메뉴 건너뛰기




Volumn 90, Issue 5, 2016, Pages 950-964

Autophagy in kidney disease and aging: lessons from rodent models

Author keywords

acute kidney injury; aging; autophagy; endothelium; glomerulus; kidney; kidney transplantation; mTOR; podocyte; polycystic kidney disease

Indexed keywords

HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; HYPOXIA INDUCIBLE FACTOR 1ALPHA; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PROTEIN KINASE C; SIRTUIN 1; STRESS ACTIVATED PROTEIN KINASE 1;

EID: 84977484264     PISSN: 00852538     EISSN: 15231755     Source Type: Journal    
DOI: 10.1016/j.kint.2016.04.014     Document Type: Review
Times cited : (124)

References (244)
  • 1
    • 84880376355 scopus 로고    scopus 로고
    • Emerging regulation and functions of autophagy
    • 1 Boya, P., Reggiori, F., Codogno, P., Emerging regulation and functions of autophagy. Nat Cell Biol 15 (2013), 713–720.
    • (2013) Nat Cell Biol , vol.15 , pp. 713-720
    • Boya, P.1    Reggiori, F.2    Codogno, P.3
  • 2
    • 84873660610 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • 2 Choi, A.M., Ryter, S.W., Levine, B., Autophagy in human health and disease. N Engl J Med 368 (2013), 1845–1846.
    • (2013) N Engl J Med , vol.368 , pp. 1845-1846
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 3
    • 77950994646 scopus 로고    scopus 로고
    • Autophagy: cellular and molecular mechanisms
    • 3 Glick, D., Barth, S., Macleod, K.F., Autophagy: cellular and molecular mechanisms. J Pathol 221 (2010), 3–12.
    • (2010) J Pathol , vol.221 , pp. 3-12
    • Glick, D.1    Barth, S.2    Macleod, K.F.3
  • 4
    • 0000189281 scopus 로고
    • Cellular differentiation in the kidneys of newborn mice studies with the electron microscope
    • 4 Clark, S.L. Jr., Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol 3 (1957), 349–362.
    • (1957) J Biophys Biochem Cytol , vol.3 , pp. 349-362
    • Clark, S.L.1
  • 5
    • 0002549377 scopus 로고
    • The lysosome
    • 5 De Duve, C., The lysosome. Sci Am 208 (1963), 64–72.
    • (1963) Sci Am , vol.208 , pp. 64-72
    • De Duve, C.1
  • 6
    • 0018901472 scopus 로고
    • Apparent autophagocytosis of mitochondria in L1210 leukemia cells treated in vitro with 4,4'-diacetyl-diphenylurea-bis(guanylhydrazone)
    • 6 Mikles-Robertson, F., Dave, C., Porter, C.W., Apparent autophagocytosis of mitochondria in L1210 leukemia cells treated in vitro with 4,4'-diacetyl-diphenylurea-bis(guanylhydrazone). Cancer Res 40 (1980), 1054–1061.
    • (1980) Cancer Res , vol.40 , pp. 1054-1061
    • Mikles-Robertson, F.1    Dave, C.2    Porter, C.W.3
  • 7
    • 0018074885 scopus 로고
    • Endoplasmic reticulum and autophagy in rat hepatocytes
    • 7 Novikoff, A.B., Shin, W.Y., Endoplasmic reticulum and autophagy in rat hepatocytes. Proc Natl Acad Sci U S A 75 (1978), 5039–5042.
    • (1978) Proc Natl Acad Sci U S A , vol.75 , pp. 5039-5042
    • Novikoff, A.B.1    Shin, W.Y.2
  • 8
    • 0026668042 scopus 로고
    • Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
    • 8 Takeshige, K., Baba, M., Tsuboi, S., et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119 (1992), 301–311.
    • (1992) J Cell Biol , vol.119 , pp. 301-311
    • Takeshige, K.1    Baba, M.2    Tsuboi, S.3
  • 9
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
    • 9 Tsukada, M., Ohsumi, Y., Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333 (1993), 169–174.
    • (1993) FEBS Lett , vol.333 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 10
    • 0032563798 scopus 로고    scopus 로고
    • A protein conjugation system essential for autophagy
    • 10 Mizushima, N., Noda, T., Yoshimori, T., et al. A protein conjugation system essential for autophagy. Nature 395 (1998), 395–398.
    • (1998) Nature , vol.395 , pp. 395-398
    • Mizushima, N.1    Noda, T.2    Yoshimori, T.3
  • 11
    • 23344446037 scopus 로고    scopus 로고
    • Autophagy
    • 11 Klionsky, D.J., Autophagy. Curr Biol 15 (2005), R282–R283.
    • (2005) Curr Biol , vol.15 , pp. R282-R283
    • Klionsky, D.J.1
  • 12
    • 79959999581 scopus 로고    scopus 로고
    • Microautophagy in mammalian cells: revisiting a 40-year-old conundrum
    • 12 Mijaljica, D., Prescott, M., Devenish, R.J., Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7 (2011), 673–682.
    • (2011) Autophagy , vol.7 , pp. 673-682
    • Mijaljica, D.1    Prescott, M.2    Devenish, R.J.3
  • 13
    • 33645829816 scopus 로고    scopus 로고
    • Consequences of the selective blockage of chaperone-mediated autophagy
    • 13 Massey, A.C., Kaushik, S., Sovak, G., et al. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A 103 (2006), 5805–5810.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 5805-5810
    • Massey, A.C.1    Kaushik, S.2    Sovak, G.3
  • 14
    • 84864318195 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: a unique way to enter the lysosome world
    • 14 Kaushik, S., Cuervo, A.M., Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22 (2012), 407–417.
    • (2012) Trends Cell Biol , vol.22 , pp. 407-417
    • Kaushik, S.1    Cuervo, A.M.2
  • 15
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • 15 Mizushima, N., Levine, B., Cuervo, A.M., et al. Autophagy fights disease through cellular self-digestion. Nature 451 (2008), 1069–1075.
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3
  • 16
    • 79952319773 scopus 로고    scopus 로고
    • Mitochondria removal by autophagy
    • 16 Wang, K., Klionsky, D.J., Mitochondria removal by autophagy. Autophagy 7 (2011), 297–300.
    • (2011) Autophagy , vol.7 , pp. 297-300
    • Wang, K.1    Klionsky, D.J.2
  • 17
    • 79959354999 scopus 로고    scopus 로고
    • Mitochondria and the autophagy-inflammation-cell death axis in organismal aging
    • 17 Green, D.R., Galluzzi, L., Kroemer, G., Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 33 (2011), 1109–1112.
    • (2011) Science , vol.33 , pp. 1109-1112
    • Green, D.R.1    Galluzzi, L.2    Kroemer, G.3
  • 18
    • 84907042769 scopus 로고    scopus 로고
    • ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
    • 18 Schuck, S., Gallagher, C.M., Walter, P., ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 127 (2014), 4078–4088.
    • (2014) J Cell Sci , vol.127 , pp. 4078-4088
    • Schuck, S.1    Gallagher, C.M.2    Walter, P.3
  • 20
    • 84876345355 scopus 로고    scopus 로고
    • NBR1 acts as an autophagy receptor for peroxisomes
    • 20 Deosaran, E., Larsen, K.B., Hua, R., et al. NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 126 (2013), 939–952.
    • (2013) J Cell Sci , vol.126 , pp. 939-952
    • Deosaran, E.1    Larsen, K.B.2    Hua, R.3
  • 21
    • 33644586142 scopus 로고    scopus 로고
    • Pexophagy: the selective autophagy of peroxisomes
    • 21 Dunn, W.A. Jr., Cregg, J.M., Kiel, J.A., et al. Pexophagy: the selective autophagy of peroxisomes. Autophagy 1 (2005), 75–83.
    • (2005) Autophagy , vol.1 , pp. 75-83
    • Dunn, W.A.1    Cregg, J.M.2    Kiel, J.A.3
  • 22
    • 58549084167 scopus 로고    scopus 로고
    • Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
    • 22 Kim, P.K., Hailey, D.W., Mullen, R.T., et al. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 105 (2008), 20567–20574.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20567-20574
    • Kim, P.K.1    Hailey, D.W.2    Mullen, R.T.3
  • 23
    • 84859736977 scopus 로고    scopus 로고
    • Aggrephagy: selective disposal of protein aggregates by macroautophagy
    • 23 Lamark, T., Johansen, T., Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol, 2012, 2012, 736905.
    • (2012) Int J Cell Biol , vol.2012 , pp. 736905
    • Lamark, T.1    Johansen, T.2
  • 24
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • 24 Singh, R., Kaushik, S., Wang, Y., et al. Autophagy regulates lipid metabolism. Nature 458 (2009), 1131–1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1    Kaushik, S.2    Wang, Y.3
  • 25
    • 33744916798 scopus 로고    scopus 로고
    • Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1
    • 25 Shibata, M., Lu, T., Furuya, T., et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281 (2006), 14474–14485.
    • (2006) J Biol Chem , vol.281 , pp. 14474-14485
    • Shibata, M.1    Lu, T.2    Furuya, T.3
  • 26
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: a history of macroautophagy
    • 26 Yang, Z., Klionsky, D.J., Eaten alive: a history of macroautophagy. Nat Cell Biol 12 (2010), 814–822.
    • (2010) Nat Cell Biol , vol.12 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 27
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • 27 Singh, R., Xiang, Y., Wang, Y., et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119 (2009), 3329–3339.
    • (2009) J Clin Invest , vol.119 , pp. 3329-3339
    • Singh, R.1    Xiang, Y.2    Wang, Y.3
  • 29
    • 0042691506 scopus 로고    scopus 로고
    • Autophagy genes are essential for dauer development and life-span extension in C. elegans
    • 29 Melendez, A., Talloczy, Z., Seaman, M., et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301 (2003), 1387–1391.
    • (2003) Science , vol.301 , pp. 1387-1391
    • Melendez, A.1    Talloczy, Z.2    Seaman, M.3
  • 30
    • 77956274584 scopus 로고    scopus 로고
    • Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease
    • 30 Lipinski, M.M., Zheng, B., Lu, T., et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc Natl Acad Sci U S A 107 (2010), 14164–14169.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 14164-14169
    • Lipinski, M.M.1    Zheng, B.2    Lu, T.3
  • 31
    • 33846259385 scopus 로고    scopus 로고
    • Autophagy of vascular smooth muscle cells in atherosclerotic lesions
    • 31 Jia, G., Cheng, G., Agrawal, D.K., Autophagy of vascular smooth muscle cells in atherosclerotic lesions. Autophagy 3 (2007), 63–64.
    • (2007) Autophagy , vol.3 , pp. 63-64
    • Jia, G.1    Cheng, G.2    Agrawal, D.K.3
  • 32
    • 38649125210 scopus 로고    scopus 로고
    • Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci
    • 32 Harley, J.B., Alarcon-Riquelme, M.E., Criswell, L.A., et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40 (2008), 204–210.
    • (2008) Nat Genet , vol.40 , pp. 204-210
    • Harley, J.B.1    Alarcon-Riquelme, M.E.2    Criswell, L.A.3
  • 33
    • 70649086092 scopus 로고    scopus 로고
    • Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk
    • 33 Raychaudhuri, S., Thomson, B.P., Remmers, E.F., et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet 41 (2009), 1313–1318.
    • (2009) Nat Genet , vol.41 , pp. 1313-1318
    • Raychaudhuri, S.1    Thomson, B.P.2    Remmers, E.F.3
  • 34
    • 84555195156 scopus 로고    scopus 로고
    • Nutrient sensing, autophagy, and diabetic nephropathy
    • 34 Kume, S., Thomas, M.C., Koya, D., Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes 61 (2012), 23–29.
    • (2012) Diabetes , vol.61 , pp. 23-29
    • Kume, S.1    Thomas, M.C.2    Koya, D.3
  • 35
    • 84876283863 scopus 로고    scopus 로고
    • Autophagy: a novel therapeutic target for kidney diseases
    • 35 Kume, S., Uzu, T., Maegawa, H., et al. Autophagy: a novel therapeutic target for kidney diseases. Clin Exp Nephrol 16 (2012), 827–832.
    • (2012) Clin Exp Nephrol , vol.16 , pp. 827-832
    • Kume, S.1    Uzu, T.2    Maegawa, H.3
  • 36
    • 84866142024 scopus 로고    scopus 로고
    • Emerging role of autophagy in kidney function, diseases and aging
    • 36 Huber, T.B., Edelstein, C.L., Hartleben, B., et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8 (2012), 1009–1031.
    • (2012) Autophagy , vol.8 , pp. 1009-1031
    • Huber, T.B.1    Edelstein, C.L.2    Hartleben, B.3
  • 37
    • 79953834002 scopus 로고    scopus 로고
    • Implications of autophagy for glomerular aging and disease
    • 37 Weide, T., Huber, T.B., Implications of autophagy for glomerular aging and disease. Cell Tissue Res 343 (2011), 467–473.
    • (2011) Cell Tissue Res , vol.343 , pp. 467-473
    • Weide, T.1    Huber, T.B.2
  • 38
    • 84939209368 scopus 로고    scopus 로고
    • Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis
    • 38 Shpilka, T., Welter, E., Borovsky, N., et al. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 34 (2015), 2117–2131.
    • (2015) EMBO J , vol.34 , pp. 2117-2131
    • Shpilka, T.1    Welter, E.2    Borovsky, N.3
  • 39
    • 84964265562 scopus 로고    scopus 로고
    • Lipid droplets regulate autophagosome biogenesis
    • 39 Shpilka, T., Elazar, Z., Lipid droplets regulate autophagosome biogenesis. Autophagy 11 (2015), 2130–2131.
    • (2015) Autophagy , vol.11 , pp. 2130-2131
    • Shpilka, T.1    Elazar, Z.2
  • 40
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: core molecular machinery and signaling regulation
    • 40 Yang, Z., Klionsky, D.J., Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22 (2010), 124–131.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 41
    • 84883414890 scopus 로고    scopus 로고
    • The LIR motif—crucial for selective autophagy
    • 41 Birgisdottir, A.B., Lamark, T., Johansen, T., The LIR motif—crucial for selective autophagy. J Cell Sci 126 (2013), 3237–3247.
    • (2013) J Cell Sci , vol.126 , pp. 3237-3247
    • Birgisdottir, A.B.1    Lamark, T.2    Johansen, T.3
  • 42
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • 42 Johansen, T., Lamark, T., Selective autophagy mediated by autophagic adapter proteins. Autophagy 7 (2011), 279–296.
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 43
    • 84899890618 scopus 로고    scopus 로고
    • Selective autophagy goes exclusive
    • 43 Johansen, T., Lamark, T., Selective autophagy goes exclusive. Nat Cell Biol 16 (2014), 395–397.
    • (2014) Nat Cell Biol , vol.16 , pp. 395-397
    • Johansen, T.1    Lamark, T.2
  • 44
    • 84934449988 scopus 로고    scopus 로고
    • Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
    • 44 Mochida, K., Oikawa, Y., Kimura, Y., et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522 (2015), 359–362.
    • (2015) Nature , vol.522 , pp. 359-362
    • Mochida, K.1    Oikawa, Y.2    Kimura, Y.3
  • 45
    • 84934449989 scopus 로고    scopus 로고
    • Regulation of endoplasmic reticulum turnover by selective autophagy
    • 45 Khaminets, A., Heinrich, T., Mari, M., et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522 (2015), 354–358.
    • (2015) Nature , vol.522 , pp. 354-358
    • Khaminets, A.1    Heinrich, T.2    Mari, M.3
  • 46
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-dependent and independent signals in selective autophagy
    • 46 Khaminets, A., Behl, C., Dikic, I., Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26 (2016), 6–16.
    • (2016) Trends Cell Biol , vol.26 , pp. 6-16
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 47
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • 47 Stolz, A., Ernst, A., Dikic, I., Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16 (2014), 495–501.
    • (2014) Nat Cell Biol , vol.16 , pp. 495-501
    • Stolz, A.1    Ernst, A.2    Dikic, I.3
  • 48
    • 84922776083 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy in mammalian cells
    • 48 Eiyama, A., Okamoto, K., PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33 (2015), 95–101.
    • (2015) Curr Opin Cell Biol , vol.33 , pp. 95-101
    • Eiyama, A.1    Okamoto, K.2
  • 49
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • 49 Lazarou, M., Sliter, D.A., Kane, L.A., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1    Sliter, D.A.2    Kane, L.A.3
  • 50
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • 50 Klionsky, D.J., Abdalla, F.C., Abeliovich, H., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8 (2012), 445–544.
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1    Abdalla, F.C.2    Abeliovich, H.3
  • 51
    • 4344712684 scopus 로고    scopus 로고
    • Methods for monitoring autophagy
    • 51 Mizushima, N., Methods for monitoring autophagy. Int J Biochem Cell Biol 36 (2004), 2491–2502.
    • (2004) Int J Biochem Cell Biol , vol.36 , pp. 2491-2502
    • Mizushima, N.1
  • 52
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • 52 Mizushima, N., The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22 (2010), 132–139.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 53
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • 53 Mizushima, N., Levine, B., Autophagy in mammalian development and differentiation. Nat Cell Biol 12 (2010), 823–830.
    • (2010) Nat Cell Biol , vol.12 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 54
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • 54 Mizushima, N., Yoshimori, T., Levine, B., Methods in mammalian autophagy research. Cell 140 (2010), 313–326.
    • (2010) Cell , vol.140 , pp. 313-326
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 55
    • 59349105233 scopus 로고    scopus 로고
    • Monitoring autophagy in mammalian cultured cells through the dynamics of LC3
    • 55 Kimura, S., Fujita, N., Noda, T., et al. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 452 (2009), 1–12.
    • (2009) Methods Enzymol , vol.452 , pp. 1-12
    • Kimura, S.1    Fujita, N.2    Noda, T.3
  • 56
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • 56 Mizushima, N., Yamamoto, A., Matsui, M., et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15 (2004), 1101–1111.
    • (2004) Mol Biol Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1    Yamamoto, A.2    Matsui, M.3
  • 57
    • 85013763791 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
    • 57 Klionsky, D.J., Abdelmohsen, K., Abe, A., et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12 (2016), 1–222.
    • (2016) Autophagy , vol.12 , pp. 1-222
    • Klionsky, D.J.1    Abdelmohsen, K.2    Abe, A.3
  • 58
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • 58 Hosokawa, N., Hara, T., Kaizuka, T., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20 (2009), 1981–1991.
    • (2009) Mol Biol Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3
  • 59
    • 34250891313 scopus 로고    scopus 로고
    • AMP-activated protein kinase: a universal regulator of autophagy?
    • 59 Hoyer-Hansen, M., Jaattela, M., AMP-activated protein kinase: a universal regulator of autophagy?. Autophagy 3 (2007), 381–383.
    • (2007) Autophagy , vol.3 , pp. 381-383
    • Hoyer-Hansen, M.1    Jaattela, M.2
  • 60
    • 84866061320 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
    • 60 Mack, H.I., Zheng, B., Asara, J.M., et al. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8 (2012), 1197–1214.
    • (2012) Autophagy , vol.8 , pp. 1197-1214
    • Mack, H.I.1    Zheng, B.2    Asara, J.M.3
  • 61
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • 61 Lee, I.H., Cao, L., Mostoslavsky, R., et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105 (2008), 3374–3379.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 62
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • 62 Kim, J., Kundu, M., Viollet, B., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13 (2011), 132–141.
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3
  • 63
    • 77951237303 scopus 로고    scopus 로고
    • The Beclin 1 interactome
    • 63 He, C., Levine, B., The Beclin 1 interactome. Curr Opin Cell Biol 22 (2010), 140–149.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 140-149
    • He, C.1    Levine, B.2
  • 64
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • 64 Axe, E.L., Walker, S.A., Manifava, M., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182 (2008), 685–701.
    • (2008) J Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3
  • 65
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • 65 Polson, H.E., de Lartigue, J., Rigden, D.J., et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6 (2010), 506–522.
    • (2010) Autophagy , vol.6 , pp. 506-522
    • Polson, H.E.1    de Lartigue, J.2    Rigden, D.J.3
  • 66
    • 84901304111 scopus 로고    scopus 로고
    • NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity
    • 66 Lu, J., He, L., Behrends, C., et al. NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. Nat Commun, 5, 2014, 3920.
    • (2014) Nat Commun , vol.5 , pp. 3920
    • Lu, J.1    He, L.2    Behrends, C.3
  • 67
    • 58149290220 scopus 로고    scopus 로고
    • An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
    • 67 Fujita, N., Hayashi-Nishino, M., Fukumoto, H., et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19 (2008), 4651–4659.
    • (2008) Mol Biol Cell , vol.19 , pp. 4651-4659
    • Fujita, N.1    Hayashi-Nishino, M.2    Fukumoto, H.3
  • 68
    • 77950501014 scopus 로고    scopus 로고
    • mTOR regulation of autophagy
    • 68 Jung, C.H., Ro, S.H., Cao, J., et al. mTOR regulation of autophagy. FEBS Lett 584 (2010), 1287–1295.
    • (2010) FEBS Lett , vol.584 , pp. 1287-1295
    • Jung, C.H.1    Ro, S.H.2    Cao, J.3
  • 69
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • 69 Ganley, I.G., Lam du, H., Wang, J., et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284 (2009), 12297–12305.
    • (2009) J Biol Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    Lam du, H.2    Wang, J.3
  • 70
    • 79951674629 scopus 로고    scopus 로고
    • mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression
    • 70 Huber, T.B., Walz, G., Kuehn, E.W., mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int 79 (2011), 502–511.
    • (2011) Kidney Int , vol.79 , pp. 502-511
    • Huber, T.B.1    Walz, G.2    Kuehn, E.W.3
  • 71
    • 79957881425 scopus 로고    scopus 로고
    • Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
    • 71 Godel, M., Hartleben, B., Herbach, N., et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121 (2011), 2197–2209.
    • (2011) J Clin Invest , vol.121 , pp. 2197-2209
    • Godel, M.1    Hartleben, B.2    Herbach, N.3
  • 72
    • 79957927211 scopus 로고    scopus 로고
    • mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice
    • 72 Inoki, K., Mori, H., Wang, J., et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121 (2011), 2181–2196.
    • (2011) J Clin Invest , vol.121 , pp. 2181-2196
    • Inoki, K.1    Mori, H.2    Wang, J.3
  • 73
    • 79251592842 scopus 로고    scopus 로고
    • Cell biology. Why starving cells eat themselves
    • 73 Hardie, D.G., Cell biology. Why starving cells eat themselves. Science 331 (2011), 410–411.
    • (2011) Science , vol.331 , pp. 410-411
    • Hardie, D.G.1
  • 74
    • 33745815985 scopus 로고    scopus 로고
    • AMP-activated protein kinase signaling in metabolic regulation
    • 74 Long, Y.C., Zierath, J.R., AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116 (2006), 1776–1783.
    • (2006) J Clin Invest , vol.116 , pp. 1776-1783
    • Long, Y.C.1    Zierath, J.R.2
  • 75
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
    • 75 Shackelford, D.B., Shaw, R.J., The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9 (2009), 563–575.
    • (2009) Nat Rev Cancer , vol.9 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 76
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • 76 Inoki, K., Li, Y., Zhu, T., et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4 (2002), 648–657.
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3
  • 77
    • 84862952042 scopus 로고    scopus 로고
    • The role of autophagy in unilateral ureteral obstruction rat model
    • 77 Kim, W.Y., Nam, S.A., Song, H.C., et al. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology 17 (2012), 148–159.
    • (2012) Nephrology , vol.17 , pp. 148-159
    • Kim, W.Y.1    Nam, S.A.2    Song, H.C.3
  • 78
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • 78 Inoki, K., Li, Y., Xu, T., et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17 (2003), 1829–1834.
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3
  • 79
    • 84856800302 scopus 로고    scopus 로고
    • Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks
    • 79 Alers, S., Loffler, A.S., Wesselborg, S., et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32 (2012), 2–11.
    • (2012) Mol Cell Biol , vol.32 , pp. 2-11
    • Alers, S.1    Loffler, A.S.2    Wesselborg, S.3
  • 80
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • 80 Inoki, K., Ouyang, H., Zhu, T., et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126 (2006), 955–968.
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1    Ouyang, H.2    Zhu, T.3
  • 81
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • 81 Gwinn, D.M., Shackelford, D.B., Egan, D.F., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30 (2008), 214–226.
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 82
    • 84882935541 scopus 로고    scopus 로고
    • Sirtuins’ modulation of autophagy
    • 82 Ng, F., Tang, B.L., Sirtuins’ modulation of autophagy. J Cell Physiol 228 (2013), 2262–2270.
    • (2013) J Cell Physiol , vol.228 , pp. 2262-2270
    • Ng, F.1    Tang, B.L.2
  • 83
    • 84884172785 scopus 로고    scopus 로고
    • The emerging links between sirtuins and autophagy
    • 83 Lee, I.H., Yun, J., Finkel, T., The emerging links between sirtuins and autophagy. Methods Mol Biol 1077 (2013), 259–271.
    • (2013) Methods Mol Biol , vol.1077 , pp. 259-271
    • Lee, I.H.1    Yun, J.2    Finkel, T.3
  • 84
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: insights into their biological function
    • 84 Michan, S., Sinclair, D., Sirtuins in mammals: insights into their biological function. Biochem J 404 (2007), 1–13.
    • (2007) Biochem J , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 85
    • 34548289502 scopus 로고    scopus 로고
    • Dynamic FoxO transcription factors
    • 85 Huang, H., Tindall, D.J., Dynamic FoxO transcription factors. J Cell Science 120 (2007), 2479–2487.
    • (2007) J Cell Science , vol.120 , pp. 2479-2487
    • Huang, H.1    Tindall, D.J.2
  • 86
    • 80052968080 scopus 로고    scopus 로고
    • Regulation of FoxO transcription factors by acetylation and protein–protein interactions
    • 86 Daitoku, H., Sakamaki, J., Fukamizu, A., Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim Biophys Acta 1813 (2011), 1954–1960.
    • (2011) Biochim Biophys Acta , vol.1813 , pp. 1954-1960
    • Daitoku, H.1    Sakamaki, J.2    Fukamizu, A.3
  • 87
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • 87 Kroemer, G., Marino, G., Levine, B., Autophagy and the integrated stress response. Mol Cell 40 (2010), 280–293.
    • (2010) Mol Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 88
    • 77951165669 scopus 로고    scopus 로고
    • Sirt1 activation protects the mouse renal medulla from oxidative injury
    • 88 He, W., Wang, Y., Zhang, M.Z., et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 120 (2010), 1056–1068.
    • (2010) J Clin Invest , vol.120 , pp. 1056-1068
    • He, W.1    Wang, Y.2    Zhang, M.Z.3
  • 89
    • 77951223830 scopus 로고    scopus 로고
    • Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function
    • 89 Hasegawa, K., Wakino, S., Yoshioka, K., et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 285 (2010), 13045–13056.
    • (2010) J Biol Chem , vol.285 , pp. 13045-13056
    • Hasegawa, K.1    Wakino, S.2    Yoshioka, K.3
  • 90
    • 84887415137 scopus 로고    scopus 로고
    • Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes
    • 90 Hasegawa, K., Wakino, S., Simic, P., et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19 (2013), 1496–1504.
    • (2013) Nat Med , vol.19 , pp. 1496-1504
    • Hasegawa, K.1    Wakino, S.2    Simic, P.3
  • 91
    • 48849086013 scopus 로고    scopus 로고
    • Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy
    • 91 Tikoo, K., Singh, K., Kabra, D., et al. Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic Res 42 (2008), 397–404.
    • (2008) Free Radic Res , vol.42 , pp. 397-404
    • Tikoo, K.1    Singh, K.2    Kabra, D.3
  • 92
    • 79551601710 scopus 로고    scopus 로고
    • Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway
    • 92 Kitada, M., Kume, S., Imaizumi, N., et al. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60 (2011), 634–643.
    • (2011) Diabetes , vol.60 , pp. 634-643
    • Kitada, M.1    Kume, S.2    Imaizumi, N.3
  • 93
    • 81555225308 scopus 로고    scopus 로고
    • Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes
    • 93 Kitada, M., Takeda, A., Nagai, T., et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res, 2011, 2011, 908185.
    • (2011) Exp Diabetes Res , vol.2011 , pp. 908185
    • Kitada, M.1    Takeda, A.2    Nagai, T.3
  • 94
    • 77953506544 scopus 로고    scopus 로고
    • Regulation of autophagy by p38alpha MAPK
    • 94 Webber, J.L., Regulation of autophagy by p38alpha MAPK. Autophagy 6 (2010), 292–293.
    • (2010) Autophagy , vol.6 , pp. 292-293
    • Webber, J.L.1
  • 95
    • 57649221592 scopus 로고    scopus 로고
    • Hypoxic reactive oxygen species regulate the integrated stress response and cell survival
    • 95 Liu, L., Wise, D.R., Diehl, J.A., et al. Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 283 (2008), 31153–31162.
    • (2008) J Biol Chem , vol.283 , pp. 31153-31162
    • Liu, L.1    Wise, D.R.2    Diehl, J.A.3
  • 96
    • 84964260843 scopus 로고    scopus 로고
    • ER stress: autophagy induction, inhibition and selection
    • 96 Rashid, H.O., Yadav, R.K., Kim, H.R., et al. ER stress: autophagy induction, inhibition and selection. Autophagy 11 (2015), 1956–1977.
    • (2015) Autophagy , vol.11 , pp. 1956-1977
    • Rashid, H.O.1    Yadav, R.K.2    Kim, H.R.3
  • 97
    • 33748329385 scopus 로고    scopus 로고
    • Role of hypoxia in the pathogenesis of renal disease
    • 97 Eckardt, K.U., Bernhardt, W.M., Weidemann, A., et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl, 2005, S46–S51.
    • (2005) Kidney Int Suppl , pp. S46-S51
    • Eckardt, K.U.1    Bernhardt, W.M.2    Weidemann, A.3
  • 98
    • 77951228508 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy: cell death or cell survival?
    • 98 Mazure, N.M., Pouyssegur, J., Hypoxia-induced autophagy: cell death or cell survival?. Curr Opin Cell Biol 22 (2010), 177–180.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 177-180
    • Mazure, N.M.1    Pouyssegur, J.2
  • 99
    • 0034255036 scopus 로고    scopus 로고
    • Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia
    • 99 Bruick, R.K., Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 97 (2000), 9082–9087.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 9082-9087
    • Bruick, R.K.1
  • 100
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • 100 Zhang, H., Bosch-Marce, M., Shimoda, L.A., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283 (2008), 10892–10903.
    • (2008) J Biol Chem , vol.283 , pp. 10892-10903
    • Zhang, H.1    Bosch-Marce, M.2    Shimoda, L.A.3
  • 101
    • 66349121718 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
    • 101 Bellot, G., Garcia-Medina, R., Gounon, P., et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29 (2009), 2570–2581.
    • (2009) Mol Cell Biol , vol.29 , pp. 2570-2581
    • Bellot, G.1    Garcia-Medina, R.2    Gounon, P.3
  • 102
    • 62849105988 scopus 로고    scopus 로고
    • The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death
    • 102 Burton, T.R., Gibson, S.B., The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16 (2009), 515–523.
    • (2009) Cell Death Differ , vol.16 , pp. 515-523
    • Burton, T.R.1    Gibson, S.B.2
  • 103
    • 84865093374 scopus 로고    scopus 로고
    • Bnip3 and AIF cooperate to induce apoptosis and cavitation during epithelial morphogenesis
    • 103 Qi, Y., Tian, X., Liu, J., et al. Bnip3 and AIF cooperate to induce apoptosis and cavitation during epithelial morphogenesis. J Cell Biol 198 (2012), 103–114.
    • (2012) J Cell Biol , vol.198 , pp. 103-114
    • Qi, Y.1    Tian, X.2    Liu, J.3
  • 104
    • 84866530606 scopus 로고    scopus 로고
    • Autophagy is impaired in cardiac ischemia-reperfusion injury
    • 104 Ma, X., Liu, H., Foyil, S.R., et al. Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy 8 (2012), 1394–1396.
    • (2012) Autophagy , vol.8 , pp. 1394-1396
    • Ma, X.1    Liu, H.2    Foyil, S.R.3
  • 105
    • 78650890352 scopus 로고    scopus 로고
    • Regulation of autophagy by ROS: physiology and pathology
    • 105 Scherz-Shouval, R., Elazar, Z., Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36 (2011), 30–38.
    • (2011) Trends Biochem Sci , vol.36 , pp. 30-38
    • Scherz-Shouval, R.1    Elazar, Z.2
  • 106
    • 25144457455 scopus 로고    scopus 로고
    • Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
    • 106 Pattingre, S., Tassa, A., Qu, X., et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122 (2005), 927–939.
    • (2005) Cell , vol.122 , pp. 927-939
    • Pattingre, S.1    Tassa, A.2    Qu, X.3
  • 107
    • 76349098949 scopus 로고    scopus 로고
    • Crosstalk between apoptosis and autophagy within the Beclin 1 interactome
    • 107 Maiuri, M.C., Criollo, A., Kroemer, G., Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J 29 (2010), 515–516.
    • (2010) EMBO J , vol.29 , pp. 515-516
    • Maiuri, M.C.1    Criollo, A.2    Kroemer, G.3
  • 108
    • 80052714034 scopus 로고    scopus 로고
    • BH3 mimetics activate multiple pro-autophagic pathways
    • 108 Malik, S.A., Orhon, I., Morselli, E., et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30 (2011), 3918–3929.
    • (2011) Oncogene , vol.30 , pp. 3918-3929
    • Malik, S.A.1    Orhon, I.2    Morselli, E.3
  • 109
    • 37248999267 scopus 로고    scopus 로고
    • Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb
    • 109 Li, Y., Wang, Y., Kim, E., et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282 (2007), 35803–35813.
    • (2007) J Biol Chem , vol.282 , pp. 35803-35813
    • Li, Y.1    Wang, Y.2    Kim, E.3
  • 110
    • 38349056675 scopus 로고    scopus 로고
    • Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
    • 110 DeYoung, M.P., Horak, P., Sofer, A., et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22 (2008), 239–251.
    • (2008) Genes Dev , vol.22 , pp. 239-251
    • DeYoung, M.P.1    Horak, P.2    Sofer, A.3
  • 111
    • 84859999866 scopus 로고    scopus 로고
    • mTOR signaling pathway and mTOR inhibitors in cancer therapy
    • vii
    • 111 Gomez-Pinillos, A., Ferrari, A.C., mTOR signaling pathway and mTOR inhibitors in cancer therapy. Hematol Oncol Clin North Am 26 (2012), 483–505 vii.
    • (2012) Hematol Oncol Clin North Am , vol.26 , pp. 483-505
    • Gomez-Pinillos, A.1    Ferrari, A.C.2
  • 112
    • 79955389182 scopus 로고    scopus 로고
    • Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia
    • 112 Wolff, N.C., Vega-Rubin-de-Celis, S., Xie, X.J., et al. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol Cell Biol 31 (2011), 1870–1884.
    • (2011) Mol Cell Biol , vol.31 , pp. 1870-1884
    • Wolff, N.C.1    Vega-Rubin-de-Celis, S.2    Xie, X.J.3
  • 113
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • 113 Kuma, A., Hatano, M., Matsui, M., et al. The role of autophagy during the early neonatal starvation period. Nature 432 (2004), 1032–1036.
    • (2004) Nature , vol.432 , pp. 1032-1036
    • Kuma, A.1    Hatano, M.2    Matsui, M.3
  • 114
    • 57549094368 scopus 로고    scopus 로고
    • The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice
    • 114 Sou, Y.S., Waguri, S., Iwata, J., et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19 (2008), 4762–4775.
    • (2008) Mol Biol Cell , vol.19 , pp. 4762-4775
    • Sou, Y.S.1    Waguri, S.2    Iwata, J.3
  • 115
    • 33645652024 scopus 로고    scopus 로고
    • Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16
    • 115 Sou, Y.S., Tanida, I., Komatsu, M., et al. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 281 (2006), 3017–3024.
    • (2006) J Biol Chem , vol.281 , pp. 3017-3024
    • Sou, Y.S.1    Tanida, I.2    Komatsu, M.3
  • 116
    • 73949083594 scopus 로고    scopus 로고
    • Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
    • 116 Saitoh, T., Fujita, N., Hayashi, T., et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106 (2009), 20842–20846.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 20842-20846
    • Saitoh, T.1    Fujita, N.2    Hayashi, T.3
  • 117
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • 117 Saitoh, T., Fujita, N., Jang, M.H., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456 (2008), 264–268.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3
  • 118
    • 9144240441 scopus 로고    scopus 로고
    • Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
    • 118 Qu, X., Yu, J., Bhagat, G., et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112 (2003), 1809–1820.
    • (2003) J Clin Invest , vol.112 , pp. 1809-1820
    • Qu, X.1    Yu, J.2    Bhagat, G.3
  • 119
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • 119 Yue, Z., Jin, S., Yang, C., et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100 (2003), 15077–15082.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 15077-15082
    • Yue, Z.1    Jin, S.2    Yang, C.3
  • 120
    • 33749562122 scopus 로고    scopus 로고
    • Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways
    • 120 Gan, B., Peng, X., Nagy, T., et al. Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways. J Cell Biol 175 (2006), 121–133.
    • (2006) J Cell Biol , vol.175 , pp. 121-133
    • Gan, B.1    Peng, X.2    Nagy, T.3
  • 121
    • 34347344990 scopus 로고    scopus 로고
    • Ambra1 regulates autophagy and development of the nervous system
    • 121 Fimia, G.M., Stoykova, A., Romagnoli, A., et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447 (2007), 1121–1125.
    • (2007) Nature , vol.447 , pp. 1121-1125
    • Fimia, G.M.1    Stoykova, A.2    Romagnoli, A.3
  • 122
    • 51649124519 scopus 로고    scopus 로고
    • Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
    • 122 Kundu, M., Lindsten, T., Yang, C.Y., et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112 (2008), 1493–1502.
    • (2008) Blood , vol.112 , pp. 1493-1502
    • Kundu, M.1    Lindsten, T.2    Yang, C.Y.3
  • 123
    • 34547132328 scopus 로고    scopus 로고
    • Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3
    • 123 Marino, G., Salvador-Montoliu, N., Fueyo, A., et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282 (2007), 18573–18583.
    • (2007) J Biol Chem , vol.282 , pp. 18573-18583
    • Marino, G.1    Salvador-Montoliu, N.2    Fueyo, A.3
  • 124
    • 38149098485 scopus 로고    scopus 로고
    • Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice
    • 124 Cann, G.M., Guignabert, C., Ying, L., et al. Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dynam 237 (2008), 187–195.
    • (2008) Dev Dynam , vol.237 , pp. 187-195
    • Cann, G.M.1    Guignabert, C.2    Ying, L.3
  • 125
    • 66049134589 scopus 로고    scopus 로고
    • GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes
    • 125 Reining, S.C., Gisler, S.M., Fuster, D., et al. GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes. Am J Physiol Renal Physiol 296 (2009), F1118–F1128.
    • (2009) Am J Physiol Renal Physiol , vol.296 , pp. F1118-F1128
    • Reining, S.C.1    Gisler, S.M.2    Fuster, D.3
  • 126
    • 28744440846 scopus 로고    scopus 로고
    • GABARAP is not essential for GABA receptor targeting to the synapse
    • 126 O'Sullivan, G.A., Kneussel, M., Elazar, Z., et al. GABARAP is not essential for GABA receptor targeting to the synapse. Eur J Neurosci 22 (2005), 2644–2648.
    • (2005) Eur J Neurosci , vol.22 , pp. 2644-2648
    • O'Sullivan, G.A.1    Kneussel, M.2    Elazar, Z.3
  • 127
    • 84893494111 scopus 로고    scopus 로고
    • New autophagy reporter mice reveal dynamics of proximal tubular autophagy
    • 127 Li, L., Wang, Z.V., Hill, J.A., et al. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J Am Soc Nephrol 25 (2014), 305–315.
    • (2014) J Am Soc Nephrol , vol.25 , pp. 305-315
    • Li, L.1    Wang, Z.V.2    Hill, J.A.3
  • 128
    • 84863230126 scopus 로고    scopus 로고
    • Inhibition of MTOR disrupts autophagic flux in podocytes
    • 128 Cina, D.P., Onay, T., Paltoo, A., et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol 23 (2012), 412–420.
    • (2012) J Am Soc Nephrol , vol.23 , pp. 412-420
    • Cina, D.P.1    Onay, T.2    Paltoo, A.3
  • 129
    • 84903957218 scopus 로고    scopus 로고
    • mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress
    • 129 Grahammer, F., Haenisch, N., Steinhardt, F., et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc Natl Acad Sci U S A 111 (2014), E2817–E2826.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E2817-E2826
    • Grahammer, F.1    Haenisch, N.2    Steinhardt, F.3
  • 130
    • 84903133687 scopus 로고    scopus 로고
    • Role of transcription factor acetylation in diabetic kidney disease
    • 130 Liu, R., Zhong, Y., Li, X., et al. Role of transcription factor acetylation in diabetic kidney disease. Diabetes 63 (2014), 2440–2453.
    • (2014) Diabetes , vol.63 , pp. 2440-2453
    • Liu, R.1    Zhong, Y.2    Li, X.3
  • 131
    • 84938920094 scopus 로고    scopus 로고
    • Sirtuin1 maintains actin cytoskeleton by deacetylation of cortactin in injured podocytes
    • 131 Motonishi, S., Nangaku, M., Wada, T., et al. Sirtuin1 maintains actin cytoskeleton by deacetylation of cortactin in injured podocytes. J Am Soc Nephrol 26 (2015), 1939–1959.
    • (2015) J Am Soc Nephrol , vol.26 , pp. 1939-1959
    • Motonishi, S.1    Nangaku, M.2    Wada, T.3
  • 132
    • 38949151661 scopus 로고    scopus 로고
    • Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy
    • 132 Ziyadeh, F.N., Wolf, G., Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4 (2008), 39–45.
    • (2008) Curr Diabetes Rev , vol.4 , pp. 39-45
    • Ziyadeh, F.N.1    Wolf, G.2
  • 133
    • 0036223537 scopus 로고    scopus 로고
    • Podocytopenia and disease severity in IgA nephropathy
    • 133 Lemley, K.V., Lafayette, R.A., Safai, M., et al. Podocytopenia and disease severity in IgA nephropathy. Kidney Int 61 (2002), 1475–1485.
    • (2002) Kidney Int , vol.61 , pp. 1475-1485
    • Lemley, K.V.1    Lafayette, R.A.2    Safai, M.3
  • 134
    • 34250006557 scopus 로고    scopus 로고
    • The spectrum of podocytopathies: a unifying view of glomerular diseases
    • 134 Wiggins, R.C., The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71 (2007), 1205–1214.
    • (2007) Kidney Int , vol.71 , pp. 1205-1214
    • Wiggins, R.C.1
  • 135
    • 84885190022 scopus 로고    scopus 로고
    • Podocyte energy metabolism and glomerular diseases
    • 135 Imasawa, T., Rossignol, R., Podocyte energy metabolism and glomerular diseases. Int J Biochem Cell Biol 45 (2013), 2109–2118.
    • (2013) Int J Biochem Cell Biol , vol.45 , pp. 2109-2118
    • Imasawa, T.1    Rossignol, R.2
  • 136
    • 84859628352 scopus 로고    scopus 로고
    • The glomerular endothelium: new insights on function and structure
    • 136 Haraldsson, B., Nystrom, J., The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens 21 (2012), 258–263.
    • (2012) Curr Opin Nephrol Hypertens , vol.21 , pp. 258-263
    • Haraldsson, B.1    Nystrom, J.2
  • 137
    • 84879695583 scopus 로고    scopus 로고
    • The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease
    • 137 Cybulsky, A.V., The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int 84 (2013), 25–33.
    • (2013) Kidney Int , vol.84 , pp. 25-33
    • Cybulsky, A.V.1
  • 138
    • 23644441147 scopus 로고    scopus 로고
    • Stress proteins in glomerular epithelial cell injury
    • 138 Bijian, K., Cybulsky, A.V., Stress proteins in glomerular epithelial cell injury. Contrib Nephrol 148 (2005), 8–20.
    • (2005) Contrib Nephrol , vol.148 , pp. 8-20
    • Bijian, K.1    Cybulsky, A.V.2
  • 139
    • 84895931259 scopus 로고    scopus 로고
    • Aging and chronic kidney disease
    • 139 Nitta, K., Okada, K., Yanai, M., et al. Aging and chronic kidney disease. Kidney Blood Press Res 38 (2013), 109–120.
    • (2013) Kidney Blood Press Res , vol.38 , pp. 109-120
    • Nitta, K.1    Okada, K.2    Yanai, M.3
  • 140
    • 84895810719 scopus 로고    scopus 로고
    • The aging kidney revisited: a systematic review
    • 140 Bolignano, D., Mattace-Raso, F., Sijbrands, E.J., et al. The aging kidney revisited: a systematic review. Ageing Res Rev 14 (2014), 65–80.
    • (2014) Ageing Res Rev , vol.14 , pp. 65-80
    • Bolignano, D.1    Mattace-Raso, F.2    Sijbrands, E.J.3
  • 141
    • 77951169411 scopus 로고    scopus 로고
    • Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
    • 141 Hartleben, B., Godel, M., Meyer-Schwesinger, C., et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120 (2010), 1084–1096.
    • (2010) J Clin Invest , vol.120 , pp. 1084-1096
    • Hartleben, B.1    Godel, M.2    Meyer-Schwesinger, C.3
  • 142
    • 84877097595 scopus 로고    scopus 로고
    • Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis
    • 142 Bechtel, W., Helmstadter, M., Balica, J., et al. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J Am Soc Nephrol 24 (2013), 727–743.
    • (2013) J Am Soc Nephrol , vol.24 , pp. 727-743
    • Bechtel, W.1    Helmstadter, M.2    Balica, J.3
  • 143
    • 84880909187 scopus 로고    scopus 로고
    • The class III phosphatidylinositol 3-kinase PIK3C3/VPS34 regulates endocytosis and autophagosome-autolysosome formation in podocytes
    • 143 Bechtel, W., Helmstadter, M., Balica, J., et al. The class III phosphatidylinositol 3-kinase PIK3C3/VPS34 regulates endocytosis and autophagosome-autolysosome formation in podocytes. Autophagy 9 (2013), 1097–1099.
    • (2013) Autophagy , vol.9 , pp. 1097-1099
    • Bechtel, W.1    Helmstadter, M.2    Balica, J.3
  • 144
    • 84873380313 scopus 로고    scopus 로고
    • mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking
    • 144 Chen, J., Chen, M.X., Fogo, A.B., et al. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 24 (2013), 198–207.
    • (2013) J Am Soc Nephrol , vol.24 , pp. 198-207
    • Chen, J.1    Chen, M.X.2    Fogo, A.B.3
  • 145
    • 84896029354 scopus 로고    scopus 로고
    • Autophagy inhibition induces podocyte apoptosis by activating the pro-apoptotic pathway of endoplasmic reticulum stress
    • 145 Fang, L., Li, X., Luo, Y., et al. Autophagy inhibition induces podocyte apoptosis by activating the pro-apoptotic pathway of endoplasmic reticulum stress. Exp Cell Res 322 (2014), 290–301.
    • (2014) Exp Cell Res , vol.322 , pp. 290-301
    • Fang, L.1    Li, X.2    Luo, Y.3
  • 146
    • 42149106794 scopus 로고    scopus 로고
    • The spectrum of focal segmental glomerulosclerosis: new insights
    • 146 D'Agati, V.D., The spectrum of focal segmental glomerulosclerosis: new insights. Curr Opin Nephrol Hypertens 17 (2008), 271–281.
    • (2008) Curr Opin Nephrol Hypertens , vol.17 , pp. 271-281
    • D'Agati, V.D.1
  • 147
    • 84892436168 scopus 로고    scopus 로고
    • The cytoprotective role of autophagy in puromycin aminonucleoside treated human podocytes
    • 147 Kang, Y.L., Saleem, M.A., Chan, K.W., et al. The cytoprotective role of autophagy in puromycin aminonucleoside treated human podocytes. Biochem Biophys Res Commun 443 (2014), 628–634.
    • (2014) Biochem Biophys Res Commun , vol.443 , pp. 628-634
    • Kang, Y.L.1    Saleem, M.A.2    Chan, K.W.3
  • 148
    • 0038718698 scopus 로고    scopus 로고
    • MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis
    • 148 Asanuma, K., Tanida, I., Shirato, I., et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17 (2003), 1165–1167.
    • (2003) FASEB J , vol.17 , pp. 1165-1167
    • Asanuma, K.1    Tanida, I.2    Shirato, I.3
  • 149
    • 84907952998 scopus 로고    scopus 로고
    • Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies
    • 149 Zeng, C., Fan, Y., Wu, J., et al. Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. J Pathol 234 (2014), 203–213.
    • (2014) J Pathol , vol.234 , pp. 203-213
    • Zeng, C.1    Fan, Y.2    Wu, J.3
  • 150
    • 84929311516 scopus 로고    scopus 로고
    • Deficient autophagy results in mitochondrial dysfunction and FSGS
    • 150 Kawakami, T., Gomez, I.G., Ren, S., et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol 26 (2015), 1040–1052.
    • (2015) J Am Soc Nephrol , vol.26 , pp. 1040-1052
    • Kawakami, T.1    Gomez, I.G.2    Ren, S.3
  • 151
    • 84912050143 scopus 로고    scopus 로고
    • Trehalose, an mTOR independent autophagy inducer, alleviates human podocyte injury after puromycin aminonucleoside treatment
    • e113520
    • 151 Kang, Y.L., Saleem, M.A., Chan, K.W., et al. Trehalose, an mTOR independent autophagy inducer, alleviates human podocyte injury after puromycin aminonucleoside treatment. PloS One, 9, 2014 e113520.
    • (2014) PloS One , vol.9
    • Kang, Y.L.1    Saleem, M.A.2    Chan, K.W.3
  • 152
    • 84877253052 scopus 로고    scopus 로고
    • Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury
    • e63799
    • 152 Wu, L., Feng, Z., Cui, S., et al. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PloS One, 8, 2013 e63799.
    • (2013) PloS One , vol.8
    • Wu, L.1    Feng, Z.2    Cui, S.3
  • 153
    • 84943789693 scopus 로고    scopus 로고
    • B cell autophagy mediates TLR7-dependent autoimmunity and inflammation
    • 153 Weindel, C.G., Richey, L.J., Bolland, S., et al. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11 (2015), 1010–1024.
    • (2015) Autophagy , vol.11 , pp. 1010-1024
    • Weindel, C.G.1    Richey, L.J.2    Bolland, S.3
  • 154
    • 84940558815 scopus 로고    scopus 로고
    • The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity
    • 154 Ravishankar, B., Liu, H., Shinde, R., et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc Natl Acad Sci U S A 112 (2015), 10774–10779.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 10774-10779
    • Ravishankar, B.1    Liu, H.2    Shinde, R.3
  • 155
    • 84931327276 scopus 로고    scopus 로고
    • Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy
    • 155 Chaudhary, K., Shinde, R., Liu, H., et al. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy. J Immunol 194 (2015), 5713–5724.
    • (2015) J Immunol , vol.194 , pp. 5713-5724
    • Chaudhary, K.1    Shinde, R.2    Liu, H.3
  • 156
    • 0034608948 scopus 로고    scopus 로고
    • Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice
    • 156 Ziyadeh, F.N., Hoffman, B.B., Han, D.C., et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 97 (2000), 8015–8020.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 8015-8020
    • Ziyadeh, F.N.1    Hoffman, B.B.2    Han, D.C.3
  • 157
    • 0347511753 scopus 로고    scopus 로고
    • Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator
    • 157 Ziyadeh, F.N., Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol 15:suppl 1 (2004), S55–S57.
    • (2004) J Am Soc Nephrol , vol.15 , pp. S55-S57
    • Ziyadeh, F.N.1
  • 158
    • 84925940808 scopus 로고    scopus 로고
    • Pathology of human diabetic nephropathy
    • 158 Najafian, B., Alpers, C.E., Fogo, A.B., Pathology of human diabetic nephropathy. Contrib Nephrol 170 (2011), 36–47.
    • (2011) Contrib Nephrol , vol.170 , pp. 36-47
    • Najafian, B.1    Alpers, C.E.2    Fogo, A.B.3
  • 160
    • 37349120735 scopus 로고    scopus 로고
    • The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy?
    • 160 Reddy, G.R., Kotlyarevska, K., Ransom, R.F., et al. The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy?. Curr Opin Nephrol Hypertens 17 (2008), 32–36.
    • (2008) Curr Opin Nephrol Hypertens , vol.17 , pp. 32-36
    • Reddy, G.R.1    Kotlyarevska, K.2    Ransom, R.F.3
  • 161
    • 84893384754 scopus 로고    scopus 로고
    • Autophagy: emerging therapeutic target for diabetic nephropathy
    • 161 Kume, S., Yamahara, K., Yasuda, M., et al. Autophagy: emerging therapeutic target for diabetic nephropathy. Semin Nephrol 34 (2014), 9–16.
    • (2014) Semin Nephrol , vol.34 , pp. 9-16
    • Kume, S.1    Yamahara, K.2    Yasuda, M.3
  • 162
    • 84887070613 scopus 로고    scopus 로고
    • Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions
    • 162 Yamahara, K., Kume, S., Koya, D., et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol 24 (2013), 1769–1781.
    • (2013) J Am Soc Nephrol , vol.24 , pp. 1769-1781
    • Yamahara, K.1    Kume, S.2    Koya, D.3
  • 163
    • 84890549211 scopus 로고    scopus 로고
    • High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells
    • 163 Park, E.Y., Park, J.B., High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells. Int Orthop 37 (2013), 2507–2514.
    • (2013) Int Orthop , vol.37 , pp. 2507-2514
    • Park, E.Y.1    Park, J.B.2
  • 164
    • 84878956256 scopus 로고    scopus 로고
    • Low glucose promotes CD133mAb-elicited cell death via inhibition of autophagy in hepatocarcinoma cells
    • 164 Chen, H., Luo, Z., Sun, W., et al. Low glucose promotes CD133mAb-elicited cell death via inhibition of autophagy in hepatocarcinoma cells. Cancer Lett 336 (2013), 204–212.
    • (2013) Cancer Lett , vol.336 , pp. 204-212
    • Chen, H.1    Luo, Z.2    Sun, W.3
  • 165
    • 84875258906 scopus 로고    scopus 로고
    • High glucose induces autophagy in podocytes
    • 165 Ma, T., Zhu, J., Chen, X., et al. High glucose induces autophagy in podocytes. Exp Cell Res 319 (2013), 779–789.
    • (2013) Exp Cell Res , vol.319 , pp. 779-789
    • Ma, T.1    Zhu, J.2    Chen, X.3
  • 166
    • 33644783770 scopus 로고    scopus 로고
    • Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy
    • 166 Susztak, K., Raff, A.C., Schiffer, M., et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55 (2006), 225–233.
    • (2006) Diabetes , vol.55 , pp. 225-233
    • Susztak, K.1    Raff, A.C.2    Schiffer, M.3
  • 167
    • 84942250072 scopus 로고    scopus 로고
    • Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis
    • 167 Lenoir, O., Jasiek, M., Henique, C., et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11 (2015), 1130–1145.
    • (2015) Autophagy , vol.11 , pp. 1130-1145
    • Lenoir, O.1    Jasiek, M.2    Henique, C.3
  • 168
    • 84876117324 scopus 로고    scopus 로고
    • Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury
    • e60546
    • 168 Fang, L., Zhou, Y., Cao, H., et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PloS One, 8, 2013 e60546.
    • (2013) PloS One , vol.8
    • Fang, L.1    Zhou, Y.2    Cao, H.3
  • 169
    • 84901367130 scopus 로고    scopus 로고
    • Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy
    • 169 Zhang, M.Z., Wang, Y., Paueksakon, P., et al. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes 63 (2014), 2063–2072.
    • (2014) Diabetes , vol.63 , pp. 2063-2072
    • Zhang, M.Z.1    Wang, Y.2    Paueksakon, P.3
  • 170
    • 31644445070 scopus 로고    scopus 로고
    • p27(Kip1) Knockout mice are protected from diabetic nephropathy: evidence for p27(Kip1) haplotype insufficiency
    • 170 Wolf, G., Schanze, A., Stahl, R.A., et al. p27(Kip1) Knockout mice are protected from diabetic nephropathy: evidence for p27(Kip1) haplotype insufficiency. Kidney Int 68 (2005), 1583–1589.
    • (2005) Kidney Int , vol.68 , pp. 1583-1589
    • Wolf, G.1    Schanze, A.2    Stahl, R.A.3
  • 171
    • 65649120747 scopus 로고    scopus 로고
    • The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential
    • 171 Mori, H., Inoki, K., Masutani, K., et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 384 (2009), 471–475.
    • (2009) Biochem Biophys Res Commun , vol.384 , pp. 471-475
    • Mori, H.1    Inoki, K.2    Masutani, K.3
  • 172
    • 29244486472 scopus 로고    scopus 로고
    • Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice
    • 172 Sakaguchi, M., Isono, M., Isshiki, K., et al. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun 340 (2006), 296–301.
    • (2006) Biochem Biophys Res Commun , vol.340 , pp. 296-301
    • Sakaguchi, M.1    Isono, M.2    Isshiki, K.3
  • 173
    • 34748880045 scopus 로고    scopus 로고
    • Rapamycin prevents early steps of the development of diabetic nephropathy in rats
    • 173 Yang, Y., Wang, J., Qin, L., et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol 27 (2007), 495–502.
    • (2007) Am J Nephrol , vol.27 , pp. 495-502
    • Yang, Y.1    Wang, J.2    Qin, L.3
  • 174
    • 84881140001 scopus 로고    scopus 로고
    • Deconvoluting the role of reactive oxygen species and autophagy in human diseases
    • 174 Wen, X., Wu, J., Wang, F., et al. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med 65 (2013), 40–410.
    • (2013) Free Radic Biol Med , vol.65 , pp. 40-410
    • Wen, X.1    Wu, J.2    Wang, F.3
  • 175
    • 84897811327 scopus 로고    scopus 로고
    • Resveratrol prevention of diabetic nephropathy is associated with the suppression of renal inflammation and mesangial cell proliferation: possible roles of Akt/NF-kappaB pathway
    • 175 Xu, F., Wang, Y., Cui, W., et al. Resveratrol prevention of diabetic nephropathy is associated with the suppression of renal inflammation and mesangial cell proliferation: possible roles of Akt/NF-kappaB pathway. Int J Endocrinol, 2014, 2014, 289327.
    • (2014) Int J Endocrinol , vol.2014 , pp. 289327
    • Xu, F.1    Wang, Y.2    Cui, W.3
  • 176
    • 79955634116 scopus 로고    scopus 로고
    • Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling
    • 176 Palsamy, P., Subramanian, S., Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812 (2011), 719–731.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 719-731
    • Palsamy, P.1    Subramanian, S.2
  • 177
    • 79959442302 scopus 로고    scopus 로고
    • Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase
    • 177 Chang, C.C., Chang, C.Y., Wu, Y.T., et al. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci, 18, 2011, 47.
    • (2011) J Biomed Sci , vol.18 , pp. 47
    • Chang, C.C.1    Chang, C.Y.2    Wu, Y.T.3
  • 178
    • 84962429971 scopus 로고    scopus 로고
    • Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 6;65:755–767.
    • 178 Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 6;65:755–767.
    • Tagawa, A.1    Yasuda, M.2    Kume, S.3
  • 179
    • 84926183748 scopus 로고    scopus 로고
    • Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy
    • 179 Wang, X., Liu, J., Zhen, J., et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int 86 (2014), 712–725.
    • (2014) Kidney Int , vol.86 , pp. 712-725
    • Wang, X.1    Liu, J.2    Zhen, J.3
  • 180
    • 2442643788 scopus 로고    scopus 로고
    • Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus
    • 180 Sooparb, S., Price, S.R., Shaoguang, J., et al. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int 65 (2004), 2135–2144.
    • (2004) Kidney Int , vol.65 , pp. 2135-2144
    • Sooparb, S.1    Price, S.R.2    Shaoguang, J.3
  • 181
    • 84939865350 scopus 로고    scopus 로고
    • Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy
    • 181 Liu, W.J., Shen, T.T., Chen, R.H., et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J Biol Chem 290 (2015), 20499–20510.
    • (2015) J Biol Chem , vol.290 , pp. 20499-20510
    • Liu, W.J.1    Shen, T.T.2    Chen, R.H.3
  • 182
    • 0032855753 scopus 로고    scopus 로고
    • Impaired endothelium-dependent vascular responses of retinal and intrarenal arteries in patients with type 2 diabetes
    • 182 Kawagishi, T., Matsuyoshi, M., Emoto, M., et al. Impaired endothelium-dependent vascular responses of retinal and intrarenal arteries in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 19 (1999), 2509–2516.
    • (1999) Arterioscler Thromb Vasc Biol , vol.19 , pp. 2509-2516
    • Kawagishi, T.1    Matsuyoshi, M.2    Emoto, M.3
  • 183
    • 8244262048 scopus 로고    scopus 로고
    • Intrarenal hemodynamic abnormalities in diabetic nephropathy measured by duplex Doppler sonography
    • 183 Ishimura, E., Nishizawa, Y., Kawagishi, T., et al. Intrarenal hemodynamic abnormalities in diabetic nephropathy measured by duplex Doppler sonography. Kidney Int 51 (1997), 1920–1927.
    • (1997) Kidney Int , vol.51 , pp. 1920-1927
    • Ishimura, E.1    Nishizawa, Y.2    Kawagishi, T.3
  • 184
    • 84876359508 scopus 로고    scopus 로고
    • The renal endothelium in diabetic nephropathy
    • 184 Eleftheriadis, T., Antoniadi, G., Pissas, G., et al. The renal endothelium in diabetic nephropathy. Ren Fail 35 (2013), 592–599.
    • (2013) Ren Fail , vol.35 , pp. 592-599
    • Eleftheriadis, T.1    Antoniadi, G.2    Pissas, G.3
  • 185
    • 34249901258 scopus 로고    scopus 로고
    • Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy
    • 185 Lindenmeyer, M.T., Kretzler, M., Boucherot, A., et al. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J Am Soc Nephrol 18 (2007), 1765–1776.
    • (2007) J Am Soc Nephrol , vol.18 , pp. 1765-1776
    • Lindenmeyer, M.T.1    Kretzler, M.2    Boucherot, A.3
  • 186
    • 84891621483 scopus 로고    scopus 로고
    • Resveratrol attenuates diabetic nephropathy via modulating angiogenesis
    • e82336
    • 186 Wen, D., Huang, X., Zhang, M., et al. Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PloS One, 8, 2013 e82336.
    • (2013) PloS One , vol.8
    • Wen, D.1    Huang, X.2    Zhang, M.3
  • 187
    • 84897968510 scopus 로고    scopus 로고
    • Autophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cells
    • 187 Chen, F., Chen, B., Xiao, F.Q., et al. Autophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cells. Cell Physiol Biochem 33 (2014), 1058–1074.
    • (2014) Cell Physiol Biochem , vol.33 , pp. 1058-1074
    • Chen, F.1    Chen, B.2    Xiao, F.Q.3
  • 189
    • 3242811296 scopus 로고    scopus 로고
    • Acute renal failure: definitions, diagnosis, pathogenesis, and therapy
    • 189 Schrier, R.W., Wang, W., Poole, B., et al. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114 (2004), 5–14.
    • (2004) J Clin Invest , vol.114 , pp. 5-14
    • Schrier, R.W.1    Wang, W.2    Poole, B.3
  • 190
    • 84924084673 scopus 로고    scopus 로고
    • Mechanisms and biological functions of autophagy in diseased and ageing kidneys
    • 190 Fougeray, S., Pallet, N., Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat Rev Nephrol 11 (2015), 34–45.
    • (2015) Nat Rev Nephrol , vol.11 , pp. 34-45
    • Fougeray, S.1    Pallet, N.2
  • 191
    • 84927724643 scopus 로고    scopus 로고
    • Autophagy in acute kidney injury and repair
    • 191 He, L., Livingston, M.J., Dong, Z., Autophagy in acute kidney injury and repair. Nephron Clin Pract 127 (2014), 56–60.
    • (2014) Nephron Clin Pract , vol.127 , pp. 56-60
    • He, L.1    Livingston, M.J.2    Dong, Z.3
  • 192
    • 84862635122 scopus 로고    scopus 로고
    • Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
    • 192 Liu, S., Hartleben, B., Kretz, O., et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8 (2012), 826–837.
    • (2012) Autophagy , vol.8 , pp. 826-837
    • Liu, S.1    Hartleben, B.2    Kretz, O.3
  • 193
    • 84929933430 scopus 로고    scopus 로고
    • Autophagy protects renal tubular cells against ischemia / reperfusion injury in a time-dependent manner
    • 193 Guan, X., Qian, Y., Shen, Y., et al. Autophagy protects renal tubular cells against ischemia / reperfusion injury in a time-dependent manner. Cell Physiol Biochem 36 (2015), 285–298.
    • (2015) Cell Physiol Biochem , vol.36 , pp. 285-298
    • Guan, X.1    Qian, Y.2    Shen, Y.3
  • 194
    • 49749120592 scopus 로고    scopus 로고
    • Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells
    • 194 Periyasamy-Thandavan, S., Jiang, M., Wei, Q., et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74 (2008), 631–640.
    • (2008) Kidney Int , vol.74 , pp. 631-640
    • Periyasamy-Thandavan, S.1    Jiang, M.2    Wei, Q.3
  • 195
    • 44949102384 scopus 로고    scopus 로고
    • Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells
    • 195 Yang, C., Kaushal, V., Shah, S.V., et al. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 294 (2008), F777–F787.
    • (2008) Am J Physiol Renal Physiol , vol.294 , pp. F777-F787
    • Yang, C.1    Kaushal, V.2    Shah, S.V.3
  • 196
    • 77952875466 scopus 로고    scopus 로고
    • Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo
    • 196 Inoue, K., Kuwana, H., Shimamura, Y., et al. Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo. Clin Exp Nephrol 14 (2010), 112–122.
    • (2010) Clin Exp Nephrol , vol.14 , pp. 112-122
    • Inoue, K.1    Kuwana, H.2    Shimamura, Y.3
  • 197
    • 50249112541 scopus 로고    scopus 로고
    • Autophagy protects renal tubular cells against cyclosporine toxicity
    • 197 Pallet, N., Bouvier, N., Legendre, C., et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 4 (2008), 783–791.
    • (2008) Autophagy , vol.4 , pp. 783-791
    • Pallet, N.1    Bouvier, N.2    Legendre, C.3
  • 198
    • 84887471307 scopus 로고    scopus 로고
    • Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress
    • 198 Kimura, T., Takahashi, A., Takabatake, Y., et al. Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress. Autophagy 9 (2013), 1876–1886.
    • (2013) Autophagy , vol.9 , pp. 1876-1886
    • Kimura, T.1    Takahashi, A.2    Takabatake, Y.3
  • 199
    • 79955422848 scopus 로고    scopus 로고
    • Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure
    • 199 Chargui, A., Zekri, S., Jacquillet, G., et al. Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121 (2011), 31–42.
    • (2011) Toxicol Sci , vol.121 , pp. 31-42
    • Chargui, A.1    Zekri, S.2    Jacquillet, G.3
  • 200
    • 73949092319 scopus 로고    scopus 로고
    • The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation
    • 200 Kimura, A., Ishida, Y., Wada, T., et al. The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation. Am J Pathol 176 (2010), 40–50.
    • (2010) Am J Pathol , vol.176 , pp. 40-50
    • Kimura, A.1    Ishida, Y.2    Wada, T.3
  • 201
    • 84870580153 scopus 로고    scopus 로고
    • Autophagy in proximal tubules protects against acute kidney injury
    • 201 Jiang, M., Wei, Q., Dong, G., et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82 (2012), 1271–1283.
    • (2012) Kidney Int , vol.82 , pp. 1271-1283
    • Jiang, M.1    Wei, Q.2    Dong, G.3
  • 202
    • 84855996286 scopus 로고    scopus 로고
    • Autophagy guards against cisplatin-induced acute kidney injury
    • 202 Takahashi, A., Kimura, T., Takabatake, Y., et al. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 180 (2012), 517–525.
    • (2012) Am J Pathol , vol.180 , pp. 517-525
    • Takahashi, A.1    Kimura, T.2    Takabatake, Y.3
  • 203
    • 84930633722 scopus 로고    scopus 로고
    • Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury
    • e0126229
    • 203 Matsumoto, T., Urushido, M., Ide, H., et al. Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury. PloS One, 10, 2015 e0126229.
    • (2015) PloS One , vol.10
    • Matsumoto, T.1    Urushido, M.2    Ide, H.3
  • 204
    • 84964683444 scopus 로고    scopus 로고
    • Autophagy in acute kidney injury
    • 204 Kaushal, G., Shah, S., Autophagy in acute kidney injury. Kidney Int 89 (2016), 779–791.
    • (2016) Kidney Int , vol.89 , pp. 779-791
    • Kaushal, G.1    Shah, S.2
  • 205
    • 67349203391 scopus 로고    scopus 로고
    • Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy
    • 205 Chevalier, R.L., Forbes, M.S., Thornhill, B.A., Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 75 (2009), 1145–1152.
    • (2009) Kidney Int , vol.75 , pp. 1145-1152
    • Chevalier, R.L.1    Forbes, M.S.2    Thornhill, B.A.3
  • 206
    • 77950565076 scopus 로고    scopus 로고
    • Autophagy is a component of epithelial cell fate in obstructive uropathy
    • 206 Li, L., Zepeda-Orozco, D., Black, R., et al. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176 (2010), 1767–1778.
    • (2010) Am J Pathol , vol.176 , pp. 1767-1778
    • Li, L.1    Zepeda-Orozco, D.2    Black, R.3
  • 207
    • 84919676763 scopus 로고    scopus 로고
    • Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction
    • 207 Ding, Y., Kim, S.L., Lee, S.Y., et al. Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 25 (2014), 2835–2846.
    • (2014) J Am Soc Nephrol , vol.25 , pp. 2835-2846
    • Ding, Y.1    Kim, S.L.2    Lee, S.Y.3
  • 208
    • 84873125170 scopus 로고    scopus 로고
    • Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress
    • 208 Xu, Y., Ruan, S., Wu, X., et al. Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int J Mol Med 31 (2013), 628–636.
    • (2013) Int J Mol Med , vol.31 , pp. 628-636
    • Xu, Y.1    Ruan, S.2    Wu, X.3
  • 209
    • 84993305085 scopus 로고    scopus 로고
    • Beyond starvation: an update on the autophagic machinery and its functions [e-pub ahead of print]
    • 209 Kawabata, T., Yoshimori, T., Beyond starvation: an update on the autophagic machinery and its functions [e-pub ahead of print]. J Mol Cell Cardiol 15 (2015), 30143–30147.
    • (2015) J Mol Cell Cardiol , vol.15 , pp. 30143-30147
    • Kawabata, T.1    Yoshimori, T.2
  • 210
    • 84883291965 scopus 로고    scopus 로고
    • Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
    • 210 Maejima, I., Takahashi, A., Omori, H., et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32 (2013), 2336–2347.
    • (2013) EMBO J , vol.32 , pp. 2336-2347
    • Maejima, I.1    Takahashi, A.2    Omori, H.3
  • 211
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • 211 Sanjuan, M.A., Dillon, C.P., Tait, S.W., et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450 (2007), 1253–1257.
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1    Dillon, C.P.2    Tait, S.W.3
  • 212
    • 80455122654 scopus 로고    scopus 로고
    • Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes
    • 212 Florey, O., Kim, S.E., Sandoval, C.P., et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 13 (2011), 1335–1343.
    • (2011) Nat Cell Biol , vol.13 , pp. 1335-1343
    • Florey, O.1    Kim, S.E.2    Sandoval, C.P.3
  • 213
    • 84880551919 scopus 로고    scopus 로고
    • Noncanonical autophagy promotes the visual cycle
    • 213 Kim, J.Y., Zhao, H., Martinez, J., et al. Noncanonical autophagy promotes the visual cycle. Cell 154 (2013), 365–376.
    • (2013) Cell , vol.154 , pp. 365-376
    • Kim, J.Y.1    Zhao, H.2    Martinez, J.3
  • 214
    • 84942832480 scopus 로고    scopus 로고
    • KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation
    • 214 Brooks, C.R., Yeung, M.Y., Brooks, Y.S., et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 34 (2015), 2441–2464.
    • (2015) EMBO J , vol.34 , pp. 2441-2464
    • Brooks, C.R.1    Yeung, M.Y.2    Brooks, Y.S.3
  • 215
    • 84926358028 scopus 로고    scopus 로고
    • KIM-1-mediated phagocytosis reduces acute injury to the kidney
    • 215 Yang, L., Brooks, C.R., Xiao, S., et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 125 (2015), 1620–1636.
    • (2015) J Clin Invest , vol.125 , pp. 1620-1636
    • Yang, L.1    Brooks, C.R.2    Xiao, S.3
  • 216
    • 84921776185 scopus 로고    scopus 로고
    • Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis
    • 216 Namba, T., Takabatake, Y., Kimura, T., et al. Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis. J Am Soc Nephrol 25 (2014), 2254–2266.
    • (2014) J Am Soc Nephrol , vol.25 , pp. 2254-2266
    • Namba, T.1    Takabatake, Y.2    Kimura, T.3
  • 217
    • 79955763565 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD)
    • 217 Belibi, F., Zafar, I., Ravichandran, K., et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). Am J Physiol Renal Physiol 300 (2011), F1235–F1243.
    • (2011) Am J Physiol Renal Physiol , vol.300 , pp. F1235-F1243
    • Belibi, F.1    Zafar, I.2    Ravichandran, K.3
  • 218
    • 84885638436 scopus 로고    scopus 로고
    • Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites
    • 218 Tang, Z., Lin, M.G., Stowe, T.R., et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502 (2013), 254–257.
    • (2013) Nature , vol.502 , pp. 254-257
    • Tang, Z.1    Lin, M.G.2    Stowe, T.R.3
  • 219
    • 84885661260 scopus 로고    scopus 로고
    • Functional interaction between autophagy and ciliogenesis
    • 219 Pampliega, O., Orhon, I., Patel, B., et al. Functional interaction between autophagy and ciliogenesis. Nature 502 (2013), 194–200.
    • (2013) Nature , vol.502 , pp. 194-200
    • Pampliega, O.1    Orhon, I.2    Patel, B.3
  • 220
    • 78651303135 scopus 로고    scopus 로고
    • mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease
    • 220 Belibi, F., Ravichandran, K., Zafar, I., et al. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am J Physiol Renal Physiol 300 (2011), F236–F244.
    • (2011) Am J Physiol Renal Physiol , vol.300 , pp. F236-F244
    • Belibi, F.1    Ravichandran, K.2    Zafar, I.3
  • 221
    • 33645769011 scopus 로고    scopus 로고
    • The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease
    • 221 Shillingford, J.M., Murcia, N.S., Larson, C.H., et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103 (2006), 5466–5471.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 5466-5471
    • Shillingford, J.M.1    Murcia, N.S.2    Larson, C.H.3
  • 222
    • 33751208607 scopus 로고    scopus 로고
    • Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair?
    • 222 Weimbs, T., Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair?. Cell Cycle 5 (2006), 2425–2429.
    • (2006) Cell Cycle , vol.5 , pp. 2425-2429
    • Weimbs, T.1
  • 223
    • 34447514158 scopus 로고    scopus 로고
    • Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease
    • 223 Wu, M., Wahl, P.R., Le Hir, M., et al. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res 30 (2007), 253–259.
    • (2007) Kidney Blood Press Res , vol.30 , pp. 253-259
    • Wu, M.1    Wahl, P.R.2    Le Hir, M.3
  • 224
    • 18744380752 scopus 로고    scopus 로고
    • Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease
    • 224 Tao, Y., Kim, J., Schrier, R.W., et al. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16 (2005), 46–51.
    • (2005) J Am Soc Nephrol , vol.16 , pp. 46-51
    • Tao, Y.1    Kim, J.2    Schrier, R.W.3
  • 225
    • 77957595691 scopus 로고    scopus 로고
    • Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease
    • 225 Zafar, I., Ravichandran, K., Belibi, F.A., et al. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int 78 (2010), 754–761.
    • (2010) Kidney Int , vol.78 , pp. 754-761
    • Zafar, I.1    Ravichandran, K.2    Belibi, F.A.3
  • 226
    • 77949887674 scopus 로고    scopus 로고
    • Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1
    • 226 Shillingford, J.M., Piontek, K.B., Germino, G.G., et al. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol 21 (2010), 489–497.
    • (2010) J Am Soc Nephrol , vol.21 , pp. 489-497
    • Shillingford, J.M.1    Piontek, K.B.2    Germino, G.G.3
  • 227
    • 77956035166 scopus 로고    scopus 로고
    • Everolimus in patients with autosomal dominant polycystic kidney disease
    • 227 Walz, G., Budde, K., Mannaa, M., et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363 (2010), 830–840.
    • (2010) N Engl J Med , vol.363 , pp. 830-840
    • Walz, G.1    Budde, K.2    Mannaa, M.3
  • 228
    • 77956029702 scopus 로고    scopus 로고
    • Sirolimus and kidney growth in autosomal dominant polycystic kidney disease
    • 228 Serra, A.L., Poster, D., Kistler, A.D., et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363 (2010), 820–829.
    • (2010) N Engl J Med , vol.363 , pp. 820-829
    • Serra, A.L.1    Poster, D.2    Kistler, A.D.3
  • 229
    • 79952297525 scopus 로고    scopus 로고
    • Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis
    • 229 Takiar, V., Nishio, S., Seo-Mayer, P., et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A 108 (2011), 2462–2467.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 2462-2467
    • Takiar, V.1    Nishio, S.2    Seo-Mayer, P.3
  • 230
    • 79955626606 scopus 로고    scopus 로고
    • Autophagy protects the proximal tubule from degeneration and acute ischemic injury
    • 230 Kimura, T., Takabatake, Y., Takahashi, A., et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22 (2011), 902–913.
    • (2011) J Am Soc Nephrol , vol.22 , pp. 902-913
    • Kimura, T.1    Takabatake, Y.2    Takahashi, A.3
  • 231
    • 67650439330 scopus 로고    scopus 로고
    • Caloric restriction delays disease onset and mortality in rhesus monkeys
    • 231 Colman, R.J., Anderson, R.M., Johnson, S.C., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325 (2009), 201–204.
    • (2009) Science , vol.325 , pp. 201-204
    • Colman, R.J.1    Anderson, R.M.2    Johnson, S.C.3
  • 232
    • 84901302351 scopus 로고    scopus 로고
    • Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity
    • 232 Testa, G., Biasi, F., Poli, G., et al. Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20 (2014), 2950–2977.
    • (2014) Curr Pharm Des , vol.20 , pp. 2950-2977
    • Testa, G.1    Biasi, F.2    Poli, G.3
  • 233
    • 77951157657 scopus 로고    scopus 로고
    • Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
    • 233 Kume, S., Uzu, T., Horiike, K., et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120 (2010), 1043–1055.
    • (2010) J Clin Invest , vol.120 , pp. 1043-1055
    • Kume, S.1    Uzu, T.2    Horiike, K.3
  • 234
    • 34447620651 scopus 로고    scopus 로고
    • Adult-onset calorie restriction delays the accumulation of mitochondrial enzyme abnormalities in aging rat kidney tubular epithelial cells
    • 234 McKiernan, S.H., Tuen, V.C., Baldwin, K., et al. Adult-onset calorie restriction delays the accumulation of mitochondrial enzyme abnormalities in aging rat kidney tubular epithelial cells. Am J Physiol Renal Physiol 292 (2007), F1751–F1760.
    • (2007) Am J Physiol Renal Physiol , vol.292 , pp. F1751-F1760
    • McKiernan, S.H.1    Tuen, V.C.2    Baldwin, K.3
  • 236
    • 84893832190 scopus 로고    scopus 로고
    • Renal protective effects of resveratrol
    • 236 Kitada, M., Koya, D., Renal protective effects of resveratrol. Oxid Med Cell Longev, 2013, 2013, 568093.
    • (2013) Oxid Med Cell Longev , vol.2013 , pp. 568093
    • Kitada, M.1    Koya, D.2
  • 237
    • 84874147739 scopus 로고    scopus 로고
    • Adverse events associated with mTOR inhibitors
    • 237 Pallet, N., Legendre, C., Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf 12 (2013), 177–186.
    • (2013) Expert Opin Drug Saf , vol.12 , pp. 177-186
    • Pallet, N.1    Legendre, C.2
  • 238
    • 0038666511 scopus 로고    scopus 로고
    • Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation
    • 238 McTaggart, R.A., Gottlieb, D., Brooks, J., et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am J Transplant 3 (2003), 416–423.
    • (2003) Am J Transplant , vol.3 , pp. 416-423
    • McTaggart, R.A.1    Gottlieb, D.2    Brooks, J.3
  • 239
    • 34548851984 scopus 로고    scopus 로고
    • High sirolimus levels may induce focal segmental glomerulosclerosis de novo
    • 239 Letavernier, E., Bruneval, P., Mandet, C., et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin J Am Soc Nephrol 2 (2007), 326–333.
    • (2007) Clin J Am Soc Nephrol , vol.2 , pp. 326-333
    • Letavernier, E.1    Bruneval, P.2    Mandet, C.3
  • 240
    • 84920733265 scopus 로고    scopus 로고
    • Effects of chronic resveratrol supplementation in military firefighters undergo a physical fitness test—a placebo-controlled, double blind study
    • 240 Macedo, R.C., Vieira, A., Marin, D.P., et al. Effects of chronic resveratrol supplementation in military firefighters undergo a physical fitness test—a placebo-controlled, double blind study. Chem Biol Interact 227 (2015), 89–95.
    • (2015) Chem Biol Interact , vol.227 , pp. 89-95
    • Macedo, R.C.1    Vieira, A.2    Marin, D.P.3
  • 241
    • 84925223619 scopus 로고    scopus 로고
    • A novel, multi-ingredient supplement to manage elevated blood lipids in patients with no evidence of cardiovascular disease: a pilot study
    • 241 Hobbs, T., Caso, R., McMahon, D., et al. A novel, multi-ingredient supplement to manage elevated blood lipids in patients with no evidence of cardiovascular disease: a pilot study. Altern Ther Health Med 20 (2014), 18–23.
    • (2014) Altern Ther Health Med , vol.20 , pp. 18-23
    • Hobbs, T.1    Caso, R.2    McMahon, D.3
  • 242
    • 84906735201 scopus 로고    scopus 로고
    • A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones
    • 242 Chow, H.H., Garland, L.L., Heckman-Stoddard, B.M., et al. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones. J Transl Med, 12, 2014, 223.
    • (2014) J Transl Med , vol.12 , pp. 223
    • Chow, H.H.1    Garland, L.L.2    Heckman-Stoddard, B.M.3
  • 243
    • 84902255790 scopus 로고    scopus 로고
    • Safety and metabolic outcomes of resveratrol supplementation in older adults: results of a twelve-week, placebo-controlled pilot study
    • 243 Anton, S.D., Embry, C., Marsiske, M., et al. Safety and metabolic outcomes of resveratrol supplementation in older adults: results of a twelve-week, placebo-controlled pilot study. Exp Gerontol 57 (2014), 181–187.
    • (2014) Exp Gerontol , vol.57 , pp. 181-187
    • Anton, S.D.1    Embry, C.2    Marsiske, M.3
  • 244
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • 244 Shoji-Kawata, S., Sumpter, R., Leveno, M., et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494 (2013), 201–206.
    • (2013) Nature , vol.494 , pp. 201-206
    • Shoji-Kawata, S.1    Sumpter, R.2    Leveno, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.