-
2
-
-
0032867676
-
The 26S proteasome: a molecular machine designed for controlled proteolysis
-
Voges D., et al. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999, 68:1015-1068.
-
(1999)
Annu. Rev. Biochem.
, vol.68
, pp. 1015-1068
-
-
Voges, D.1
-
3
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution
-
Löwe J., et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995, 268:533-539.
-
(1995)
Science
, vol.268
, pp. 533-539
-
-
Löwe, J.1
-
4
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4Å resolution
-
Groll M., et al. Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 1997, 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
-
5
-
-
0036103598
-
The structure of the mammalian 20S proteasome at 2.75Å resolution
-
Unno M., et al. The structure of the mammalian 20S proteasome at 2.75Å resolution. Structure 2002, 10(5):609-618.
-
(2002)
Structure
, vol.10
, Issue.5
, pp. 609-618
-
-
Unno, M.1
-
6
-
-
0029060166
-
Proteasome from Thermoplasma acidophilum: a threonine protease
-
Seemüller E., et al. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 1995, 268:579-582.
-
(1995)
Science
, vol.268
, pp. 579-582
-
-
Seemüller, E.1
-
7
-
-
0030016595
-
Structure and functions of the 20S and 26S proteasomes
-
Coux O., et al. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996, 65:801-847.
-
(1996)
Annu. Rev. Biochem.
, vol.65
, pp. 801-847
-
-
Coux, O.1
-
8
-
-
21144447324
-
Molecular machines for protein degradation
-
Groll M., et al. Molecular machines for protein degradation. Chem. Bio. Chem. 2005, 6:222-256.
-
(2005)
Chem. Bio. Chem.
, vol.6
, pp. 222-256
-
-
Groll, M.1
-
9
-
-
65249098267
-
Catalytic mechanism and assembly of the proteasome
-
Marques A.J., et al. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 2009, 109:1509-1536.
-
(2009)
Chem. Rev.
, vol.109
, pp. 1509-1536
-
-
Marques, A.J.1
-
10
-
-
58849093135
-
Molecular mechanisms of proteasome assembly
-
Murata S., et al. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 2009, 10:104-115.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 104-115
-
-
Murata, S.1
-
11
-
-
50849123778
-
PACemakers of proteasome core particle assembly
-
Ramos P.C., Dohmen R.J. PACemakers of proteasome core particle assembly. Structure 2008, 16:1296-1304.
-
(2008)
Structure
, vol.16
, pp. 1296-1304
-
-
Ramos, P.C.1
Dohmen, R.J.2
-
12
-
-
76449108472
-
Assembly manual for the proteasome regulatory particle: the first draft
-
Park S., et al. Assembly manual for the proteasome regulatory particle: the first draft. Biochem. Soc. Trans. 2010, 38:6-13.
-
(2010)
Biochem. Soc. Trans.
, vol.38
, pp. 6-13
-
-
Park, S.1
-
13
-
-
67649654465
-
Getting to first base in proteasome assembly
-
Besche H.C., et al. Getting to first base in proteasome assembly. Cell 2009, 138:25-28.
-
(2009)
Cell
, vol.138
, pp. 25-28
-
-
Besche, H.C.1
-
14
-
-
0026467097
-
Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli
-
Zwickl P., et al. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Lett. 1992, 312:157-160.
-
(1992)
FEBS Lett.
, vol.312
, pp. 157-160
-
-
Zwickl, P.1
-
15
-
-
0037436376
-
Investigations on the maturation and regulation of archaebacterial proteasomes
-
Groll M., et al. Investigations on the maturation and regulation of archaebacterial proteasomes. J. Mol. Biol. 2003, 327:75-83.
-
(2003)
J. Mol. Biol.
, vol.327
, pp. 75-83
-
-
Groll, M.1
-
16
-
-
0030595329
-
Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly
-
Chen P., Hochstrasser M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 1996, 86:961-972.
-
(1996)
Cell
, vol.86
, pp. 961-972
-
-
Chen, P.1
Hochstrasser, M.2
-
17
-
-
0032569036
-
Conformational constraints for protein self-cleavage in the proteasome
-
Ditzel L., et al. Conformational constraints for protein self-cleavage in the proteasome. J. Mol. Biol. 1998, 279:1187-1191.
-
(1998)
J. Mol. Biol.
, vol.279
, pp. 1187-1191
-
-
Ditzel, L.1
-
18
-
-
27544505533
-
Crystal structure of a putative phosphinothricin acetyltransferase (PA4866) from Pseudomonas aeruginosa PAC1
-
Davies A.M., et al. Crystal structure of a putative phosphinothricin acetyltransferase (PA4866) from Pseudomonas aeruginosa PAC1. Proteins 2005, 61:677-679.
-
(2005)
Proteins
, vol.61
, pp. 677-679
-
-
Davies, A.M.1
-
19
-
-
33845681479
-
Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
-
Hirano Y., et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 2006, 24:977-984.
-
(2006)
Mol. Cell
, vol.24
, pp. 977-984
-
-
Hirano, Y.1
-
20
-
-
34547838178
-
20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals
-
Le Tallec B., et al. 20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals. Mol. Cell 2007, 27:660-674.
-
(2007)
Mol. Cell
, vol.27
, pp. 660-674
-
-
Le Tallec, B.1
-
21
-
-
0032548998
-
Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
-
Ramos P.C., et al. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998, 92:489-499.
-
(1998)
Cell
, vol.92
, pp. 489-499
-
-
Ramos, P.C.1
-
22
-
-
27644554700
-
A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
-
Hirano Y., et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005, 437:1381-1385.
-
(2005)
Nature
, vol.437
, pp. 1381-1385
-
-
Hirano, Y.1
-
23
-
-
40949117574
-
A multimeric assembly factor controls the formation of alternative 20S proteasomes
-
Kusmierczyk A.R., et al. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat. Struct Mol. Biol. 2008, 15:237-244.
-
(2008)
Nat. Struct Mol. Biol.
, vol.15
, pp. 237-244
-
-
Kusmierczyk, A.R.1
-
24
-
-
40949120953
-
Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes
-
Yashiroda H., et al. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:228-236.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 228-236
-
-
Yashiroda, H.1
-
25
-
-
49949109912
-
Dissecting beta-ring assembly pathway of the mammalian 20S proteasome
-
Hirano Y., et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J. 2008, 27:2204-2213.
-
(2008)
EMBO J.
, vol.27
, pp. 2204-2213
-
-
Hirano, Y.1
-
26
-
-
0031585998
-
Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes
-
Schmidtke G., et al. Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J. Mol. Biol. 1997, 268:95-106.
-
(1997)
J. Mol. Biol.
, vol.268
, pp. 95-106
-
-
Schmidtke, G.1
-
27
-
-
36849024844
-
The C-terminal extension of the beta 7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation
-
Marques A.J., et al. The C-terminal extension of the beta 7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem. 2007, 282:34869-34876.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34869-34876
-
-
Marques, A.J.1
-
28
-
-
0040008534
-
Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function
-
Jager S., et al. Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J. Mol. Biol. 1999, 291:997-1013.
-
(1999)
J. Mol. Biol.
, vol.291
, pp. 997-1013
-
-
Jager, S.1
-
29
-
-
0033613196
-
The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study
-
Groll M., et al. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:10976-10983.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 10976-10983
-
-
Groll, M.1
-
30
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M., et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 2000, 7:1062-1067.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
-
31
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby F.G., et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
-
32
-
-
0034964524
-
The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
-
Köhler A., et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 2001, 7:1143-1152.
-
(2001)
Mol. Cell
, vol.7
, pp. 1143-1152
-
-
Köhler, A.1
-
33
-
-
0032483546
-
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
-
Glickman M.H., et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998, 94:615-623.
-
(1998)
Cell
, vol.94
, pp. 615-623
-
-
Glickman, M.H.1
-
34
-
-
0032168508
-
Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
-
Rubin D.M., et al. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 1998, 17:4909-4919.
-
(1998)
EMBO J.
, vol.17
, pp. 4909-4919
-
-
Rubin, D.M.1
-
35
-
-
0037129213
-
A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
-
Lam Y.A., et al. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002, 416:763-767.
-
(2002)
Nature
, vol.416
, pp. 763-767
-
-
Lam, Y.A.1
-
36
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K., et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
-
37
-
-
44349094727
-
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
-
Schreiner P., et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008, 453:548-552.
-
(2008)
Nature
, vol.453
, pp. 548-552
-
-
Schreiner, P.1
-
38
-
-
0029806477
-
The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
-
van Nocker S., et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell Biol. 1996, 16:6020-6028.
-
(1996)
Mol. Cell Biol.
, vol.16
, pp. 6020-6028
-
-
van Nocker, S.1
-
39
-
-
33745936981
-
Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor
-
Jorgensen J.P., et al. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor. J. Mol. Biol. 2006, 360:1043-1052.
-
(2006)
J. Mol. Biol.
, vol.360
, pp. 1043-1052
-
-
Jorgensen, J.P.1
-
40
-
-
0031927996
-
26S proteasome structure revealed by three-dimensional electron microscopy
-
Walz J., et al. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 1998, 121:19-29.
-
(1998)
J. Struct. Biol.
, vol.121
, pp. 19-29
-
-
Walz, J.1
-
41
-
-
53149123284
-
Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core
-
da Fonseca P.C., Morris E.P. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 2008, 283:23305-23314.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23305-23314
-
-
da Fonseca, P.C.1
Morris, E.P.2
-
42
-
-
19444387760
-
The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Forster A., et al. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 2005, 18:589-599.
-
(2005)
Mol. Cell
, vol.18
, pp. 589-599
-
-
Forster, A.1
-
43
-
-
76349089770
-
Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
-
Yu Y.D., et al. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 2010, 29:692-702.
-
(2010)
EMBO J.
, vol.29
, pp. 692-702
-
-
Yu, Y.D.1
-
44
-
-
73649128544
-
Structural models for interactions between the 20S proteasome and its PAN/19S activators
-
Stadtmueller B.M., et al. Structural models for interactions between the 20S proteasome and its PAN/19S activators. J. Biol. Chem. 2010, 285:13-17.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13-17
-
-
Stadtmueller, B.M.1
-
45
-
-
0035070672
-
The substrate translocation channel of the proteasome
-
Kohler A., et al. The substrate translocation channel of the proteasome. Biochimie 2001, 83:325-332.
-
(2001)
Biochimie
, vol.83
, pp. 325-332
-
-
Kohler, A.1
-
46
-
-
57649140340
-
Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome
-
Gillette T.G., et al. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008, 283:31813-31822.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 31813-31822
-
-
Gillette, T.G.1
-
47
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith D.M., et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
-
(2007)
Mol. Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
-
48
-
-
65849101541
-
Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
-
Saeki Y., et al. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009, 137:900-913.
-
(2009)
Cell
, vol.137
, pp. 900-913
-
-
Saeki, Y.1
-
49
-
-
33846820426
-
Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome
-
Nakamura Y., et al. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 2007, 15:179-189.
-
(2007)
Structure
, vol.15
, pp. 179-189
-
-
Nakamura, Y.1
-
50
-
-
34250194038
-
Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome
-
Nakamura Y., et al. Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem. Biophys. Res. Comm. 2007, 359:503-509.
-
(2007)
Biochem. Biophys. Res. Comm.
, vol.359
, pp. 503-509
-
-
Nakamura, Y.1
-
51
-
-
67349089027
-
Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
-
Funakoshi M., et al. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 2009, 137:887-899.
-
(2009)
Cell
, vol.137
, pp. 887-899
-
-
Funakoshi, M.1
-
52
-
-
67149112112
-
Chaperone-mediated pathway of proteasome regulatory particle assembly
-
Roelofs J., et al. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 2009, 459:861-865.
-
(2009)
Nature
, vol.459
, pp. 861-865
-
-
Roelofs, J.1
-
53
-
-
59849083960
-
Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
-
Le Tallec B., et al. Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol. Cell 2009, 33:389-399.
-
(2009)
Mol. Cell
, vol.33
, pp. 389-399
-
-
Le Tallec, B.1
-
54
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J., et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 2008, 30:360-368.
-
(2008)
Mol. Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
-
55
-
-
68349157358
-
PCI Complexes: Beyond the Proteasome, CSN, and elF3 Troika
-
Pick E., et al. PCI Complexes: Beyond the Proteasome, CSN, and elF3 Troika. Mol. Cell 2009, 35:260-264.
-
(2009)
Mol. Cell
, vol.35
, pp. 260-264
-
-
Pick, E.1
-
56
-
-
33747347236
-
Structural organization of the 19S proteasome lid: Insights from MS of intact complexes
-
Sharon M., et al. Structural organization of the 19S proteasome lid: Insights from MS of intact complexes. PLOS Biol. 2006, 4:1314-1323.
-
(2006)
PLOS Biol.
, vol.4
, pp. 1314-1323
-
-
Sharon, M.1
-
57
-
-
44649150563
-
Subunit architecture of intact protein complexes from mass spectrometry and homology modeling
-
Taverner T., et al. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 2008, 41:617-627.
-
(2008)
Acc. Chem. Res.
, vol.41
, pp. 617-627
-
-
Taverner, T.1
-
58
-
-
0042313977
-
The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome
-
Imai J., et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003, 22:3557-3567.
-
(2003)
EMBO J.
, vol.22
, pp. 3557-3567
-
-
Imai, J.1
-
59
-
-
0039660001
-
Dissecting the assembly pathway of the 20S proteasome
-
Zuhl F., et al. Dissecting the assembly pathway of the 20S proteasome. FEBS Lett. 1997, 418:189-194.
-
(1997)
FEBS Lett.
, vol.418
, pp. 189-194
-
-
Zuhl, F.1
-
60
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett D., et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10:495-507.
-
(2002)
Mol. Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.1
-
61
-
-
0036646488
-
PA200, a nuclear proteasome activator involved in DNA repair
-
Ustrell V., et al. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002, 21:3516-3525.
-
(2002)
EMBO J.
, vol.21
, pp. 3516-3525
-
-
Ustrell, V.1
-
62
-
-
18744391955
-
The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle
-
Schmidt M., et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct Mol. Biol. 2005, 12:294-303.
-
(2005)
Nat. Struct Mol. Biol.
, vol.12
, pp. 294-303
-
-
Schmidt, M.1
-
63
-
-
0242522904
-
Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly
-
Fehlker M., et al. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 2003, 4:959-963.
-
(2003)
EMBO Rep.
, vol.4
, pp. 959-963
-
-
Fehlker, M.1
-
64
-
-
57049135155
-
Blm10 binds to pre-activated proteasome core particles with open gate conformation
-
Lehmann A., et al. Blm10 binds to pre-activated proteasome core particles with open gate conformation. EMBO Rep. 2008, 9:1237-1243.
-
(2008)
EMBO Rep.
, vol.9
, pp. 1237-1243
-
-
Lehmann, A.1
-
65
-
-
0035889941
-
Plasma proteasome level is a potential marker in patients with solid tumors and hemopoietic malignancies
-
Lavabre-Bertrand T., et al. Plasma proteasome level is a potential marker in patients with solid tumors and hemopoietic malignancies. Cancer 2001, 92:2493-2500.
-
(2001)
Cancer
, vol.92
, pp. 2493-2500
-
-
Lavabre-Bertrand, T.1
-
66
-
-
59449084849
-
Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones
-
Rousseau E., et al. Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones. J. Biol. Chem. 2009, 284:1917-1929.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 1917-1929
-
-
Rousseau, E.1
-
67
-
-
34547858920
-
Diversity of proteasomal missions: fine tuning of the immune response
-
Borissenko L., Groll M. Diversity of proteasomal missions: fine tuning of the immune response. Biol. Chem. 2007, 388:947-955.
-
(2007)
Biol. Chem.
, vol.388
, pp. 947-955
-
-
Borissenko, L.1
Groll, M.2
-
68
-
-
0033543648
-
An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes
-
Zwickl P., et al. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 1999, 274:26008-26014.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 26008-26014
-
-
Zwickl, P.1
-
69
-
-
0033769733
-
PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone
-
Benaroudj N., Goldberg A. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell Biol. 2000, 2(11):833-839.
-
(2000)
Nat. Cell Biol.
, vol.2
, Issue.11
, pp. 833-839
-
-
Benaroudj, N.1
Goldberg, A.2
-
70
-
-
0037248908
-
ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
-
Benaroudj N., et al. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 2003, 11:69-78.
-
(2003)
Mol. Cell
, vol.11
, pp. 69-78
-
-
Benaroudj, N.1
-
71
-
-
0035694696
-
Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome
-
Navon A., Goldberg A.L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 2001, 8(6):1339-1349.
-
(2001)
Mol. Cell
, vol.8
, Issue.6
, pp. 1339-1349
-
-
Navon, A.1
Goldberg, A.L.2
-
72
-
-
65649091692
-
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F., et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
-
(2009)
Mol. Cell
, vol.34
, pp. 473-484
-
-
Zhang, F.1
-
73
-
-
65649123769
-
Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F., et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:485-496.
-
(2009)
Mol. Cell
, vol.34
, pp. 485-496
-
-
Zhang, F.1
-
74
-
-
66449131251
-
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
-
Djuranovic S., et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 2009, 34:580-590.
-
(2009)
Mol. Cell
, vol.34
, pp. 580-590
-
-
Djuranovic, S.1
-
75
-
-
70349770896
-
Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa
-
Wang T., et al. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa. Structure 2009, 17:1377-1385.
-
(2009)
Structure
, vol.17
, pp. 1377-1385
-
-
Wang, T.1
-
76
-
-
33749234748
-
Proteasomes and their associated ATPases: a destructive combination
-
Smith D.M., et al. Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol. 2006, 156:72-83.
-
(2006)
J. Struct. Biol.
, vol.156
, pp. 72-83
-
-
Smith, D.M.1
-
77
-
-
28444452611
-
ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins
-
Smith D.M., et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 2005, 20:687-698.
-
(2005)
Mol. Cell
, vol.20
, pp. 687-698
-
-
Smith, D.M.1
-
78
-
-
55549088522
-
Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
-
Martin A., et al. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct Mol. Biol. 2008, 15:1147-1151.
-
(2008)
Nat. Struct Mol. Biol.
, vol.15
, pp. 1147-1151
-
-
Martin, A.1
-
79
-
-
0029973122
-
HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome
-
Rohrwild M., et al. HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:5808-5813.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 5808-5813
-
-
Rohrwild, M.1
-
80
-
-
0030925223
-
Crystal structure of heat shock locus V (HslV) from Escherichia coli
-
Bochtler M., et al. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:6070-6074.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 6070-6074
-
-
Bochtler, M.1
-
81
-
-
0034677361
-
The structures of HsIU and ATP-dependent protease HsIU-HsIV
-
Bochtler M., et al. The structures of HsIU and ATP-dependent protease HsIU-HsIV. Nature 2000, 403:800-805.
-
(2000)
Nature
, vol.403
, pp. 800-805
-
-
Bochtler, M.1
-
82
-
-
0033681249
-
Crystal and solution structures of an HslUV protease-chaperone complex
-
Sousa M.C., et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 2000, 103:633-643.
-
(2000)
Cell
, vol.103
, pp. 633-643
-
-
Sousa, M.C.1
-
83
-
-
0035096082
-
Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
-
Wang J., et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure (Camb.) 2001, 9:177-184.
-
(2001)
Structure (Camb.)
, vol.9
, pp. 177-184
-
-
Wang, J.1
-
84
-
-
0036308646
-
Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU
-
Sousa M., et al. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J. Mol. Biol. 2002, 318:779-785.
-
(2002)
J. Mol. Biol.
, vol.318
, pp. 779-785
-
-
Sousa, M.1
-
85
-
-
67149121057
-
-
Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature
-
Park, S.R., J. Kim, W. Robert, J. Schmidt, M. Gygi, SP. Finley, D. (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459, 866-870.
-
(2009)
, vol.459
, pp. 866-870
-
-
Park, S.R.J.1
Kim, W.2
Robert, J.3
Schmidt, M.4
Gygi, S.P.5
Finley, D.6
|