메뉴 건너뛰기




Volumn 11, Issue 1, 2015, Pages 34-45

Mechanisms and biological functions of autophagy in diseased and ageing kidneys

Author keywords

[No Author keywords available]

Indexed keywords

INFLAMMASOME; PROTEIN AGGREGATE;

EID: 84924084673     PISSN: 17595061     EISSN: 1759507X     Source Type: Journal    
DOI: 10.1038/nrneph.2014.201     Document Type: Review
Times cited : (84)

References (154)
  • 1
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728-741 (2011).
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 2
    • 0000189281 scopus 로고
    • Cellular differentiation in the kidneys of newborn mice studies with the electron microscope
    • Clark, S. L. Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J. Biophys. Biochem. Cytol. 3, 349-362 (1957).
    • (1957) J. Biophys. Biochem. Cytol , vol.3 , pp. 349-362
    • Clark, S.L.1
  • 3
    • 0002549377 scopus 로고
    • The lysosome
    • De Duve, C. The lysosome. Sci. Am. 208, 64-72 (1963).
    • (1963) Sci. Am , vol.208 , pp. 64-72
    • De Duve, C.1
  • 4
    • 0018901472 scopus 로고
    • Apparent autophagocytosis of mitochondria in L1210 leukemia cells treated in vitro with 4, 4'-diacetyl-diphenylurea-bis(guanylhydrazone). Cancer
    • Mikles-Robertson, F., Dave, C. & Porter, C. W. Apparent autophagocytosis of mitochondria in L1210 leukemia cells treated in vitro with 4, 4'-diacetyl-diphenylurea-bis(guanylhydrazone). Cancer Res. 40, 1054-1061 (1980).
    • (1980) Res , vol.40 , pp. 1054-1061
    • Mikles-Robertson, F.1    Dave, C.2    Porter, C.W.3
  • 5
    • 0018074885 scopus 로고
    • Endoplasmic reticulum and autophagy in rat hepatocytes
    • Novikoff, A. B. & Shin, W. Y. Endoplasmic reticulum and autophagy in rat hepatocytes. Proc. Natl Acad. Sci. USA 75, 5039-5042 (1978).
    • (1978) Proc. Natl Acad. Sci. USA , vol.75 , pp. 5039-5042
    • Novikoff, A.B.1    Shin, W.Y.2
  • 6
    • 0026668042 scopus 로고
    • Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
    • Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119, 301-311 (1992).
    • (1992) J. Cell Biol , vol.119 , pp. 301-311
    • Takeshige, K.1    Baba, M.2    Tsuboi, S.3    Noda, T.4    Ohsumi, Y.5
  • 7
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
    • Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174 (1993).
    • (1993) FEBS Lett , vol.333 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 8
    • 0032545292 scopus 로고    scopus 로고
    • A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy
    • Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273, 33889-33892 (1998).
    • (1998) J Biol. Chem , vol.273 , pp. 33889-33892
    • Mizushima, N.1    Sugita, H.2    Yoshimori, T.3    Ohsumi, Y.4
  • 9
    • 0032563798 scopus 로고    scopus 로고
    • A protein conjugation system essential for autophagy
    • Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395-398 (1998).
    • (1998) Nature , vol.395 , pp. 395-398
    • Mizushima, N.1
  • 11
    • 84877628647 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845-1846 (2013).
    • (2013) N. Engl. J. Med , vol.368 , pp. 1845-1846
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 13
    • 79959999581 scopus 로고    scopus 로고
    • Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum
    • Mijaljica, D., Prescott, M. & Devenish, R. J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673-682 (2011).
    • (2011) Autophagy , vol.7 , pp. 673-682
    • Mijaljica, D.1    Prescott, M.2    Devenish, R.J.3
  • 14
    • 84864318195 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: A unique way to enter the lysosome world
    • Kaushik, S. & Cuervo, A. M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22, 407-417 (2012).
    • (2012) Trends Cell Biol , vol.22 , pp. 407-417
    • Kaushik, S.1    Cuervo, A.M.2
  • 15
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323-335 (2011).
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 16
    • 79955631150 scopus 로고    scopus 로고
    • Autophagy in the cellular energetic balance
    • Singh, R. & Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495-504 (2011).
    • (2011) Cell Metab , vol.13 , pp. 495-504
    • Singh, R.1    Cuervo, A.M.2
  • 17
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722-737 (2013).
    • (2013) Nat. Rev. Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 18
    • 77954116814 scopus 로고    scopus 로고
    • Autophagy gone awry in neurodegenerative diseases
    • Wong, E. & Cuervo, A. M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 13, 805-811 (2010).
    • (2010) Nat. Neurosci , vol.13 , pp. 805-811
    • Wong, E.1    Cuervo, A.M.2
  • 19
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1
  • 20
    • 20344387475 scopus 로고    scopus 로고
    • Autophagy: Dual roles in life and death?
    • Baehrecke, E. H. Autophagy: dual roles in life and death? Nat. Rev. Mol. Cell Biol. 6, 505-510 (2005).
    • (2005) Nat. Rev. Mol. Cell Biol , vol.6 , pp. 505-510
    • Baehrecke E. ., H.1
  • 21
    • 56749170677 scopus 로고    scopus 로고
    • Autophagic cell death: The story of a misnomer
    • Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004-1010 (2008).
    • (2008) Nat. Rev. Mol. Cell Biol , vol.9 , pp. 1004-1010
    • Kroemer, G.1    Levine, B.2
  • 22
    • 0027936092 scopus 로고
    • Isolation of autophagocytosis mutants of Saccharomyces cerevisiae
    • Thumm, M. et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349, 275-280 (1994).
    • (1994) FEBS Lett , vol.349 , pp. 275-280
    • Thumm, M.1
  • 23
    • 84355162283 scopus 로고    scopus 로고
    • Canonical and non-canonical autophagy: Variations on a common theme of self-eating?
    • Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7-12 (2011).
    • (2011) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 7-12
    • Codogno, P.1    Mehrpour, M.2    Proikas-Cezanne, T.3
  • 24
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 25
    • 84894105147 scopus 로고    scopus 로고
    • Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 Inhibition
    • Roberts, D. J., Tan-Sah, V. P., Ding, E. Y., Smith, J. M. & Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 Inhibition. Mol. Cell 53, 521-533 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 521-533
    • Roberts, D.J.1    Tan-Sah, V.P.2    Ding, E.Y.3    Smith, J.M.4    Miyamoto, S.5
  • 26
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208 (2012).
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 27
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22, 132-139 (2010).
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 28
    • 77951237303 scopus 로고    scopus 로고
    • The Beclin 1 interactome
    • He, C. & Levine, B. The Beclin 1 interactome. Curr. Opin. Cell Biol. 22, 140-149 (2010).
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 140-149
    • He, C.1    Levine, B.2
  • 29
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008).
    • (2008) J. Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1
  • 30
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506-522 (2010).
    • (2010) Autophagy , vol.6 , pp. 506-522
    • Polson, H.E.1
  • 31
    • 34248998801 scopus 로고    scopus 로고
    • Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1
    • Maiuri, M. C. et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26, 2527-2539 (2007).
    • (2007) EMBO J , vol.26 , pp. 2527-2539
    • Maiuri, M.C.1
  • 32
    • 25144457455 scopus 로고    scopus 로고
    • Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
    • Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939 (2005).
    • (2005) Cell , vol.122 , pp. 927-939
    • Pattingre, S.1
  • 33
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER-mitochondria contact sites
    • Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393 (2013).
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 35
    • 84878897444 scopus 로고    scopus 로고
    • Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation
    • Zavodszky, E., Vicinanza, M. & Rubinsztein, D. C. Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett. 587, 1988-1996 (2013).
    • (2013) FEBS Lett , vol.587 , pp. 1988-1996
    • Zavodszky, E.1    Vicinanza, M.2    Rubinsztein, D.C.3
  • 36
    • 84871581862 scopus 로고    scopus 로고
    • Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis
    • Ragusa, M. J., Stanley, R. E. & Hurley, J. H. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151, 1501-1512 (2012).
    • (2012) Cell , vol.151 , pp. 1501-1512
    • Ragusa, M.J.1    Stanley, R.E.2    Hurley, J.H.3
  • 37
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131 (2009).
    • (2009) Curr. Opin. Cell Biol , vol.22 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 38
    • 67650517556 scopus 로고    scopus 로고
    • NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets
    • Lamark, T., Kirkin, V., Dikic, I. & Johansen, T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986-1990 (2009).
    • (2009) Cell Cycle , vol.8 , pp. 1986-1990
    • Lamark, T.1    Kirkin, V.2    Dikic, I.3    Johansen, T.4
  • 39
    • 65549142204 scopus 로고    scopus 로고
    • A role for ubiquitin in selective autophagy
    • Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259-269 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 259-269
    • Kirkin, V.1    McEwan, D.G.2    Novak, I.3    Dikic, I.4
  • 40
    • 58149290220 scopus 로고    scopus 로고
    • An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
    • Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 19, 4651-4659 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4651-4659
    • Fujita, N.1
  • 41
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269 (2012).
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 42
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946 (2010).
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 43
    • 84891014899 scopus 로고    scopus 로고
    • The return of the nucleus: Transcriptional and epigenetic control of autophagy
    • Fullgrabe, J., Klionsky, D. J. & Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15, 65-74 (2013).
    • (2013) Nat. Rev. Mol. Cell Biol , vol.15 , pp. 65-74
    • Fullgrabe, J.1    Klionsky, D.J.2    Joseph, B.3
  • 44
    • 84896909604 scopus 로고    scopus 로고
    • Detection of mRNA as an indicator of autophagosome formation
    • Tsuyuki, S. et al. Detection of mRNA as an indicator of autophagosome formation. Autophagy 10, 497-513 (2013).
    • (2013) Autophagy , vol.10 , pp. 497-513
    • Tsuyuki, S.1
  • 45
    • 57649203344 scopus 로고    scopus 로고
    • Autophagy in aging, disease and death: The true identity of a cell death impostor
    • Levine, B. & Kroemer, G. Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ. 16, 1-2 (2009).
    • (2009) Cell Death Differ , vol.16 , pp. 1-2
    • Levine, B.1    Kroemer, G.2
  • 46
    • 79955677000 scopus 로고    scopus 로고
    • Autophagic cell death: Loch Ness monster or endangered species?
    • Shen, H. M. & Codogno, P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7, 457-465 (2010).
    • (2010) Autophagy , vol.7 , pp. 457-465
    • Shen, H.M.1    Codogno, P.2
  • 47
    • 84890812342 scopus 로고    scopus 로고
    • Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia
    • Liu, Y. et al. Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364-20371 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 20364-20371
    • Liu, Y.1
  • 48
    • 84891303438 scopus 로고    scopus 로고
    • Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1
    • Gump, J. M. et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat. Cell Biol. 16, 47-54 (2014).
    • (2014) Nat. Cell Biol , vol.16 , pp. 47-54
    • Gump, J.M.1
  • 49
    • 34548188741 scopus 로고    scopus 로고
    • Self-eating and self-killing: Crosstalk between autophagy and apoptosis
    • Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752 (2007).
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 741-752
    • Maiuri, M.C.1    Zalckvar, E.2    Kimchi, A.3    Kroemer, G.4
  • 50
    • 84884331483 scopus 로고    scopus 로고
    • TRP53 activates a global autophagy program to promote tumor suppression
    • Kenzelmann Broz, D. & Attardi, L. D. TRP53 activates a global autophagy program to promote tumor suppression. Autophagy 9, 1440-1442 (2013).
    • (2013) Autophagy , vol.9 , pp. 1440-1442
    • Kenzelmann Broz, D.1    Attardi, L.D.2
  • 51
    • 84877311822 scopus 로고    scopus 로고
    • Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
    • Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016-1031 (2013).
    • (2013) Genes Dev , vol.27 , pp. 1016-1031
    • Kenzelmann Broz, D.1
  • 53
    • 34250894388 scopus 로고    scopus 로고
    • BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-XL
    • Maiuri, M. C. et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-XL. Autophagy 3, 374-376 (2007).
    • (2007) Autophagy , vol.3 , pp. 374-376
    • Maiuri, M.C.1
  • 54
    • 80052714034 scopus 로고    scopus 로고
    • BH3 mimetics activate multiple pro-autophagic pathways
    • Malik, S. A. et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918-3929 (2011).
    • (2011) Oncogene , vol.30 , pp. 3918-3929
    • Malik, S.A.1
  • 55
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678-688 (2008).
    • (2008) Mol. Cell , vol.30 , pp. 678-688
    • Wei, Y.1    Pattingre, S.2    Sinha, S.3    Bassik, M.4    Levine, B.5
  • 56
    • 61849102389 scopus 로고    scopus 로고
    • DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy
    • Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285-292 (2009).
    • (2009) EMBO Rep , vol.10 , pp. 285-292
    • Zalckvar, E.1
  • 58
    • 77957654940 scopus 로고    scopus 로고
    • Autophagic degradation of active caspase-8: A crosstalk mechanism between autophagy and apoptosis
    • Hou, W., Han, J., Lu, C., Goldstein, L. A. & Rabinowich, H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6, 891-900 (2010).
    • (2010) Autophagy , vol.6 , pp. 891-900
    • Hou, W.1    Han, J.2    Lu, C.3    Goldstein, L.A.4    Rabinowich, H.5
  • 59
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls
    • Wellcome Trust Case Control Consortium
    • Wellcome Trust Case Control Consortium. Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447, 661-678 (2007).
    • (2007) Nature , vol.447 , pp. 661-678
  • 60
    • 38649125210 scopus 로고    scopus 로고
    • Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci
    • Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204-210 (2008).
    • (2008) Nat. Genet , vol.40 , pp. 204-210
    • Harley, J.B.1
  • 61
    • 70649086092 scopus 로고    scopus 로고
    • Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk
    • Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313-1318 (2009).
    • (2009) Nat. Genet , vol.41 , pp. 1313-1318
    • Raychaudhuri, S.1
  • 62
    • 77953858790 scopus 로고    scopus 로고
    • TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
    • Shi, C. S. & Kehrl, J. H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3, ra42 (2010).
    • (2010) Sci. Signal , vol.3 , pp. ra42
    • Shi, C.S.1    Kehrl, J.H.2
  • 63
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406-416 (2013).
    • (2013) Nat. Cell Biol , vol.15 , pp. 406-416
    • Nazio, F.1
  • 64
    • 0037039442 scopus 로고    scopus 로고
    • Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway
    • Talloczy, Z. et al. Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc. Natl Acad. Sci. USA 99, 190-195 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 190-195
    • Talloczy, Z.1
  • 65
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753-766 (2004).
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1
  • 66
    • 77956386515 scopus 로고    scopus 로고
    • Endogenous HMGB1 regulates autophagy
    • Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881-892 (2010).
    • (2010) J. Cell Biol , vol.190 , pp. 881-892
    • Tang, D.1
  • 67
    • 83755181759 scopus 로고    scopus 로고
    • Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice
    • Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573-1577 (2011).
    • (2011) Science , vol.334 , pp. 1573-1577
    • Michaud, M.1
  • 68
    • 84865357562 scopus 로고    scopus 로고
    • TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation
    • Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223-234 (2012).
    • (2012) Immunity , vol.37 , pp. 223-234
    • Pilli, M.1
  • 69
    • 84884399730 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-α-activated (TNFα) macrophages
    • Bell, C. et al. Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-α-activated (TNFα) macrophages. Mol. Cell. Proteomics 12, 2394-2407 (2013).
    • (2013) Mol. Cell. Proteomics , vol.12 , pp. 2394-2407
    • Bell, C.1
  • 70
    • 34548700401 scopus 로고    scopus 로고
    • T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis
    • Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505-517 (2007).
    • (2007) Immunity , vol.27 , pp. 505-517
    • Harris, J.1
  • 71
    • 84870901484 scopus 로고    scopus 로고
    • Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity
    • Shen, S. et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol. Cell 48, 667-680 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 667-680
    • Shen, S.1
  • 72
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225 (2011).
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1    Yazdi, A.S.2    Menu, P.3    Tschopp, J.4
  • 73
    • 84857195479 scopus 로고    scopus 로고
    • Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction
    • Shi, C. S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255-263 (2012).
    • (2012) Nat. Immunol , vol.13 , pp. 255-263
    • Shi, C.S.1
  • 74
    • 35348921764 scopus 로고    scopus 로고
    • The Atg5 Atg12 conjugate associates with innate antiviral immune responses
    • Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USA 104, 14050-14055 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 14050-14055
    • Jounai, N.1
  • 75
    • 84863354715 scopus 로고    scopus 로고
    • The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity
    • Yang, C. S. et al. The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe 11, 277-289 (2012).
    • (2012) Cell Host Microbe , vol.11 , pp. 277-289
    • Yang, C.S.1
  • 76
    • 84872140163 scopus 로고    scopus 로고
    • Antigen processing for MHC class II presentation via autophagy
    • Munz, C. Antigen processing for MHC class II presentation via autophagy. Front. Immunol. 3, 9 (2012).
    • (2012) Front. Immunol , vol.3 , pp. 9
    • Munz, C.1
  • 77
    • 77949922437 scopus 로고    scopus 로고
    • Selective macroautophagy for immunity
    • Munz, C. Selective macroautophagy for immunity. Immunity 32, 298-299 (2010).
    • (2010) Immunity , vol.32 , pp. 298-299
    • Munz, C.1
  • 78
    • 52149099867 scopus 로고    scopus 로고
    • Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
    • Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396-400 (2008).
    • (2008) Nature , vol.455 , pp. 396-400
    • Nedjic, J.1    Aichinger, M.2    Emmerich, J.3    Mizushima, N.4    Klein, L.5
  • 79
    • 84859119158 scopus 로고    scopus 로고
    • Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation
    • Wenger, T. et al. Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 8, 350-363 (2012).
    • (2012) Autophagy , vol.8 , pp. 350-363
    • Wenger, T.1
  • 80
    • 84874920602 scopus 로고    scopus 로고
    • Amphisomal route of MHC class i cross-presentation in bacteria-infected dendritic cells
    • Fiegl, D. et al. Amphisomal route of MHC class I cross-presentation in bacteria-infected dendritic cells. J. Immunol. 190, 2791-2806 (2013).
    • (2013) J. Immunol , vol.190 , pp. 2791-2806
    • Fiegl, D.1
  • 81
    • 84869217908 scopus 로고    scopus 로고
    • Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
    • Castillo, E. F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl Acad. Sci. USA 109, E3168-E3176 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. E3168-E3176
    • Castillo, E.F.1
  • 82
    • 41449106674 scopus 로고    scopus 로고
    • The autophagy gene ATG5 plays an essential role in B lymphocyte development
    • Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309-314 (2008).
    • (2008) Autophagy , vol.4 , pp. 309-314
    • Miller, B.C.1
  • 83
    • 84874097064 scopus 로고    scopus 로고
    • Plasma cells require autophagy for sustainable immunoglobulin production
    • Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298-305 (2013).
    • (2013) Nat. Immunol , vol.14 , pp. 298-305
    • Pengo, N.1
  • 84
    • 82455210868 scopus 로고    scopus 로고
    • Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β
    • Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701-4711 (2011).
    • (2011) EMBO J , vol.30 , pp. 4701-4711
    • Dupont, N.1
  • 85
    • 36249011527 scopus 로고    scopus 로고
    • Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy
    • Chien, C. T., Shyue, S. K. & Lai, M. K. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 84, 1183-1190 (2007).
    • (2007) Transplantation , vol.84 , pp. 1183-1190
    • Chien, C.T.1    Shyue, S.K.2    Lai, M.K.3
  • 86
    • 39149113436 scopus 로고    scopus 로고
    • Participation of autophagy in renal ischemia/reperfusion injury
    • Suzuki, C. et al. Participation of autophagy in renal ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 368, 100-106 (2008).
    • (2008) Biochem. Biophys. Res. Commun , vol.368 , pp. 100-106
    • Suzuki, C.1
  • 87
    • 84862635122 scopus 로고    scopus 로고
    • Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
    • Liu, S. et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8, 826-837 (2012).
    • (2012) Autophagy , vol.8 , pp. 826-837
    • Liu, S.1
  • 88
    • 77749264299 scopus 로고    scopus 로고
    • Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury
    • Jiang, M., Liu, K., Luo, J. & Dong, Z. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am. J. Pathol. 176, 1181-1192 (2010).
    • (2010) Am. J. Pathol , vol.176 , pp. 1181-1192
    • Jiang, M.1    Liu, K.2    Luo, J.3    Dong, Z.4
  • 89
    • 77957862774 scopus 로고    scopus 로고
    • Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury
    • Bolisetty, S. et al. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. J. Am. Soc. Nephrol. 21, 1702-1712 (2010).
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 1702-1712
    • Bolisetty, S.1
  • 90
    • 84870580153 scopus 로고    scopus 로고
    • Autophagy in proximal tubules protects against acute kidney injury
    • Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271-1283 (2012).
    • (2012) Kidney Int , vol.82 , pp. 1271-1283
    • Jiang, M.1
  • 91
    • 79955626606 scopus 로고    scopus 로고
    • Autophagy protects the proximal tubule from degeneration and acute ischemic injury
    • Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902-913 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 902-913
    • Kimura, T.1
  • 92
    • 84881619807 scopus 로고    scopus 로고
    • Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury
    • Ishihara, M. et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol. 305, F495-F509 (2013).
    • (2013) Am. J. Physiol. Renal Physiol , vol.305 , pp. F495-F509
    • Ishihara, M.1
  • 93
    • 77952875466 scopus 로고    scopus 로고
    • Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo
    • Inoue, K. et al. Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo. Clin. Exp. Nephrol. 14, 112-122 (2010).
    • (2010) Clin. Exp. Nephrol , vol.14 , pp. 112-122
    • Inoue, K.1
  • 94
    • 49749120592 scopus 로고    scopus 로고
    • Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells
    • Periyasamy-Thandavan, S. et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 74, 631-640 (2008).
    • (2008) Kidney Int , vol.74 , pp. 631-640
    • Periyasamy-Thandavan, S.1
  • 95
    • 44949102384 scopus 로고    scopus 로고
    • Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells
    • Yang, C., Kaushal, V., Shah, S. V. & Kaushal, G. P. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 294, F777-F787 (2008).
    • (2008) Am. J. Physiol. Renal Physiol , vol.294 , pp. F777-F787
    • Yang, C.1    Kaushal, V.2    Shah, S.V.3    Kaushal, G.P.4
  • 96
    • 50249112541 scopus 로고    scopus 로고
    • Autophagy protects renal tubular cells against cyclosporine toxicity
    • Pallet, N. et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 4, 783-791 (2008).
    • (2008) Autophagy , vol.4 , pp. 783-791
    • Pallet, N.1
  • 97
    • 84864718287 scopus 로고    scopus 로고
    • Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance
    • Lim, S. W. et al. Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance. Transplantation 94, 218-225 (2012).
    • (2012) Transplantation , vol.94 , pp. 218-225
    • Lim, S.W.1
  • 98
    • 84887471307 scopus 로고    scopus 로고
    • Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress
    • Kimura, T. et al. Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress. Autophagy 9, 1876-1886 (2013).
    • (2013) Autophagy , vol.9 , pp. 1876-1886
    • Kimura, T.1
  • 99
    • 79955422848 scopus 로고    scopus 로고
    • Cadmium-induced autophagy in rat kidney: An early biomarker of subtoxic exposure
    • Chargui, A. et al. Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol. Sci. 121, 31-42 (2011).
    • (2011) Toxicol. Sci , vol.121 , pp. 31-42
    • Chargui, A.1
  • 100
    • 73949092319 scopus 로고    scopus 로고
    • The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation
    • Kimura, A. et al. The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation. Am. J. Pathol. 176, 40-50 (2010).
    • (2010) Am. J. Pathol , vol.176 , pp. 40-50
    • Kimura, A.1
  • 101
    • 84855996286 scopus 로고    scopus 로고
    • Autophagy guards against cisplatin-induced acute kidney injury
    • Takahashi, A. et al. Autophagy guards against cisplatin-induced acute kidney injury. Am. J. Pathol. 180, 517-525 (2010).
    • (2010) Am. J. Pathol , vol.180 , pp. 517-525
    • Takahashi, A.1
  • 102
    • 48249093820 scopus 로고    scopus 로고
    • Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity
    • Kaushal, G. P., Kaushal, V., Herzog, C. & Yang, C. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4, 710-712 (2008).
    • (2008) Autophagy , vol.4 , pp. 710-712
    • Kaushal, G.P.1    Kaushal, V.2    Herzog, C.3    Yang, C.4
  • 103
    • 84867731370 scopus 로고    scopus 로고
    • VAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function
    • Herzog, C., Yang, C., Holmes, A. & Kaushal, G. P. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am. J. Physiol. Renal Physiol. 303, F1239-F1250 (2012).
    • (2012) Am. J. Physiol. Renal Physiol , vol.303 , pp. F1239-F1250
    • Herzog, C.1    Yang, C.2    Holmes, A.3    Kaushal, G.P.4
  • 104
    • 53749105061 scopus 로고    scopus 로고
    • Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death
    • Pallet, N. et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am. J. Transplant. 8, 2283-2296 (2008).
    • (2008) Am. J. Transplant , vol.8 , pp. 2283-2296
    • Pallet, N.1
  • 105
    • 33947497050 scopus 로고    scopus 로고
    • Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival
    • Ding, W. X. et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702-4710 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 4702-4710
    • Ding, W.X.1
  • 106
    • 84880799079 scopus 로고    scopus 로고
    • Augmenting autophagy to treat acute kidney injury during endotoxemia in mice
    • Howell, G. M. et al. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS ONE 8, e69520 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e69520
    • Howell, G.M.1
  • 107
    • 84863229562 scopus 로고    scopus 로고
    • The decline of autophagy contributes to proximal tubular dysfunction during sepsis
    • Hsiao, H. W. et al. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock 37, 289-296 (2012).
    • (2012) Shock , vol.37 , pp. 289-296
    • Hsiao, H.W.1
  • 108
    • 84863598031 scopus 로고    scopus 로고
    • Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo
    • Wang, C. et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc. Natl Acad. Sci. USA 109, 11008-11013 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 11008-11013
    • Wang, C.1
  • 109
    • 84894486754 scopus 로고    scopus 로고
    • NOD2 is dispensable for ATG16L1 deficiency-mediated resistance to urinary tract infection
    • Wang, C. et al. NOD2 is dispensable for ATG16L1 deficiency-mediated resistance to urinary tract infection. Autophagy 10, 331-338 (2014).
    • (2014) Autophagy , vol.10 , pp. 331-338
    • Wang, C.1
  • 110
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
    • Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259-263 (2008).
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1
  • 111
    • 34247554965 scopus 로고    scopus 로고
    • Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis
    • Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596-604 (2007).
    • (2007) Nat. Genet , vol.39 , pp. 596-604
    • Rioux, J.D.1
  • 112
    • 84887524897 scopus 로고    scopus 로고
    • The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner
    • Sorbara, M. T. et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39, 858-873 (2013).
    • (2013) Immunity , vol.39 , pp. 858-873
    • Sorbara, M.T.1
  • 113
    • 77951169411 scopus 로고    scopus 로고
    • Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
    • Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084-1096 (2010).
    • (2010) J. Clin. Invest , vol.120 , pp. 1084-1096
    • Hartleben, B.1
  • 114
    • 84876117324 scopus 로고    scopus 로고
    • Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury
    • Fang, L. et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE 8, e60546 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e60546
    • Fang, L.1
  • 115
    • 84873380313 scopus 로고    scopus 로고
    • Mvps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking
    • Chen, J., Chen, M. X., Fogo, A. B., Harris, R. C. & Chen, J. K. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J. Am. Soc. Nephrol. 24, 198-207 (2013).
    • (2013) J. Am Soc. Nephrol , vol.24 , pp. 198-207
    • Chen, J.1    Chen, M.X.2    Fogo, A.B.3    Harris, R.C.4    Chen, J.K.5
  • 116
    • 84877097595 scopus 로고    scopus 로고
    • Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis
    • Bechtel, W. et al. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J. Am. Soc. Nephrol. 24, 727-743 (2013).
    • (2013) J. Am. Soc. Nephrol , vol.24 , pp. 727-743
    • Bechtel, W.1
  • 117
    • 82655181484 scopus 로고    scopus 로고
    • Prorenin receptor is essential for podocyte autophagy and survival
    • Riediger, F. et al. Prorenin receptor is essential for podocyte autophagy and survival. J. Am. Soc. Nephrol. 22, 2193-2202 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 2193-2202
    • Riediger, F.1
  • 118
    • 82655173699 scopus 로고    scopus 로고
    • The prorenin receptor: What's in a name
    • Meima, M. E. & Danser, A. H. The prorenin receptor: what's in a name. J. Am. Soc. Nephrol. 22, 2141-2143 (2011).
    • (2011) J. Am Soc. Nephrol , vol.22 , pp. 2141-2143
    • Meima, M.E.1    Danser, A.H.2
  • 119
    • 84877852047 scopus 로고    scopus 로고
    • Dysregulated autophagy contributes to podocyte damage in Fabry's disease
    • Liebau, M. C. et al. Dysregulated autophagy contributes to podocyte damage in Fabry's disease. PLoS ONE 8, e63506 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e63506
    • Liebau, M.C.1
  • 120
    • 77955373796 scopus 로고    scopus 로고
    • Autophagosome maturation is impaired in Fabry disease
    • Chevrier, M. et al. Autophagosome maturation is impaired in Fabry disease. Autophagy 6, 589-599 (2010).
    • (2010) Autophagy , vol.6 , pp. 589-599
    • Chevrier, M.1
  • 121
    • 84883291965 scopus 로고    scopus 로고
    • Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
    • Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336-2347 (2013).
    • (2013) EMBO J , vol.32 , pp. 2336-2347
    • Maejima, I.1
  • 122
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of torc1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades, C., Doumpas, N. & Teleman, A. A. Regulation of TORC1 in Response to Amino Acid Starvation via Lysosomal Recruitment of TSC2. Cell 156, 786-799 (2014).
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 123
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785 (2014).
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1
  • 124
    • 79955763565 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD
    • Belibi, F. et al. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300, F1235-F1243 (2011).
    • (2011) Am. J. Physiol. Renal Physiol , vol.300 , pp. F1235-F1243
    • Belibi, F.1
  • 125
    • 84885638436 scopus 로고    scopus 로고
    • Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites
    • Tang, Z. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254-257 (2013).
    • (2013) Nature , vol.502 , pp. 254-257
    • Tang, Z.1
  • 126
    • 84885661260 scopus 로고    scopus 로고
    • Functional interaction between autophagy and ciliogenesis
    • Pampliega, O. et al. Functional interaction between autophagy and ciliogenesis. Nature 502, 194-200 (2013).
    • (2013) Nature , vol.502 , pp. 194-200
    • Pampliega, O.1
  • 127
    • 84889260719 scopus 로고    scopus 로고
    • APOL1 risk variants, race, and progression of chronic kidney disease
    • Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183-2196 (2013).
    • (2013) N. Engl. J. Med , vol.369 , pp. 2183-2196
    • Parsa, A.1
  • 128
    • 67349175651 scopus 로고    scopus 로고
    • Multiple loci associated with indices of renal function and chronic kidney disease
    • Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712-717 (2009).
    • (2009) Nat. Genet , vol.41 , pp. 712-717
    • Kottgen, A.1
  • 129
    • 52049090825 scopus 로고    scopus 로고
    • Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death
    • Wan, G. et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283, 21540-21549 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 21540-21549
    • Wan, G.1
  • 130
    • 83655163805 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress in UMOD-related kidney disease: A human pathologic study
    • Adam, J. et al. Endoplasmic reticulum stress in UMOD-related kidney disease: a human pathologic study. Am. J. Kidney Dis. 59, 117-121 (2011).
    • (2011) Am. J. Kidney Dis , vol.59 , pp. 117-121
    • Adam, J.1
  • 132
    • 72249105606 scopus 로고    scopus 로고
    • Excerpts from the us renal data system 2009 annual data report
    • Collins, A. J. et al. Excerpts from the US Renal Data System 2009 Annual Data Report. Am. J. Kidney Dis. 55, S1-S420 (2010).
    • (2010) Am. J. Kidney Dis , vol.55 , pp. S1-S420
    • Collins, A.J.1
  • 133
    • 84894426170 scopus 로고    scopus 로고
    • Autophagy activation reduces renal tubular injury induced by urinary proteins
    • Liu, W. J. et al. Autophagy activation reduces renal tubular injury induced by urinary proteins. Autophagy 10, 243-256 (2014).
    • (2014) Autophagy , vol.10 , pp. 243-256
    • Liu, W.J.1
  • 134
    • 77951157657 scopus 로고    scopus 로고
    • Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
    • Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043-1055 (2010).
    • (2010) J. Clin. Invest , vol.120 , pp. 1043-1055
    • Kume, S.1
  • 135
    • 81555225308 scopus 로고    scopus 로고
    • Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: A model of type 2 diabetes
    • Kitada, M. et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp. Diabetes Res. 2011, 908185 (2011).
    • (2011) Exp. Diabetes Res , vol.2011 , pp. 908185
    • Kitada, M.1
  • 136
    • 84880695780 scopus 로고    scopus 로고
    • Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys
    • Cui, J. et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLoS ONE 8, e69720 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e69720
    • Cui, J.1
  • 137
    • 84887070613 scopus 로고    scopus 로고
    • Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions
    • Yamahara, K. et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J. Am. Soc. Nephrol 24, 1769-1781 (2013).
    • (2013) J. Am. Soc. Nephrol , vol.24 , pp. 1769-1781
    • Yamahara, K.1
  • 138
    • 79957881425 scopus 로고    scopus 로고
    • Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
    • Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197-2209 (2011).
    • (2011) J. Clin. Invest , vol.121 , pp. 2197-2209
    • Godel, M.1
  • 139
    • 33646352217 scopus 로고    scopus 로고
    • Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats
    • Lloberas, N. et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J. Am. Soc. Nephrol. 17, 1395-1404 (2006).
    • (2006) J. Am. Soc. Nephrol , vol.17 , pp. 1395-1404
    • Lloberas, N.1
  • 140
    • 84859632390 scopus 로고    scopus 로고
    • Mammalian target of rapamycin signaling in the podocyte
    • Inoki, K. & Huber, T. B. Mammalian target of rapamycin signaling in the podocyte. Curr. Opin. Nephrol. Hypertens. 21, 251-257 (2012).
    • (2012) Curr. Opin. Nephrol. Hypertens , vol.21 , pp. 251-257
    • Inoki, K.1    Huber, T.B.2
  • 141
    • 84890087641 scopus 로고    scopus 로고
    • Autophagy and metabolic changes in obesity-related chronic kidney disease
    • Satriano, J. & Sharma, K. Autophagy and metabolic changes in obesity-related chronic kidney disease. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv29-iv36 (2013).
    • (2013) Nephrol. Dial. Transplant , vol.28 , pp. iv29-iv36
    • Satriano, J.1    Sharma, K.2
  • 142
    • 0034789534 scopus 로고    scopus 로고
    • Rapamycin impairs recovery from acute renal failure: Role of cell-cycle arrest and apoptosis of tubular cells
    • Lieberthal, W. et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am. J. Physiol. Renal Physiol. 281, F693-F706 (2001).
    • (2001) Am. J. Physiol. Renal Physiol , vol.281 , pp. F693-F706
    • Lieberthal, W.1
  • 143
    • 0038666511 scopus 로고    scopus 로고
    • Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation
    • McTaggart, R. A. et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am. J. Transplant. 3, 416-423 (2003).
    • (2003) Am. J. Transplant , vol.3 , pp. 416-423
    • McTaggart, R.A.1
  • 144
    • 84869091726 scopus 로고    scopus 로고
    • Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury
    • Nakagawa, S., Nishihara, K., Inui, K. & Masuda, S. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Eur. J. Pharmacol. 696, 143-154 (2012).
    • (2012) Eur. J. Pharmacol , vol.696 , pp. 143-154
    • Nakagawa, S.1    Nishihara, K.2    Inui, K.3    Masuda, S.4
  • 145
    • 34548851984 scopus 로고    scopus 로고
    • High sirolimus levels may induce focal segmental glomerulosclerosis de novo
    • Letavernier, E. et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin. J. Am. Soc. Nephrol. 2, 326-333 (2007).
    • (2007) Clin. J. Am. Soc. Nephrol , vol.2 , pp. 326-333
    • Letavernier, E.1
  • 146
    • 84863230126 scopus 로고    scopus 로고
    • Inhibition of MTOR disrupts autophagic flux in podocytes
    • Cina, D. P. et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J. Am. Soc. Nephrol. 23, 412-420 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.23 , pp. 412-420
    • Cina, D.P.1
  • 147
    • 84874147739 scopus 로고    scopus 로고
    • Adverse events associated with mTOR inhibitors
    • Pallet, N. & Legendre, C. Adverse events associated with mTOR inhibitors. Expert Opin. Drug Saf. 12, 177-186 (2012).
    • (2012) Expert Opin. Drug Saf , vol.12 , pp. 177-186
    • Pallet, N.1    Legendre, C.2
  • 148
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201-206 (2013).
    • (2013) Nature , vol.494 , pp. 201-206
    • Shoji-Kawata, S.1
  • 149
    • 84877344747 scopus 로고    scopus 로고
    • Immunohistochemical analysis of macroautophagy: Recommendations and limitations
    • Martinet, W., Schrijvers, D. M., Timmermans, J. P., Bult, H. & De Meyer, G. R. Immunohistochemical analysis of macroautophagy: recommendations and limitations. Autophagy 9, 386-402 (2013).
    • (2013) Autophagy , vol.9 , pp. 386-402
    • Martinet, W.1    Schrijvers, D.M.2    Timmermans, J.P.3    Bult, H.4    De Meyer, G.R.5
  • 150
    • 84896712992 scopus 로고    scopus 로고
    • Costimulatory blockade-induced allograft survival requires Beclin1
    • Verghese, D. A. et al. Costimulatory blockade-induced allograft survival requires Beclin1. Am. J. Transplant. 14, 545-553 (2014).
    • (2014) Am. J. Transplant , vol.14 , pp. 545-553
    • Verghese, D.A.1
  • 151
    • 77957252460 scopus 로고    scopus 로고
    • Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells
    • Koesters, R. et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 177, 632-643 (2010).
    • (2010) Am. J. Pathol , vol.177 , pp. 632-643
    • Koesters, R.1
  • 152
    • 77955900101 scopus 로고    scopus 로고
    • ANG II promotes autophagy in podocytes
    • Yadav, A. et al. ANG II promotes autophagy in podocytes. Am. J. Physiol. Cell Physiol. 299, C488-C496 (2010).
    • (2010) Am. J. Physiol. Cell Physiol , vol.299 , pp. C488-C496
    • Yadav, A.1
  • 153
    • 84863318523 scopus 로고    scopus 로고
    • Autophagy protects against necrotic renal epithelial cell-induced death of renal interstitial fibroblasts
    • Ponnusamy, M. et al. Autophagy protects against necrotic renal epithelial cell-induced death of renal interstitial fibroblasts. Am. J. Physiol. Renal Physiol. 303, F83-F91 (2012).
    • (2012) Am. J. Physiol. Renal Physiol , vol.303 , pp. F83-F91
    • Ponnusamy, M.1
  • 154
    • 84859444880 scopus 로고    scopus 로고
    • Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
    • Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938-946 (2012).
    • (2012) Gastroenterology , vol.142 , pp. 938-946
    • Hernandez-Gea, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.