메뉴 건너뛰기




Volumn 35, Issue 11, 2010, Pages 634-642

The 26S proteasome: assembly and function of a destructive machine

Author keywords

[No Author keywords available]

Indexed keywords

19S REGULATORY PARTICLE; 26S PROTEASOME; ADENOSINE TRIPHOSPHATASE; CHAPERONE; PROTEASOME; UMP1 PROTEIN; UNCLASSIFIED DRUG;

EID: 78049264771     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2010.05.005     Document Type: Review
Times cited : (168)

References (85)
  • 2
    • 0032867676 scopus 로고    scopus 로고
    • The 26S proteasome: a molecular machine designed for controlled proteolysis
    • Voges D., et al. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999, 68:1015-1068.
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 1015-1068
    • Voges, D.1
  • 3
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution
    • Löwe J., et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995, 268:533-539.
    • (1995) Science , vol.268 , pp. 533-539
    • Löwe, J.1
  • 4
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4Å resolution
    • Groll M., et al. Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 1997, 386:463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 5
    • 0036103598 scopus 로고    scopus 로고
    • The structure of the mammalian 20S proteasome at 2.75Å resolution
    • Unno M., et al. The structure of the mammalian 20S proteasome at 2.75Å resolution. Structure 2002, 10(5):609-618.
    • (2002) Structure , vol.10 , Issue.5 , pp. 609-618
    • Unno, M.1
  • 6
    • 0029060166 scopus 로고
    • Proteasome from Thermoplasma acidophilum: a threonine protease
    • Seemüller E., et al. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 1995, 268:579-582.
    • (1995) Science , vol.268 , pp. 579-582
    • Seemüller, E.1
  • 7
    • 0030016595 scopus 로고    scopus 로고
    • Structure and functions of the 20S and 26S proteasomes
    • Coux O., et al. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996, 65:801-847.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 801-847
    • Coux, O.1
  • 8
    • 21144447324 scopus 로고    scopus 로고
    • Molecular machines for protein degradation
    • Groll M., et al. Molecular machines for protein degradation. Chem. Bio. Chem. 2005, 6:222-256.
    • (2005) Chem. Bio. Chem. , vol.6 , pp. 222-256
    • Groll, M.1
  • 9
    • 65249098267 scopus 로고    scopus 로고
    • Catalytic mechanism and assembly of the proteasome
    • Marques A.J., et al. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 2009, 109:1509-1536.
    • (2009) Chem. Rev. , vol.109 , pp. 1509-1536
    • Marques, A.J.1
  • 10
    • 58849093135 scopus 로고    scopus 로고
    • Molecular mechanisms of proteasome assembly
    • Murata S., et al. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 2009, 10:104-115.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 104-115
    • Murata, S.1
  • 11
    • 50849123778 scopus 로고    scopus 로고
    • PACemakers of proteasome core particle assembly
    • Ramos P.C., Dohmen R.J. PACemakers of proteasome core particle assembly. Structure 2008, 16:1296-1304.
    • (2008) Structure , vol.16 , pp. 1296-1304
    • Ramos, P.C.1    Dohmen, R.J.2
  • 12
    • 76449108472 scopus 로고    scopus 로고
    • Assembly manual for the proteasome regulatory particle: the first draft
    • Park S., et al. Assembly manual for the proteasome regulatory particle: the first draft. Biochem. Soc. Trans. 2010, 38:6-13.
    • (2010) Biochem. Soc. Trans. , vol.38 , pp. 6-13
    • Park, S.1
  • 13
    • 67649654465 scopus 로고    scopus 로고
    • Getting to first base in proteasome assembly
    • Besche H.C., et al. Getting to first base in proteasome assembly. Cell 2009, 138:25-28.
    • (2009) Cell , vol.138 , pp. 25-28
    • Besche, H.C.1
  • 14
    • 0026467097 scopus 로고
    • Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli
    • Zwickl P., et al. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Lett. 1992, 312:157-160.
    • (1992) FEBS Lett. , vol.312 , pp. 157-160
    • Zwickl, P.1
  • 15
    • 0037436376 scopus 로고    scopus 로고
    • Investigations on the maturation and regulation of archaebacterial proteasomes
    • Groll M., et al. Investigations on the maturation and regulation of archaebacterial proteasomes. J. Mol. Biol. 2003, 327:75-83.
    • (2003) J. Mol. Biol. , vol.327 , pp. 75-83
    • Groll, M.1
  • 16
    • 0030595329 scopus 로고    scopus 로고
    • Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly
    • Chen P., Hochstrasser M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 1996, 86:961-972.
    • (1996) Cell , vol.86 , pp. 961-972
    • Chen, P.1    Hochstrasser, M.2
  • 17
    • 0032569036 scopus 로고    scopus 로고
    • Conformational constraints for protein self-cleavage in the proteasome
    • Ditzel L., et al. Conformational constraints for protein self-cleavage in the proteasome. J. Mol. Biol. 1998, 279:1187-1191.
    • (1998) J. Mol. Biol. , vol.279 , pp. 1187-1191
    • Ditzel, L.1
  • 18
    • 27544505533 scopus 로고    scopus 로고
    • Crystal structure of a putative phosphinothricin acetyltransferase (PA4866) from Pseudomonas aeruginosa PAC1
    • Davies A.M., et al. Crystal structure of a putative phosphinothricin acetyltransferase (PA4866) from Pseudomonas aeruginosa PAC1. Proteins 2005, 61:677-679.
    • (2005) Proteins , vol.61 , pp. 677-679
    • Davies, A.M.1
  • 19
    • 33845681479 scopus 로고    scopus 로고
    • Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
    • Hirano Y., et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 2006, 24:977-984.
    • (2006) Mol. Cell , vol.24 , pp. 977-984
    • Hirano, Y.1
  • 20
    • 34547838178 scopus 로고    scopus 로고
    • 20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals
    • Le Tallec B., et al. 20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals. Mol. Cell 2007, 27:660-674.
    • (2007) Mol. Cell , vol.27 , pp. 660-674
    • Le Tallec, B.1
  • 21
    • 0032548998 scopus 로고    scopus 로고
    • Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
    • Ramos P.C., et al. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998, 92:489-499.
    • (1998) Cell , vol.92 , pp. 489-499
    • Ramos, P.C.1
  • 22
    • 27644554700 scopus 로고    scopus 로고
    • A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
    • Hirano Y., et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005, 437:1381-1385.
    • (2005) Nature , vol.437 , pp. 1381-1385
    • Hirano, Y.1
  • 23
    • 40949117574 scopus 로고    scopus 로고
    • A multimeric assembly factor controls the formation of alternative 20S proteasomes
    • Kusmierczyk A.R., et al. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat. Struct Mol. Biol. 2008, 15:237-244.
    • (2008) Nat. Struct Mol. Biol. , vol.15 , pp. 237-244
    • Kusmierczyk, A.R.1
  • 24
    • 40949120953 scopus 로고    scopus 로고
    • Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes
    • Yashiroda H., et al. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:228-236.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 228-236
    • Yashiroda, H.1
  • 25
    • 49949109912 scopus 로고    scopus 로고
    • Dissecting beta-ring assembly pathway of the mammalian 20S proteasome
    • Hirano Y., et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J. 2008, 27:2204-2213.
    • (2008) EMBO J. , vol.27 , pp. 2204-2213
    • Hirano, Y.1
  • 26
    • 0031585998 scopus 로고    scopus 로고
    • Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes
    • Schmidtke G., et al. Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J. Mol. Biol. 1997, 268:95-106.
    • (1997) J. Mol. Biol. , vol.268 , pp. 95-106
    • Schmidtke, G.1
  • 27
    • 36849024844 scopus 로고    scopus 로고
    • The C-terminal extension of the beta 7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation
    • Marques A.J., et al. The C-terminal extension of the beta 7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem. 2007, 282:34869-34876.
    • (2007) J. Biol. Chem. , vol.282 , pp. 34869-34876
    • Marques, A.J.1
  • 28
    • 0040008534 scopus 로고    scopus 로고
    • Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function
    • Jager S., et al. Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J. Mol. Biol. 1999, 291:997-1013.
    • (1999) J. Mol. Biol. , vol.291 , pp. 997-1013
    • Jager, S.1
  • 29
    • 0033613196 scopus 로고    scopus 로고
    • The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study
    • Groll M., et al. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:10976-10983.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 10976-10983
    • Groll, M.1
  • 30
    • 0033766480 scopus 로고    scopus 로고
    • A gated channel into the proteasome core particle
    • Groll M., et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 2000, 7:1062-1067.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 1062-1067
    • Groll, M.1
  • 31
    • 0034597824 scopus 로고    scopus 로고
    • Structural basis for the activation of 20S proteasomes by 11S regulators
    • Whitby F.G., et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
    • (2000) Nature , vol.408 , pp. 115-120
    • Whitby, F.G.1
  • 32
    • 0034964524 scopus 로고    scopus 로고
    • The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
    • Köhler A., et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 2001, 7:1143-1152.
    • (2001) Mol. Cell , vol.7 , pp. 1143-1152
    • Köhler, A.1
  • 33
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
    • Glickman M.H., et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998, 94:615-623.
    • (1998) Cell , vol.94 , pp. 615-623
    • Glickman, M.H.1
  • 34
    • 0032168508 scopus 로고    scopus 로고
    • Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
    • Rubin D.M., et al. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 1998, 17:4909-4919.
    • (1998) EMBO J. , vol.17 , pp. 4909-4919
    • Rubin, D.M.1
  • 35
    • 0037129213 scopus 로고    scopus 로고
    • A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
    • Lam Y.A., et al. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002, 416:763-767.
    • (2002) Nature , vol.416 , pp. 763-767
    • Lam, Y.A.1
  • 36
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K., et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1
  • 37
    • 44349094727 scopus 로고    scopus 로고
    • Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
    • Schreiner P., et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 2008, 453:548-552.
    • (2008) Nature , vol.453 , pp. 548-552
    • Schreiner, P.1
  • 38
    • 0029806477 scopus 로고    scopus 로고
    • The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
    • van Nocker S., et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell Biol. 1996, 16:6020-6028.
    • (1996) Mol. Cell Biol. , vol.16 , pp. 6020-6028
    • van Nocker, S.1
  • 39
    • 33745936981 scopus 로고    scopus 로고
    • Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor
    • Jorgensen J.P., et al. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor. J. Mol. Biol. 2006, 360:1043-1052.
    • (2006) J. Mol. Biol. , vol.360 , pp. 1043-1052
    • Jorgensen, J.P.1
  • 40
    • 0031927996 scopus 로고    scopus 로고
    • 26S proteasome structure revealed by three-dimensional electron microscopy
    • Walz J., et al. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 1998, 121:19-29.
    • (1998) J. Struct. Biol. , vol.121 , pp. 19-29
    • Walz, J.1
  • 41
    • 53149123284 scopus 로고    scopus 로고
    • Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core
    • da Fonseca P.C., Morris E.P. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 2008, 283:23305-23314.
    • (2008) J. Biol. Chem. , vol.283 , pp. 23305-23314
    • da Fonseca, P.C.1    Morris, E.P.2
  • 42
    • 19444387760 scopus 로고    scopus 로고
    • The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
    • Forster A., et al. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 2005, 18:589-599.
    • (2005) Mol. Cell , vol.18 , pp. 589-599
    • Forster, A.1
  • 43
    • 76349089770 scopus 로고    scopus 로고
    • Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
    • Yu Y.D., et al. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 2010, 29:692-702.
    • (2010) EMBO J. , vol.29 , pp. 692-702
    • Yu, Y.D.1
  • 44
    • 73649128544 scopus 로고    scopus 로고
    • Structural models for interactions between the 20S proteasome and its PAN/19S activators
    • Stadtmueller B.M., et al. Structural models for interactions between the 20S proteasome and its PAN/19S activators. J. Biol. Chem. 2010, 285:13-17.
    • (2010) J. Biol. Chem. , vol.285 , pp. 13-17
    • Stadtmueller, B.M.1
  • 45
    • 0035070672 scopus 로고    scopus 로고
    • The substrate translocation channel of the proteasome
    • Kohler A., et al. The substrate translocation channel of the proteasome. Biochimie 2001, 83:325-332.
    • (2001) Biochimie , vol.83 , pp. 325-332
    • Kohler, A.1
  • 46
    • 57649140340 scopus 로고    scopus 로고
    • Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome
    • Gillette T.G., et al. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008, 283:31813-31822.
    • (2008) J. Biol. Chem. , vol.283 , pp. 31813-31822
    • Gillette, T.G.1
  • 47
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
    • Smith D.M., et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
    • (2007) Mol. Cell , vol.27 , pp. 731-744
    • Smith, D.M.1
  • 48
    • 65849101541 scopus 로고    scopus 로고
    • Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
    • Saeki Y., et al. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009, 137:900-913.
    • (2009) Cell , vol.137 , pp. 900-913
    • Saeki, Y.1
  • 49
    • 33846820426 scopus 로고    scopus 로고
    • Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome
    • Nakamura Y., et al. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 2007, 15:179-189.
    • (2007) Structure , vol.15 , pp. 179-189
    • Nakamura, Y.1
  • 50
    • 34250194038 scopus 로고    scopus 로고
    • Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome
    • Nakamura Y., et al. Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem. Biophys. Res. Comm. 2007, 359:503-509.
    • (2007) Biochem. Biophys. Res. Comm. , vol.359 , pp. 503-509
    • Nakamura, Y.1
  • 51
    • 67349089027 scopus 로고    scopus 로고
    • Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
    • Funakoshi M., et al. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 2009, 137:887-899.
    • (2009) Cell , vol.137 , pp. 887-899
    • Funakoshi, M.1
  • 52
    • 67149112112 scopus 로고    scopus 로고
    • Chaperone-mediated pathway of proteasome regulatory particle assembly
    • Roelofs J., et al. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 2009, 459:861-865.
    • (2009) Nature , vol.459 , pp. 861-865
    • Roelofs, J.1
  • 53
    • 59849083960 scopus 로고    scopus 로고
    • Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
    • Le Tallec B., et al. Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol. Cell 2009, 33:389-399.
    • (2009) Mol. Cell , vol.33 , pp. 389-399
    • Le Tallec, B.1
  • 54
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
    • Rabl J., et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 2008, 30:360-368.
    • (2008) Mol. Cell , vol.30 , pp. 360-368
    • Rabl, J.1
  • 55
    • 68349157358 scopus 로고    scopus 로고
    • PCI Complexes: Beyond the Proteasome, CSN, and elF3 Troika
    • Pick E., et al. PCI Complexes: Beyond the Proteasome, CSN, and elF3 Troika. Mol. Cell 2009, 35:260-264.
    • (2009) Mol. Cell , vol.35 , pp. 260-264
    • Pick, E.1
  • 56
    • 33747347236 scopus 로고    scopus 로고
    • Structural organization of the 19S proteasome lid: Insights from MS of intact complexes
    • Sharon M., et al. Structural organization of the 19S proteasome lid: Insights from MS of intact complexes. PLOS Biol. 2006, 4:1314-1323.
    • (2006) PLOS Biol. , vol.4 , pp. 1314-1323
    • Sharon, M.1
  • 57
    • 44649150563 scopus 로고    scopus 로고
    • Subunit architecture of intact protein complexes from mass spectrometry and homology modeling
    • Taverner T., et al. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 2008, 41:617-627.
    • (2008) Acc. Chem. Res. , vol.41 , pp. 617-627
    • Taverner, T.1
  • 58
    • 0042313977 scopus 로고    scopus 로고
    • The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome
    • Imai J., et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003, 22:3557-3567.
    • (2003) EMBO J. , vol.22 , pp. 3557-3567
    • Imai, J.1
  • 59
    • 0039660001 scopus 로고    scopus 로고
    • Dissecting the assembly pathway of the 20S proteasome
    • Zuhl F., et al. Dissecting the assembly pathway of the 20S proteasome. FEBS Lett. 1997, 418:189-194.
    • (1997) FEBS Lett. , vol.418 , pp. 189-194
    • Zuhl, F.1
  • 60
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett D., et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10:495-507.
    • (2002) Mol. Cell , vol.10 , pp. 495-507
    • Leggett, D.1
  • 61
    • 0036646488 scopus 로고    scopus 로고
    • PA200, a nuclear proteasome activator involved in DNA repair
    • Ustrell V., et al. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002, 21:3516-3525.
    • (2002) EMBO J. , vol.21 , pp. 3516-3525
    • Ustrell, V.1
  • 62
    • 18744391955 scopus 로고    scopus 로고
    • The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle
    • Schmidt M., et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct Mol. Biol. 2005, 12:294-303.
    • (2005) Nat. Struct Mol. Biol. , vol.12 , pp. 294-303
    • Schmidt, M.1
  • 63
    • 0242522904 scopus 로고    scopus 로고
    • Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly
    • Fehlker M., et al. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 2003, 4:959-963.
    • (2003) EMBO Rep. , vol.4 , pp. 959-963
    • Fehlker, M.1
  • 64
    • 57049135155 scopus 로고    scopus 로고
    • Blm10 binds to pre-activated proteasome core particles with open gate conformation
    • Lehmann A., et al. Blm10 binds to pre-activated proteasome core particles with open gate conformation. EMBO Rep. 2008, 9:1237-1243.
    • (2008) EMBO Rep. , vol.9 , pp. 1237-1243
    • Lehmann, A.1
  • 65
    • 0035889941 scopus 로고    scopus 로고
    • Plasma proteasome level is a potential marker in patients with solid tumors and hemopoietic malignancies
    • Lavabre-Bertrand T., et al. Plasma proteasome level is a potential marker in patients with solid tumors and hemopoietic malignancies. Cancer 2001, 92:2493-2500.
    • (2001) Cancer , vol.92 , pp. 2493-2500
    • Lavabre-Bertrand, T.1
  • 66
    • 59449084849 scopus 로고    scopus 로고
    • Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones
    • Rousseau E., et al. Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones. J. Biol. Chem. 2009, 284:1917-1929.
    • (2009) J. Biol. Chem. , vol.284 , pp. 1917-1929
    • Rousseau, E.1
  • 67
    • 34547858920 scopus 로고    scopus 로고
    • Diversity of proteasomal missions: fine tuning of the immune response
    • Borissenko L., Groll M. Diversity of proteasomal missions: fine tuning of the immune response. Biol. Chem. 2007, 388:947-955.
    • (2007) Biol. Chem. , vol.388 , pp. 947-955
    • Borissenko, L.1    Groll, M.2
  • 68
    • 0033543648 scopus 로고    scopus 로고
    • An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes
    • Zwickl P., et al. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 1999, 274:26008-26014.
    • (1999) J. Biol. Chem. , vol.274 , pp. 26008-26014
    • Zwickl, P.1
  • 69
    • 0033769733 scopus 로고    scopus 로고
    • PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone
    • Benaroudj N., Goldberg A. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell Biol. 2000, 2(11):833-839.
    • (2000) Nat. Cell Biol. , vol.2 , Issue.11 , pp. 833-839
    • Benaroudj, N.1    Goldberg, A.2
  • 70
    • 0037248908 scopus 로고    scopus 로고
    • ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
    • Benaroudj N., et al. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 2003, 11:69-78.
    • (2003) Mol. Cell , vol.11 , pp. 69-78
    • Benaroudj, N.1
  • 71
    • 0035694696 scopus 로고    scopus 로고
    • Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome
    • Navon A., Goldberg A.L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 2001, 8(6):1339-1349.
    • (2001) Mol. Cell , vol.8 , Issue.6 , pp. 1339-1349
    • Navon, A.1    Goldberg, A.L.2
  • 72
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
    • (2009) Mol. Cell , vol.34 , pp. 473-484
    • Zhang, F.1
  • 73
    • 65649123769 scopus 로고    scopus 로고
    • Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:485-496.
    • (2009) Mol. Cell , vol.34 , pp. 485-496
    • Zhang, F.1
  • 74
    • 66449131251 scopus 로고    scopus 로고
    • Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
    • Djuranovic S., et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 2009, 34:580-590.
    • (2009) Mol. Cell , vol.34 , pp. 580-590
    • Djuranovic, S.1
  • 75
    • 70349770896 scopus 로고    scopus 로고
    • Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa
    • Wang T., et al. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa. Structure 2009, 17:1377-1385.
    • (2009) Structure , vol.17 , pp. 1377-1385
    • Wang, T.1
  • 76
    • 33749234748 scopus 로고    scopus 로고
    • Proteasomes and their associated ATPases: a destructive combination
    • Smith D.M., et al. Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol. 2006, 156:72-83.
    • (2006) J. Struct. Biol. , vol.156 , pp. 72-83
    • Smith, D.M.1
  • 77
    • 28444452611 scopus 로고    scopus 로고
    • ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins
    • Smith D.M., et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 2005, 20:687-698.
    • (2005) Mol. Cell , vol.20 , pp. 687-698
    • Smith, D.M.1
  • 78
    • 55549088522 scopus 로고    scopus 로고
    • Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
    • Martin A., et al. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct Mol. Biol. 2008, 15:1147-1151.
    • (2008) Nat. Struct Mol. Biol. , vol.15 , pp. 1147-1151
    • Martin, A.1
  • 79
    • 0029973122 scopus 로고    scopus 로고
    • HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome
    • Rohrwild M., et al. HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:5808-5813.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 5808-5813
    • Rohrwild, M.1
  • 80
    • 0030925223 scopus 로고    scopus 로고
    • Crystal structure of heat shock locus V (HslV) from Escherichia coli
    • Bochtler M., et al. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:6070-6074.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 6070-6074
    • Bochtler, M.1
  • 81
    • 0034677361 scopus 로고    scopus 로고
    • The structures of HsIU and ATP-dependent protease HsIU-HsIV
    • Bochtler M., et al. The structures of HsIU and ATP-dependent protease HsIU-HsIV. Nature 2000, 403:800-805.
    • (2000) Nature , vol.403 , pp. 800-805
    • Bochtler, M.1
  • 82
    • 0033681249 scopus 로고    scopus 로고
    • Crystal and solution structures of an HslUV protease-chaperone complex
    • Sousa M.C., et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 2000, 103:633-643.
    • (2000) Cell , vol.103 , pp. 633-643
    • Sousa, M.C.1
  • 83
    • 0035096082 scopus 로고    scopus 로고
    • Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
    • Wang J., et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure (Camb.) 2001, 9:177-184.
    • (2001) Structure (Camb.) , vol.9 , pp. 177-184
    • Wang, J.1
  • 84
    • 0036308646 scopus 로고    scopus 로고
    • Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU
    • Sousa M., et al. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J. Mol. Biol. 2002, 318:779-785.
    • (2002) J. Mol. Biol. , vol.318 , pp. 779-785
    • Sousa, M.1
  • 85
    • 67149121057 scopus 로고    scopus 로고
    • Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature
    • Park, S.R., J. Kim, W. Robert, J. Schmidt, M. Gygi, SP. Finley, D. (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459, 866-870.
    • (2009) , vol.459 , pp. 866-870
    • Park, S.R.J.1    Kim, W.2    Robert, J.3    Schmidt, M.4    Gygi, S.P.5    Finley, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.