-
1
-
-
33750736645
-
How does proteinuria cause progressive renal damage?
-
Abbate M., Zoja C., Remuzzi G. How does proteinuria cause progressive renal damage?. J Am Soc Nephrol 2006, 17:2974-2984.
-
(2006)
J Am Soc Nephrol
, vol.17
, pp. 2974-2984
-
-
Abbate, M.1
Zoja, C.2
Remuzzi, G.3
-
2
-
-
0029938661
-
The role of proteinuria in the progression of chronic renal failure
-
Burton C., Harris K.P. The role of proteinuria in the progression of chronic renal failure. Am J Kidney Dis 1996, 27:765-775.
-
(1996)
Am J Kidney Dis
, vol.27
, pp. 765-775
-
-
Burton, C.1
Harris, K.P.2
-
3
-
-
20044376702
-
The pathobiology of diabetic complications: a unifying mechanism
-
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005, 54:1615-1625.
-
(2005)
Diabetes
, vol.54
, pp. 1615-1625
-
-
Brownlee, M.1
-
4
-
-
0033857113
-
Aldose reductase and the role of the polyol pathway in diabetic nephropathy
-
Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int Suppl 2000, 77:S3-12.
-
(2000)
Kidney Int Suppl
, vol.77
-
-
Dunlop, M.1
-
5
-
-
0141483457
-
The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes
-
Forbes J.M., Thallas V., Thomas M.C., Founds H.W., Burns W.C., Jerums G., et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J 2003, 17:1762-1764.
-
(2003)
FASEB J
, vol.17
, pp. 1762-1764
-
-
Forbes, J.M.1
Thallas, V.2
Thomas, M.C.3
Founds, H.W.4
Burns, W.C.5
Jerums, G.6
-
6
-
-
55249118568
-
Role of reactive oxygen species in the pathogenesis of diabetic nephropathy
-
Ha H., Hwang I.A., Park J.H., Lee H.B. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 2008, 82(Suppl 1):S42-S45.
-
(2008)
Diabetes Res Clin Pract
, vol.82
, Issue.SUPPL 1
-
-
Ha, H.1
Hwang, I.A.2
Park, J.H.3
Lee, H.B.4
-
7
-
-
84863115387
-
Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction
-
Hwang I., Lee J., Huh J.Y., Park J., Lee H.B., Ho Y.S., et al. Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 2012, 61:728-738.
-
(2012)
Diabetes
, vol.61
, pp. 728-738
-
-
Hwang, I.1
Lee, J.2
Huh, J.Y.3
Park, J.4
Lee, H.B.5
Ho, Y.S.6
-
8
-
-
0031860340
-
Protein kinase C activation and the development of diabetic complications
-
Koya D., King G.L. Protein kinase C activation and the development of diabetic complications. Diabetes 1998, 47:859-866.
-
(1998)
Diabetes
, vol.47
, pp. 859-866
-
-
Koya, D.1
King, G.L.2
-
9
-
-
79957775948
-
ACE inhibition is renoprotective among obese patients with proteinuria
-
Mallamaci F., Ruggenenti P., Perna A., Leonardis D., Tripepi R., Tripepi G., et al. ACE inhibition is renoprotective among obese patients with proteinuria. J Am Soc Nephrol 2011, 22:1122-1128.
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 1122-1128
-
-
Mallamaci, F.1
Ruggenenti, P.2
Perna, A.3
Leonardis, D.4
Tripepi, R.5
Tripepi, G.6
-
10
-
-
0035922441
-
Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy
-
Brenner B.M., Cooper M.E., de Zeeuw D., Keane W.F., Mitch W.E., Parving H.H., et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001, 345:861-869.
-
(2001)
N Engl J Med
, vol.345
, pp. 861-869
-
-
Brenner, B.M.1
Cooper, M.E.2
de Zeeuw, D.3
Keane, W.F.4
Mitch, W.E.5
Parving, H.H.6
-
11
-
-
0027370108
-
The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus
-
The Diabetes Control and Complications Trial Research Group
-
The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993, 329:977-986. The Diabetes Control and Complications Trial Research Group.
-
(1993)
N Engl J Med
, vol.329
, pp. 977-986
-
-
-
12
-
-
0032511583
-
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)
-
UK Prospective Diabetes Study (UKPDS) Group
-
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352:837-853. UK Prospective Diabetes Study (UKPDS) Group.
-
(1998)
Lancet
, vol.352
, pp. 837-853
-
-
-
13
-
-
0029147687
-
Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study
-
Ohkubo Y., Kishikawa H., Araki E., Miyata T., Isami S., Motoyoshi S., et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995, 28:103-117.
-
(1995)
Diabetes Res Clin Pract
, vol.28
, pp. 103-117
-
-
Ohkubo, Y.1
Kishikawa, H.2
Araki, E.3
Miyata, T.4
Isami, S.5
Motoyoshi, S.6
-
14
-
-
34250899722
-
Signal integration in the endoplasmic reticulum unfolded protein response
-
Ron D., Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007, 8:519-529.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 519-529
-
-
Ron, D.1
Walter, P.2
-
15
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G., Marino G., Levine B. Autophagy and the integrated stress response. Mol Cell 2010, 40:280-293.
-
(2010)
Mol Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
16
-
-
81055144784
-
Autophagy. Renovation of cells and tissues
-
Mizushima N., Komatsu M. Autophagy. Renovation of cells and tissues. Cell 2011, 147:728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
17
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
-
18
-
-
84855757326
-
Autophagy regulates inflammation in adipocytes
-
Yoshizaki T., Kusunoki C., Kondo M., Yasuda M., Kume S., Morino K., et al. Autophagy regulates inflammation in adipocytes. Biochem Biophys Res Commun 2012, 417:352-357.
-
(2012)
Biochem Biophys Res Commun
, vol.417
, pp. 352-357
-
-
Yoshizaki, T.1
Kusunoki, C.2
Kondo, M.3
Yasuda, M.4
Kume, S.5
Morino, K.6
-
19
-
-
84866142024
-
Emerging role of autophagy in kidney function, diseases and aging
-
Huber T.B., Edelstein C.L., Hartleben B., Inoki K., Dong Z., Koya D., et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 2012, 8:1009-1031.
-
(2012)
Autophagy
, vol.8
, pp. 1009-1031
-
-
Huber, T.B.1
Edelstein, C.L.2
Hartleben, B.3
Inoki, K.4
Dong, Z.5
Koya, D.6
-
20
-
-
77951169411
-
Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
-
Hartleben B., Godel M., Meyer-Schwesinger C., Liu S., Ulrich T., Kobler S., et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2010, 120:1084-1096.
-
(2010)
J Clin Invest
, vol.120
, pp. 1084-1096
-
-
Hartleben, B.1
Godel, M.2
Meyer-Schwesinger, C.3
Liu, S.4
Ulrich, T.5
Kobler, S.6
-
21
-
-
77749264299
-
Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury
-
Jiang M., Liu K., Luo J., Dong Z. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 2010, 176:1181-1192.
-
(2010)
Am J Pathol
, vol.176
, pp. 1181-1192
-
-
Jiang, M.1
Liu, K.2
Luo, J.3
Dong, Z.4
-
22
-
-
77951157657
-
Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
-
Kume S., Uzu T., Horiike K., Chin-Kanasaki M., Isshiki K., Araki S., et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010, 120:1043-1055.
-
(2010)
J Clin Invest
, vol.120
, pp. 1043-1055
-
-
Kume, S.1
Uzu, T.2
Horiike, K.3
Chin-Kanasaki, M.4
Isshiki, K.5
Araki, S.6
-
23
-
-
84862635122
-
Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
-
Liu S., Hartleben B., Kretz O., Wiech T., Igarashi P., Mizushima N., et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 2012, 8:826-837.
-
(2012)
Autophagy
, vol.8
, pp. 826-837
-
-
Liu, S.1
Hartleben, B.2
Kretz, O.3
Wiech, T.4
Igarashi, P.5
Mizushima, N.6
-
24
-
-
49749120592
-
Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells
-
Periyasamy-Thandavan S., Jiang M., Wei Q., Smith R., Yin X.M., Dong Z. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 2008, 74:631-640.
-
(2008)
Kidney Int
, vol.74
, pp. 631-640
-
-
Periyasamy-Thandavan, S.1
Jiang, M.2
Wei, Q.3
Smith, R.4
Yin, X.M.5
Dong, Z.6
-
25
-
-
84855996286
-
Autophagy guards against cisplatin-induced acute kidney injury
-
Takahashi A., Kimura T., Takabatake Y., Namba T., Kaimori J., Kitamura H., et al. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 2012, 180:517-525.
-
(2012)
Am J Pathol
, vol.180
, pp. 517-525
-
-
Takahashi, A.1
Kimura, T.2
Takabatake, Y.3
Namba, T.4
Kaimori, J.5
Kitamura, H.6
-
26
-
-
84555195156
-
Nutrient sensing, autophagy, and diabetic nephropathy
-
Kume S., Thomas M.C., Koya D. Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes 2012, 61:23-29.
-
(2012)
Diabetes
, vol.61
, pp. 23-29
-
-
Kume, S.1
Thomas, M.C.2
Koya, D.3
-
27
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
28
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M., Waguri S., Ueno T., Iwata J., Murata S., Tanida I., et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005, 169:425-434.
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
-
29
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T., et al. The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
-
30
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang X.H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
Brown, K.4
Kempkes, B.5
Hibshoosh, H.6
-
31
-
-
38749136302
-
Regulation of macroautophagy by mTOR and Beclin 1 complexes
-
Pattingre S., Espert L., Biard-Piechaczyk M., Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008, 90:313-323.
-
(2008)
Biochimie
, vol.90
, pp. 313-323
-
-
Pattingre, S.1
Espert, L.2
Biard-Piechaczyk, M.3
Codogno, P.4
-
32
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N., Yamamoto A., Matsui M., Yoshimori T., Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004, 15:1101-1111.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
33
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T., Hara T., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
Hara, T.6
-
34
-
-
33746114851
-
Role of podocyte slit diaphragm as a filtration barrier
-
Kawachi H., Miyauchi N., Suzuki K., Han G.D., Orikasa M., Shimizu F. Role of podocyte slit diaphragm as a filtration barrier. Nephrology (Carlton) 2006, 11:274-281.
-
(2006)
Nephrology (Carlton)
, vol.11
, pp. 274-281
-
-
Kawachi, H.1
Miyauchi, N.2
Suzuki, K.3
Han, G.D.4
Orikasa, M.5
Shimizu, F.6
-
35
-
-
0031029379
-
Podocyte loss and progressive glomerular injury in type II diabetes
-
Pagtalunan M.E., Miller P.L., Jumping-Eagle S., Nelson R.G., Myers B.D., Rennke H.G., et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997, 99:342-348.
-
(1997)
J Clin Invest
, vol.99
, pp. 342-348
-
-
Pagtalunan, M.E.1
Miller, P.L.2
Jumping-Eagle, S.3
Nelson, R.G.4
Myers, B.D.5
Rennke, H.G.6
-
36
-
-
84873380313
-
MVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking
-
Chen J., Chen M.X., Fogo A.B., Harris R.C., Chen J.K. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 2013, 24:198-207.
-
(2013)
J Am Soc Nephrol
, vol.24
, pp. 198-207
-
-
Chen, J.1
Chen, M.X.2
Fogo, A.B.3
Harris, R.C.4
Chen, J.K.5
-
37
-
-
84863230126
-
Inhibition of MTOR disrupts autophagic flux in podocytes
-
Cina D.P., Onay T., Paltoo A., Li C., Maezawa Y., De Arteaga J., et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol 2012, 23:412-420.
-
(2012)
J Am Soc Nephrol
, vol.23
, pp. 412-420
-
-
Cina, D.P.1
Onay, T.2
Paltoo, A.3
Li, C.4
Maezawa, Y.5
De Arteaga, J.6
-
38
-
-
82655181486
-
Prorenin receptor is essential for normal podocyte structure and function
-
Oshima Y., Kinouchi K., Ichihara A., Sakoda M., Kurauchi-Mito A., Bokuda K., et al. Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 2011, 22:2203-2212.
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 2203-2212
-
-
Oshima, Y.1
Kinouchi, K.2
Ichihara, A.3
Sakoda, M.4
Kurauchi-Mito, A.5
Bokuda, K.6
-
39
-
-
84876117324
-
Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury
-
Fang L., Zhou Y., Cao H., Wen P., Jiang L., He W., et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One 2013, 8:e60546.
-
(2013)
PLoS One
, vol.8
-
-
Fang, L.1
Zhou, Y.2
Cao, H.3
Wen, P.4
Jiang, L.5
He, W.6
-
40
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E., Loewith R., Schmidt A., Lin S., Ruegg M.A., Hall A., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004, 6:1122-1128.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
Hall, A.6
-
41
-
-
11244297916
-
Dysregulation of the TSC-mTOR pathway in human disease
-
Inoki K., Corradetti M.N., Guan K.L. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005, 37:19-24.
-
(2005)
Nat Genet
, vol.37
, pp. 19-24
-
-
Inoki, K.1
Corradetti, M.N.2
Guan, K.L.3
-
42
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
43
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell 2006, 124:471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
44
-
-
79951674629
-
MTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression
-
Huber T.B., Walz G., Kuehn E.W. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int 2011, 79:502-511.
-
(2011)
Kidney Int
, vol.79
, pp. 502-511
-
-
Huber, T.B.1
Walz, G.2
Kuehn, E.W.3
-
45
-
-
72049105867
-
The role of the mammalian target of rapamycin (mTOR) in renal disease
-
Lieberthal W., Levine J.S. The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 2009, 20:2493-2502.
-
(2009)
J Am Soc Nephrol
, vol.20
, pp. 2493-2502
-
-
Lieberthal, W.1
Levine, J.S.2
-
46
-
-
79957881425
-
Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
-
Godel M., Hartleben B., Herbach N., Liu S., Zschiedrich S., Lu S., et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 2011, 121:2197-2209.
-
(2011)
J Clin Invest
, vol.121
, pp. 2197-2209
-
-
Godel, M.1
Hartleben, B.2
Herbach, N.3
Liu, S.4
Zschiedrich, S.5
Lu, S.6
-
47
-
-
79957927211
-
MTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice
-
Inoki K., Mori H., Wang J., Suzuki T., Hong S., Yoshida S., et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 2011, 121:2181-2196.
-
(2011)
J Clin Invest
, vol.121
, pp. 2181-2196
-
-
Inoki, K.1
Mori, H.2
Wang, J.3
Suzuki, T.4
Hong, S.5
Yoshida, S.6
-
48
-
-
33646352217
-
Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats
-
Lloberas N., Cruzado J.M., Franquesa M., Herrero-Fresneda I., Torras J., Alperovich G., et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 2006, 17:1395-1404.
-
(2006)
J Am Soc Nephrol
, vol.17
, pp. 1395-1404
-
-
Lloberas, N.1
Cruzado, J.M.2
Franquesa, M.3
Herrero-Fresneda, I.4
Torras, J.5
Alperovich, G.6
-
49
-
-
65649120747
-
The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential
-
Mori H., Inoki K., Masutani K., Wakabayashi Y., Komai K., Nakagawa R., et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 2009, 384:471-475.
-
(2009)
Biochem Biophys Res Commun
, vol.384
, pp. 471-475
-
-
Mori, H.1
Inoki, K.2
Masutani, K.3
Wakabayashi, Y.4
Komai, K.5
Nakagawa, R.6
-
50
-
-
29244486472
-
Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice
-
Sakaguchi M., Isono M., Isshiki K., Sugimoto T., Koya D., Kashiwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun 2006, 340:296-301.
-
(2006)
Biochem Biophys Res Commun
, vol.340
, pp. 296-301
-
-
Sakaguchi, M.1
Isono, M.2
Isshiki, K.3
Sugimoto, T.4
Koya, D.5
Kashiwagi, A.6
-
51
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009, 20:1981-1991.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
-
52
-
-
81055140893
-
Feedback on fat: p62-mTORC1-autophagy connections
-
Moscat J., Diaz-Meco M.T. Feedback on fat: p62-mTORC1-autophagy connections. Cell 2011, 147:724-727.
-
(2011)
Cell
, vol.147
, pp. 724-727
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
53
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13:132-141.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
54
-
-
0026769228
-
Tubulointerstitial changes as a major determinant in the progression of renal damage
-
Nath K.A. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992, 20:1-17.
-
(1992)
Am J Kidney Dis
, vol.20
, pp. 1-17
-
-
Nath, K.A.1
-
55
-
-
0014421532
-
Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis
-
Risdon R.A., Sloper J.C., De Wardener H.E. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 1968, 2:363-366.
-
(1968)
Lancet
, vol.2
, pp. 363-366
-
-
Risdon, R.A.1
Sloper, J.C.2
De Wardener, H.E.3
-
56
-
-
79955626606
-
Autophagy protects the proximal tubule from degeneration and acute ischemic injury
-
Kimura T., Takabatake Y., Takahashi A., Kaimori J.Y., Matsui I., Namba T., et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 2011, 22:902-913.
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 902-913
-
-
Kimura, T.1
Takabatake, Y.2
Takahashi, A.3
Kaimori, J.Y.4
Matsui, I.5
Namba, T.6
-
57
-
-
44949102384
-
Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells
-
Yang C., Kaushal V., Shah S.V., Kaushal G.P. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 2008, 294:F777-F787.
-
(2008)
Am J Physiol Renal Physiol
, vol.294
-
-
Yang, C.1
Kaushal, V.2
Shah, S.V.3
Kaushal, G.P.4
-
58
-
-
84887070613
-
Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions
-
Yamahara K., Kume S., Koya D., Tanaka Y., Morita Y., Chin-Kanasaki M., et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol 2013, 24:1769-1781.
-
(2013)
J Am Soc Nephrol
, vol.24
, pp. 1769-1781
-
-
Yamahara, K.1
Kume, S.2
Koya, D.3
Tanaka, Y.4
Morita, Y.5
Chin-Kanasaki, M.6
-
59
-
-
67650439330
-
Caloric restriction delays disease onset and mortality in rhesus monkeys
-
Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325:201-204.
-
(2009)
Science
, vol.325
, pp. 201-204
-
-
Colman, R.J.1
Anderson, R.M.2
Johnson, S.C.3
Kastman, E.K.4
Kosmatka, K.J.5
Beasley, T.M.6
-
60
-
-
77951176737
-
Extending healthy life span--from yeast to humans
-
Fontana L., Partridge L., Longo V.D. Extending healthy life span--from yeast to humans. Science 2010, 328:321-326.
-
(2010)
Science
, vol.328
, pp. 321-326
-
-
Fontana, L.1
Partridge, L.2
Longo, V.D.3
-
61
-
-
0031814107
-
Calorie restriction delays the crescentic glomerulonephritis of SCG/Kj mice
-
Cherry Engelman RW, Wang B.Y., Kinjoh K., El-Badri N.S., Good R.A. Calorie restriction delays the crescentic glomerulonephritis of SCG/Kj mice. Proc Soc Exp Biol Med 1998, 218:218-222.
-
(1998)
Proc Soc Exp Biol Med
, vol.218
, pp. 218-222
-
-
Cherry, E.R.W.1
Wang, B.Y.2
Kinjoh, K.3
El-Badri, N.S.4
Good, R.A.5
-
62
-
-
81555225308
-
Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes
-
Kitada M., Takeda A., Nagai T., Ito H., Kanasaki K., Koya D. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011, 2011:908185.
-
(2011)
Exp Diabetes Res
, vol.2011
, pp. 908185
-
-
Kitada, M.1
Takeda, A.2
Nagai, T.3
Ito, H.4
Kanasaki, K.5
Koya, D.6
-
63
-
-
34948821093
-
Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet
-
Kume S., Uzu T., Araki S., Sugimoto T., Isshiki K., Chin-Kanasaki M., et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J Am Soc Nephrol 2007, 18:2715-2723.
-
(2007)
J Am Soc Nephrol
, vol.18
, pp. 2715-2723
-
-
Kume, S.1
Uzu, T.2
Araki, S.3
Sugimoto, T.4
Isshiki, K.5
Chin-Kanasaki, M.6
-
64
-
-
67650914230
-
AMPK in health and disease
-
Steinberg G.R., Kemp B.E. AMPK in health and disease. Physiol Rev 2009, 89:1025-1078.
-
(2009)
Physiol Rev
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
65
-
-
67749111502
-
The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
-
Shackelford D.B., Shaw R.J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009, 9:563-575.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
66
-
-
84856800302
-
Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks
-
Alers S., Loffler A.S., Wesselborg S., Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 2012, 32:2-11.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 2-11
-
-
Alers, S.1
Loffler, A.S.2
Wesselborg, S.3
Stork, B.4
-
67
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
Lee J.W., Park S., Takahashi Y., Wang H.G. The association of AMPK with ULK1 regulates autophagy. PLoS One 2010, 5:e15394.
-
(2010)
PLoS One
, vol.5
-
-
Lee, J.W.1
Park, S.2
Takahashi, Y.3
Wang, H.G.4
-
68
-
-
79959442302
-
Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase
-
Chang C.C., Chang C.Y., Wu Y.T., Huang J.P., Yen T.H., Hung L.M. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci 2011, 18:47.
-
(2011)
J Biomed Sci
, vol.18
, pp. 47
-
-
Chang, C.C.1
Chang, C.Y.2
Wu, Y.T.3
Huang, J.P.4
Yen, T.H.5
Hung, L.M.6
-
69
-
-
79952391694
-
Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism
-
Takiyama Y., Harumi T., Watanabe J., Fujita Y., Honjo J., Shimizu N., et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes 2011, 60:981-992.
-
(2011)
Diabetes
, vol.60
, pp. 981-992
-
-
Takiyama, Y.1
Harumi, T.2
Watanabe, J.3
Fujita, Y.4
Honjo, J.5
Shimizu, N.6
-
70
-
-
77949552845
-
Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK
-
Ding D.F., You N., Wu X.M., Xu J.R., Hu A.P., Ye X.L., et al. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am J Nephrol 2010, 31:363-374.
-
(2010)
Am J Nephrol
, vol.31
, pp. 363-374
-
-
Ding, D.F.1
You, N.2
Wu, X.M.3
Xu, J.R.4
Hu, A.P.5
Ye, X.L.6
-
71
-
-
33846854690
-
A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy
-
Lee M.J., Feliers D., Mariappan M.M., Sataranatarajan K., Mahimainathan L., Musi N., et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 2007, 292:F617-F627.
-
(2007)
Am J Physiol Renal Physiol
, vol.292
-
-
Lee, M.J.1
Feliers, D.2
Mariappan, M.M.3
Sataranatarajan, K.4
Mahimainathan, L.5
Musi, N.6
-
72
-
-
43049095682
-
Adiponectin regulates albuminuria and podocyte function in mice
-
Sharma K., Ramachandrarao S., Qiu G., Usui H.K., Zhu Y., Dunn S.R., et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008, 118:1645-1656.
-
(2008)
J Clin Invest
, vol.118
, pp. 1645-1656
-
-
Sharma, K.1
Ramachandrarao, S.2
Qiu, G.3
Usui, H.K.4
Zhu, Y.5
Dunn, S.R.6
-
73
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A., Yamaguchi O., Takeda T., Higuchi Y., Hikoso S., Taniike M., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007, 13:619-624.
-
(2007)
Nat Med
, vol.13
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
-
74
-
-
0032742992
-
The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus
-
Weyer C., Bogardus C., Mott D.M., Pratley R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999, 104:787-794.
-
(1999)
J Clin Invest
, vol.104
, pp. 787-794
-
-
Weyer, C.1
Bogardus, C.2
Mott, D.M.3
Pratley, R.E.4
-
75
-
-
33745851096
-
Insulin resistance and pancreatic beta cell failure
-
Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 2006, 116:1756-1760.
-
(2006)
J Clin Invest
, vol.116
, pp. 1756-1760
-
-
Kasuga, M.1
-
76
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato C., Uchida T., Arakawa M., Komatsu M., Ueno T., Komiya K., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008, 8:325-332.
-
(2008)
Cell Metab
, vol.8
, pp. 325-332
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
Komatsu, M.4
Ueno, T.5
Komiya, K.6
-
77
-
-
52749094770
-
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
-
Jung H.S., Chung K.W., Won Kim J., Kim J., Komatsu M., Tanaka K., et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 2008, 8:318-324.
-
(2008)
Cell Metab
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
Chung, K.W.2
Won Kim, J.3
Kim, J.4
Komatsu, M.5
Tanaka, K.6
-
78
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
Kim K.H., Jeong Y.T., Oh H., Kim S.H., Cho J.M., Kim Y.N., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 2013, 19:83-92.
-
(2013)
Nat Med
, vol.19
, pp. 83-92
-
-
Kim, K.H.1
Jeong, Y.T.2
Oh, H.3
Kim, S.H.4
Cho, J.M.5
Kim, Y.N.6
-
79
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh R., Xiang Y., Wang Y., Baikati K., Cuervo A.M., Luu Y.K., et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009, 119:3329-3339.
-
(2009)
J Clin Invest
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
Xiang, Y.2
Wang, Y.3
Baikati, K.4
Cuervo, A.M.5
Luu, Y.K.6
-
80
-
-
84877086717
-
Autophagy genes are required for normal lipid levels in C. elegans
-
Lapierre L.R., Silvestrini M.J., Nunez L., Ames K., Wong S., Le T.T., et al. Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 2013, 9:278-286.
-
(2013)
Autophagy
, vol.9
, pp. 278-286
-
-
Lapierre, L.R.1
Silvestrini, M.J.2
Nunez, L.3
Ames, K.4
Wong, S.5
Le, T.T.6
|