    • (1990) Nature , vol.343 , Issue.6257 , pp. 425-430
    • Goldstein, J.L.1    Brown, M.S.2
  • 27
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson TR, et al. (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408-420.
    • (2011) Cell , vol.146 , Issue.3 , pp. 408-420
    • Peterson, T.R.1
  • 28
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann T, et al. (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8(3):224-236.
    • (2008) Cell Metab , vol.8 , Issue.3 , pp. 224-236
    • Porstmann, T.1
  • 29
    • 79957713187 scopus 로고    scopus 로고
    • Increased alphataxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer
    • Mashidori T, Shirataki H, Kamai T, Nakamura F, Yoshida K (2011) Increased alphataxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer. Biomed Res 32(2):103-110.
    • (2011) Biomed Res , vol.32 , Issue.2 , pp. 103-110
    • Mashidori, T.1    Shirataki, H.2    Kamai, T.3    Nakamura, F.4    Yoshida, K.5
  • 30
    • 78649976013 scopus 로고    scopus 로고
    • Expression of α-taxilin in hepatocellular carcinoma correlates with growth activity and malignant potential of the tumor
    • Ohtomo N, et al. (2010) Expression of α-taxilin in hepatocellular carcinoma correlates with growth activity and malignant potential of the tumor. Int J Oncol 37(6):1417-1423.
    • (2010) Int J Oncol , vol.37 , Issue.6 , pp. 1417-1423
    • Ohtomo, N.1
  • 31
    • 65549165975 scopus 로고    scopus 로고
    • Genetic alterations and oncogenic pathways associated with breast cancer subtypes
    • Hu X, et al. (2009) Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7(4):511-522.
    • (2009) Mol Cancer Res , vol.7 , Issue.4 , pp. 511-522
    • Hu, X.1
  • 32
    • 62549137804 scopus 로고    scopus 로고
    • Histone acetyltransferase Hbo1: Catalytic activity, cellular abundance, and links to primary cancers
    • Iizuka M, et al. (2009) Histone acetyltransferase Hbo1: Catalytic activity, cellular abundance, and links to primary cancers. Gene 436(1-2):108-114.
    • (2009) Gene , vol.436 , Issue.1-2 , pp. 108-114
    • Iizuka, M.1
  • 33
    • 84893867486 scopus 로고    scopus 로고
    • Expression of α-taxilin in the murine gastrointestinal tract: Potential implication in cell proliferation
    • Horii Y, et al. (2014) Expression of α-taxilin in the murine gastrointestinal tract: Potential implication in cell proliferation. Histochem Cell Biol 141(2):165-180.
    • (2014) Histochem Cell Biol , vol.141 , Issue.2 , pp. 165-180
    • Horii, Y.1
  • 34
    • 56149113172 scopus 로고    scopus 로고
    • Developmental and spatial expression pattern of alphataxilin in the rat central nervous system
    • Sakakibara S, et al. (2008) Developmental and spatial expression pattern of alphataxilin in the rat central nervous system. J Comp Neurol 511(1):65-80.
    • (2008) J Comp Neurol , vol.511 , Issue.1 , pp. 65-80
    • Sakakibara, S.1
  • 35
    • 79956322553 scopus 로고    scopus 로고
    • Global quantification of mammalian gene expression control
    • Schwanhäusser B, et al. (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337-342.
    • (2011) Nature , vol.473 , Issue.7347 , pp. 337-342
    • Schwanhäusser, B.1
  • 36
    • 84921752079 scopus 로고    scopus 로고
    • Proteasomes. A molecular census of 26S proteasomes in intact neurons
    • Asano S, et al. (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347(6220):439-442.
    • (2015) Science , vol.347 , Issue.6220 , pp. 439-442
    • Asano, S.1
  • 37
    • 84942031613 scopus 로고    scopus 로고
    • Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome
    • Tsvetkov P, et al. (2015) Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. eLife 4:e08467.
    • (2015) ELife , vol.4 , pp. e08467
    • Tsvetkov, P.1
  • 38
    • 84886994271 scopus 로고    scopus 로고
    • IGF-1 receptor antagonism inhibits autophagy
    • Renna M, et al. (2013) IGF-1 receptor antagonism inhibits autophagy. Hum Mol Genet 22(22):4528-4544.
    • (2013) Hum Mol Genet , vol.22 , Issue.22 , pp. 4528-4544
    • Renna, M.1
  • 39
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317-1322.
    • (2011) Science , vol.332 , Issue.6035 , pp. 1317-1322
    • Hsu, P.P.1
  • 40
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322-1326.
    • (2011) Science , vol.332 , Issue.6035 , pp. 1322-1326
    • Yu, Y.1
  • 41
    • 64749098830 scopus 로고    scopus 로고
    • An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer
    • Soucy TA, et al. (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458(7239):732-736.
    • (2009) Nature , vol.458 , Issue.7239 , pp. 732-736
    • Soucy, T.A.1
  • 42
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-dependent and independent signals in selective autophagy
    • Khaminets A, Behl C, Dikic I (2015) Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol, 10.1016/j.tcb.2015.08.010.
    • (2015) Trends Cell Biol
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 43
    • 84925286847 scopus 로고    scopus 로고
    • Muscle wasting in disease: Molecular mechanisms and promising therapies
    • Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: Molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58-74.
    • (2015) Nat Rev Drug Discov , vol.14 , Issue.1 , pp. 58-74
    • Cohen, S.1    Nathan, J.A.2    Goldberg, A.L.3
  • 44
    • 84952685052 scopus 로고    scopus 로고
    • CAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins
    • Lokireddy S, Kukushkin N, Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA 112:E7176-E7185.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E7176-E7185
    • Lokireddy, S.1    Kukushkin, N.2    Goldberg, A.L.3
  • 45
    • 85019299537 scopus 로고    scopus 로고
    • 26S proteasome dysfunction and cognitive impairment caused by aggregated tau accumulation can be attenuated by PKA-mediated phosphorylation of proteasomes
    • Myeku N, et al. (2015) 26S proteasome dysfunction and cognitive impairment caused by aggregated tau accumulation can be attenuated by PKA-mediated phosphorylation of proteasomes. Nat Med, 10.1038/nm.4011.
    • (2015) Nat Med
    • Myeku, N.1
  • 46
    • 84906972203 scopus 로고    scopus 로고
    • Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway
    • Kageyama S, et al. (2014) Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem 289(36):24944-24955.
    • (2014) J Biol Chem , vol.289 , Issue.36 , pp. 24944-24955
    • Kageyama, S.1
  • 47
    • 36448940798 scopus 로고    scopus 로고
    • FoxO3 controls autophagy in skeletal muscle in vivo
    • Mammucari C, et al. (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458-471.
    • (2007) Cell Metab , vol.6 , Issue.6 , pp. 458-471
    • Mammucari, C.1
  • 48
    • 0344683235 scopus 로고    scopus 로고
    • The National Academies Press, Washington, DC, 8th Ed
    • National Research Council (2011) Guide for the Care and Use of Laboratory Animals (The National Academies Press, Washington, DC), 8th Ed.
    • (2011) Guide for the Care and use of Laboratory Animals
  • 49
    • 84866417635 scopus 로고    scopus 로고
    • Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy
    • Cohen S, Zhai B, Gygi SP, Goldberg AL (2012) Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol 198(4):575-589.
    • (2012) J Cell Biol , vol.198 , Issue.4 , pp. 575-589
    • Cohen, S.1    Zhai, B.2    Gygi, S.P.3    Goldberg, A.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.