메뉴 건너뛰기




Volumn 31, Issue 14, 2011, Pages 2787-2801

mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression

Author keywords

[No Author keywords available]

Indexed keywords

INSULIN; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; SHORT HAIRPIN RNA;

EID: 79960349522     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.05437-11     Document Type: Article
Times cited : (108)

References (72)
  • 1
    • 67651210833 scopus 로고    scopus 로고
    • Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth
    • Acosta-Jaquez, H. A., et al. 2009. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol. Cell. Biol. 29: 4308-4324.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4308-4324
    • Acosta-Jaquez, H.A.1
  • 3
    • 59749090661 scopus 로고    scopus 로고
    • Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor
    • Avruch, J., et al. 2009. Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem. Soc. Trans. 37:223-226.
    • (2009) Biochem. Soc. Trans. , vol.37 , pp. 223-226
    • Avruch, J.1
  • 4
    • 34047095297 scopus 로고    scopus 로고
    • The two TORCs and Akt
    • Bhaskar, P. T., and N. Hay. 2007. The two TORCs and Akt. Dev. Cell 12:487-502.
    • (2007) Dev. Cell , vol.12 , pp. 487-502
    • Bhaskar, P.T.1    Hay, N.2
  • 5
    • 51049083138 scopus 로고    scopus 로고
    • Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
    • Carriere, A., et al. 2008. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18:1269-1277.
    • (2008) Curr. Biol. , vol.18 , pp. 1269-1277
    • Carriere, A.1
  • 6
    • 78650943298 scopus 로고    scopus 로고
    • ERK1/2 phosphorylate Raptor to promote Rasdependent activation of mTOR complex 1 (mTORC1)
    • Carriere, A., et al. 2011. ERK1/2 phosphorylate Raptor to promote Rasdependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 286: 567-577.
    • (2011) J. Biol. Chem. , vol.286 , pp. 567-577
    • Carriere, A.1
  • 7
    • 0029055145 scopus 로고
    • Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue
    • Chen, J., X. F. Zheng, E. J. Brown, and S. L. Schreiber. 1995. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl. Acad. Sci. U. S. A. 92:4947-4951.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 4947-4951
    • Chen, J.1    Zheng, X.F.2    Brown, E.J.3    Schreiber, S.L.4
  • 8
    • 1942469564 scopus 로고    scopus 로고
    • Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status
    • Cheng, S. W., L. G. Fryer, D. Carling, and P. R. Shepherd. 2004. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem. 279:15719-15722.
    • (2004) J. Biol. Chem. , vol.279 , pp. 15719-15722
    • Cheng, S.W.1    Fryer, L.G.2    Carling, D.3    Shepherd, P.R.4
  • 9
    • 21844468767 scopus 로고    scopus 로고
    • Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase
    • Chiang, G. G., and R. T. Abraham. 2005. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280:25485-25490.
    • (2005) J. Biol. Chem. , vol.280 , pp. 25485-25490
    • Chiang, G.G.1    Abraham, R.T.2
  • 10
    • 0038482156 scopus 로고    scopus 로고
    • Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor
    • Choi, K. M., L. P. McMahon, and J. C. Lawrence, Jr. 2003. Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J. Biol. Chem. 278:19667-19673.
    • (2003) J. Biol. Chem. , vol.278 , pp. 19667-19673
    • Choi, K.M.1    McMahon, L.P.2    Lawrence Jr., J.C.3
  • 11
    • 61449235398 scopus 로고    scopus 로고
    • Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy
    • Choo, A. Y., and J. Blenis. 2009. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 8:567-572.
    • (2009) Cell Cycle , vol.8 , pp. 567-572
    • Choo, A.Y.1    Blenis, J.2
  • 12
    • 56249147509 scopus 로고    scopus 로고
    • Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-typespecific repression of mRNA translation
    • Choo, A. Y., S. O. Yoon, S. G. Kim, P. P. Roux, and J. Blenis. 2008. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-typespecific repression of mRNA translation. Proc. Natl. Acad. Sci. U. S. A. 105:17414-17419.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 17414-17419
    • Choo, A.Y.1    Yoon, S.O.2    Kim, S.G.3    Roux, P.P.4    Blenis, J.5
  • 13
    • 34249679614 scopus 로고    scopus 로고
    • mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer
    • Dann, S. G., A. Selvaraj, and G. Thomas. 2007. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol. Med. 13:252-259.
    • (2007) Trends Mol. Med. , vol.13 , pp. 252-259
    • Dann, S.G.1    Selvaraj, A.2    Thomas, G.3
  • 14
    • 77952967459 scopus 로고    scopus 로고
    • mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
    • Dowling, R. J., et al. 2010. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172-1176.
    • (2010) Science , vol.328 , pp. 1172-1176
    • Dowling, R.J.1
  • 15
    • 62749096589 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 signalling inputs, substrates and feedback mechanisms
    • Dunlop, E. A., and A. R. Tee. 2009. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal. 21: 827-835.
    • (2009) Cell Signal , vol.21 , pp. 827-835
    • Dunlop, E.A.1    Tee, A.R.2
  • 16
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • Feldman, M. E., et al. 2009. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7:e38.
    • (2009) PLoS Biol , vol.7
    • Feldman, M.E.1
  • 17
    • 2342545519 scopus 로고    scopus 로고
    • Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
    • Fingar, D. C., and J. Blenis. 2004. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151-3171.
    • (2004) Oncogene , vol.23 , pp. 3151-3171
    • Fingar, D.C.1    Blenis, J.2
  • 18
    • 0345732640 scopus 로고    scopus 로고
    • mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E
    • Fingar, D. C., et al. 2004. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24:200-216.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 200-216
    • Fingar, D.C.1
  • 19
    • 0037097863 scopus 로고    scopus 로고
    • Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
    • Fingar, D. C., S. Salama, C. Tsou, E. Harlow, and J. Blenis. 2002. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16:1472-1487.
    • (2002) Genes Dev , vol.16 , pp. 1472-1487
    • Fingar, D.C.1    Salama, S.2    Tsou, C.3    Harlow, E.4    Blenis, J.5
  • 20
    • 34548359244 scopus 로고    scopus 로고
    • PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
    • Fonseca, B. D., E. M. Smith, V. H. Lee, C. MacKintosh, and C. G. Proud. 2007. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J. Biol. Chem. 282: 24514-24524.
    • (2007) J. Biol. Chem. , vol.282 , pp. 24514-24524
    • Fonseca, B.D.1    Smith, E.M.2    Lee, V.H.3    MacKintosh, C.4    Proud, C.G.5
  • 21
    • 73649098283 scopus 로고    scopus 로고
    • Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation
    • Foster, K. G., et al. 2010. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 285:80-94.
    • (2010) J. Biol. Chem. , vol.285 , pp. 80-94
    • Foster, K.G.1
  • 22
    • 77952007543 scopus 로고    scopus 로고
    • Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony
    • Foster, K. G., and D. C. Fingar. 2010. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J. Biol. Chem. 285: 14071-14077.
    • (2010) J. Biol. Chem. , vol.285 , pp. 14071-14077
    • Foster, K.G.1    Fingar, D.C.2
  • 23
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • Garami, A., et al. 2003. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11:1457-1466.
    • (2003) Mol. Cell , vol.11 , pp. 1457-1466
    • Garami, A.1
  • 24
    • 34347220473 scopus 로고    scopus 로고
    • Defining the role of mTOR in cancer
    • Guertin, D. A., and D. M. Sabatini. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9-22.
    • (2007) Cancer Cell , vol.12 , pp. 9-22
    • Guertin, D.A.1    Sabatini, D.M.2
  • 25
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • Guertin, D. A., and D. M. Sabatini. 2009. The pharmacology of mTOR inhibition. Sci. Signal. 2:pe24.
    • (2009) Sci. Signal. , vol.2
    • Guertin, D.A.1    Sabatini, D.M.2
  • 26
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn, D. M., et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214-226.
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 27
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara, K., et al. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-189.
    • (2002) Cell , vol.110 , pp. 177-189
    • Hara, K.1
  • 28
    • 27744569843 scopus 로고    scopus 로고
    • mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
    • Holz, M. K., B. A. Ballif, S. P. Gygi, and J. Blenis. 2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569-580.
    • (2005) Cell , vol.123 , pp. 569-580
    • Holz, M.K.1    Ballif, B.A.2    Gygi, S.P.3    Blenis, J.4
  • 29
    • 22544455676 scopus 로고    scopus 로고
    • Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
    • Holz, M. K., and J. Blenis. 2005. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 280:26089-26093.
    • (2005) J. Biol. Chem. , vol.280 , pp. 26089-26093
    • Holz, M.K.1    Blenis, J.2
  • 30
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: a molecular switchboard controlling cell growth
    • Huang, J., and B. D. Manning. 2008. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412:179-190.
    • (2008) Biochem. J. , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 31
    • 11244297916 scopus 로고    scopus 로고
    • Dysregulation of the TSC-mTOR pathway in human disease
    • Inoki, K., M. N. Corradetti, and K. L. Guan. 2005. Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet. 37:19-24.
    • (2005) Nat. Genet. , vol.37 , pp. 19-24
    • Inoki, K.1    Corradetti, M.N.2    Guan, K.L.3
  • 32
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki, K., Y. Li, T. Zhu, J. Wu, and K. L. Guan. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4:648-657.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 33
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki, K., T. Zhu, and K. L. Guan. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 34
    • 52049091512 scopus 로고    scopus 로고
    • What controls TOR?
    • Jacinto, E. 2008. What controls TOR? IUBMB Life 60:483-496.
    • (2008) IUBMB Life , vol.60 , pp. 483-496
    • Jacinto, E.1
  • 35
    • 39749100492 scopus 로고    scopus 로고
    • TOR regulation of AGC kinases in yeast and mammals
    • Jacinto, E., and A. Lorberg. 2008. TOR regulation of AGC kinases in yeast and mammals. Biochem. J. 410:19-37.
    • (2008) Biochem. J. , vol.410 , pp. 19-37
    • Jacinto, E.1    Lorberg, A.2
  • 36
    • 0017581306 scopus 로고
    • Coordination of growth with cell division in the yeast Saccharomyces cerevisiae
    • Johnston, G. C., J. R. Pringle, and L. H. Hartwell. 1977. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105:79-98.
    • (1977) Exp. Cell Res. , vol.105 , pp. 79-98
    • Johnston, G.C.1    Pringle, J.R.2    Hartwell, L.H.3
  • 38
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery
    • Kim, D. H., et al. 2002. mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery. Cell 110:163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 39
    • 0037623417 scopus 로고    scopus 로고
    • GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
    • Kim, D. H., D. Sarbassov dos, et al. 2003. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11:895-904.
    • (2003) Mol. Cell , vol.11 , pp. 895-904
    • Kim, D.H.1    Sarbassov dos, D.2
  • 41
    • 27744588780 scopus 로고    scopus 로고
    • Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways
    • Kwiatkowski, D. J., and B. D. Manning. 2005. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet. 14(Spec. No. 2):R251-R258.
    • (2005) Hum. Mol. Genet. , vol.14 , Issue.SPEC. NO. 2
    • Kwiatkowski, D.J.1    Manning, B.D.2
  • 42
    • 70450204007 scopus 로고    scopus 로고
    • An emerging role of mTOR in lipid biosynthesis
    • Laplante, M., and D. M. Sabatini. 2009. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19:R1046-R1052.
    • (2009) Curr. Biol. , vol.19
    • Laplante, M.1    Sabatini, D.M.2
  • 43
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith, R., et al. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10:457-468.
    • (2002) Mol. Cell , vol.10 , pp. 457-468
    • Loewith, R.1
  • 44
    • 17444431201 scopus 로고    scopus 로고
    • Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
    • Ma, L., Z. Chen, H. Erdjument-Bromage, P. Tempst, and P. P. Pandolfi. 2005. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179-193.
    • (2005) Cell , vol.121 , pp. 179-193
    • Ma, L.1    Chen, Z.2    Erdjument-Bromage, H.3    Tempst, P.4    Pandolfi, P.P.5
  • 45
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma, X. M., and J. Blenis. 2009. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10:307-318.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 46
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
    • Manning, B. D., A. R. Tee, M. N. Logsdon, J. Blenis, and L. C. Cantley. 2002. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10:151-162.
    • (2002) Mol. Cell , vol.10 , pp. 151-162
    • Manning, B.D.1    Tee, A.R.2    Logsdon, M.N.3    Blenis, J.4    Cantley, L.C.5
  • 47
    • 0036837863 scopus 로고    scopus 로고
    • The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin
    • McMahon, L. P., K. M. Choi, T. A. Lin, R. T. Abraham, and J. C. Lawrence, Jr. 2002. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol. Cell. Biol. 22:7428-7438.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 7428-7438
    • McMahon, L.P.1    Choi, K.M.2    Lin, T.A.3    Abraham, R.T.4    Lawrence Jr., J.C.5
  • 48
    • 0033429554 scopus 로고    scopus 로고
    • Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
    • Nave, B. T., M. Ouwens, D. J. Withers, D. R. Alessi, and P. R. Shepherd. 1999. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344:427-431.
    • (1999) Biochem. J. , vol.344 , pp. 427-431
    • Nave, B.T.1    Ouwens, M.2    Withers, D.J.3    Alessi, D.R.4    Shepherd, P.R.5
  • 49
    • 0037507252 scopus 로고    scopus 로고
    • The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif
    • Nojima, H., et al. 2003. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278:15461-15464.
    • (2003) J. Biol. Chem. , vol.278 , pp. 15461-15464
    • Nojima, H.1
  • 50
    • 34547133519 scopus 로고    scopus 로고
    • The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
    • Oshiro, N., et al. 2007. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282:20329-20339.
    • (2007) J. Biol. Chem. , vol.282 , pp. 20329-20339
    • Oshiro, N.1
  • 51
    • 0034629365 scopus 로고    scopus 로고
    • FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions
    • Peterson, R. T., P. A. Beal, M. J. Comb, and S. L. Schreiber. 2000. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J. Biol. Chem. 275:7416-7423.
    • (2000) J. Biol. Chem. , vol.275 , pp. 7416-7423
    • Peterson, R.T.1    Beal, P.A.2    Comb, M.J.3    Schreiber, S.L.4
  • 52
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson, T. R., et al. 2009. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873-886.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1
  • 53
    • 33750044112 scopus 로고    scopus 로고
    • Stress and mTORture signaling
    • Reiling, J. H., and D. M. Sabatini. 2006. Stress and mTORture signaling. Oncogene 25:6373-6383.
    • (2006) Oncogene , vol.25 , pp. 6373-6383
    • Reiling, J.H.1    Sabatini, D.M.2
  • 54
    • 4544384577 scopus 로고    scopus 로고
    • Tumorpromoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
    • Roux, P. P., B. A. Ballif, R. Anjum, S. P. Gygi, and J. Blenis. 2004. Tumorpromoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. U. S. A. 101:13489-13494.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 13489-13494
    • Roux, P.P.1    Ballif, B.A.2    Anjum, R.3    Gygi, S.P.4    Blenis, J.5
  • 55
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak, Y., et al. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 56
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak, Y., et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 57
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak, Y., et al. 2007. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25:903-915.
    • (2007) Mol. Cell , vol.25 , pp. 903-915
    • Sancak, Y.1
  • 58
    • 67649823420 scopus 로고    scopus 로고
    • Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
    • Sato, T., A. Nakashima, L. Guo, and F. Tamanoi. 2009. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 284:12783-12791.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12783-12791
    • Sato, T.1    Nakashima, A.2    Guo, L.3    Tamanoi, F.4
  • 59
    • 0037117409 scopus 로고    scopus 로고
    • Identification of a conserved motif required for mTOR signaling
    • Schalm, S. S., and J. Blenis. 2002. Identification of a conserved motif required for mTOR signaling. Curr. Biol. 12:632-639.
    • (2002) Curr. Biol. , vol.12 , pp. 632-639
    • Schalm, S.S.1    Blenis, J.2
  • 60
    • 0037718389 scopus 로고    scopus 로고
    • TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
    • Schalm, S. S., D. C. Fingar, D. M. Sabatini, and J. Blenis. 2003. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13:797-806.
    • (2003) Curr. Biol. , vol.13 , pp. 797-806
    • Schalm, S.S.1    Fingar, D.C.2    Sabatini, D.M.3    Blenis, J.4
  • 61
    • 0034234924 scopus 로고    scopus 로고
    • A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells
    • Sekulic, A., et al. 2000. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60:3504-3513.
    • (2000) Cancer Res , vol.60 , pp. 3504-3513
    • Sekulic, A.1
  • 62
    • 77950900079 scopus 로고    scopus 로고
    • mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
    • Soliman, G. A., et al. 2010. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem. 285:7866-7879.
    • (2010) J. Biol. Chem. , vol.285 , pp. 7866-7879
    • Soliman, G.A.1
  • 63
    • 0141733228 scopus 로고    scopus 로고
    • Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin
    • Tee, A. R., R. Anjum, and J. Blenis. 2003. Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin. J. Biol. Chem. 278:37288-37296.
    • (2003) J. Biol. Chem. , vol.278 , pp. 37288-37296
    • Tee, A.R.1    Anjum, R.2    Blenis, J.3
  • 64
    • 0037108750 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling
    • Tee, A. R., et al. 2002. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl. Acad. Sci. U. S. A. 99:13571-13576.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 13571-13576
    • Tee, A.R.1
  • 65
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee, A. R., B. D. Manning, P. P. Roux, L. C. Cantley, and J. Blenis. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13:1259-1268.
    • (2003) Curr. Biol. , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 66
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen, C. C., et al. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284:8023-8032.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1
  • 68
    • 0033548071 scopus 로고    scopus 로고
    • The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression
    • Vilella-Bach, M., P. Nuzzi, Y. Fang, and J. Chen. 1999. The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression. J. Biol. Chem. 274:4266-4272.
    • (1999) J. Biol. Chem. , vol.274 , pp. 4266-4272
    • Vilella-Bach, M.1    Nuzzi, P.2    Fang, Y.3    Chen, J.4
  • 69
    • 47049127002 scopus 로고    scopus 로고
    • Regulation of prolinerich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
    • Wang, L., T. E. Harris, and J. C. Lawrence, Jr. 2008. Regulation of prolinerich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 283:15619-15627.
    • (2008) J. Biol. Chem. , vol.283 , pp. 15619-15627
    • Wang, L.1    Harris, T.E.2    Lawrence Jr., J.C.3
  • 70
    • 34547099855 scopus 로고    scopus 로고
    • PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
    • Wang, L., T. E. Harris, R. A. Roth, and J. C. Lawrence, Jr. 2007. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 282:20036-20044.
    • (2007) J. Biol. Chem. , vol.282 , pp. 20036-20044
    • Wang, L.1    Harris, T.E.2    Roth, R.A.3    Lawrence Jr., J.C.4
  • 71
    • 67649344456 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR
    • Wang, L., J. C. Lawrence, Jr., T. W. Sturgill, and T. E. Harris. 2009. Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J. Biol. Chem. 284:14693-14697.
    • (2009) J. Biol. Chem. , vol.284 , pp. 14693-14697
    • Wang, L.1    Lawrence Jr., J.C.2    Sturgill, T.W.3    Harris, T.E.4
  • 72
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger, S., R. Loewith, and M. N. Hall. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.