-
1
-
-
67651210833
-
Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth
-
Acosta-Jaquez, H. A., et al. 2009. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol. Cell. Biol. 29: 4308-4324.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4308-4324
-
-
Acosta-Jaquez, H.A.1
-
3
-
-
59749090661
-
Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor
-
Avruch, J., et al. 2009. Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem. Soc. Trans. 37:223-226.
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 223-226
-
-
Avruch, J.1
-
4
-
-
34047095297
-
The two TORCs and Akt
-
Bhaskar, P. T., and N. Hay. 2007. The two TORCs and Akt. Dev. Cell 12:487-502.
-
(2007)
Dev. Cell
, vol.12
, pp. 487-502
-
-
Bhaskar, P.T.1
Hay, N.2
-
5
-
-
51049083138
-
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
-
Carriere, A., et al. 2008. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18:1269-1277.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1269-1277
-
-
Carriere, A.1
-
6
-
-
78650943298
-
ERK1/2 phosphorylate Raptor to promote Rasdependent activation of mTOR complex 1 (mTORC1)
-
Carriere, A., et al. 2011. ERK1/2 phosphorylate Raptor to promote Rasdependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 286: 567-577.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 567-577
-
-
Carriere, A.1
-
7
-
-
0029055145
-
Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue
-
Chen, J., X. F. Zheng, E. J. Brown, and S. L. Schreiber. 1995. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl. Acad. Sci. U. S. A. 92:4947-4951.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, pp. 4947-4951
-
-
Chen, J.1
Zheng, X.F.2
Brown, E.J.3
Schreiber, S.L.4
-
8
-
-
1942469564
-
Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status
-
Cheng, S. W., L. G. Fryer, D. Carling, and P. R. Shepherd. 2004. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem. 279:15719-15722.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 15719-15722
-
-
Cheng, S.W.1
Fryer, L.G.2
Carling, D.3
Shepherd, P.R.4
-
9
-
-
21844468767
-
Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase
-
Chiang, G. G., and R. T. Abraham. 2005. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280:25485-25490.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 25485-25490
-
-
Chiang, G.G.1
Abraham, R.T.2
-
10
-
-
0038482156
-
Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor
-
Choi, K. M., L. P. McMahon, and J. C. Lawrence, Jr. 2003. Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J. Biol. Chem. 278:19667-19673.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 19667-19673
-
-
Choi, K.M.1
McMahon, L.P.2
Lawrence Jr., J.C.3
-
11
-
-
61449235398
-
Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy
-
Choo, A. Y., and J. Blenis. 2009. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 8:567-572.
-
(2009)
Cell Cycle
, vol.8
, pp. 567-572
-
-
Choo, A.Y.1
Blenis, J.2
-
12
-
-
56249147509
-
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-typespecific repression of mRNA translation
-
Choo, A. Y., S. O. Yoon, S. G. Kim, P. P. Roux, and J. Blenis. 2008. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-typespecific repression of mRNA translation. Proc. Natl. Acad. Sci. U. S. A. 105:17414-17419.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 17414-17419
-
-
Choo, A.Y.1
Yoon, S.O.2
Kim, S.G.3
Roux, P.P.4
Blenis, J.5
-
13
-
-
34249679614
-
mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer
-
Dann, S. G., A. Selvaraj, and G. Thomas. 2007. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol. Med. 13:252-259.
-
(2007)
Trends Mol. Med.
, vol.13
, pp. 252-259
-
-
Dann, S.G.1
Selvaraj, A.2
Thomas, G.3
-
14
-
-
77952967459
-
mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
-
Dowling, R. J., et al. 2010. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172-1176.
-
(2010)
Science
, vol.328
, pp. 1172-1176
-
-
Dowling, R.J.1
-
15
-
-
62749096589
-
Mammalian target of rapamycin complex 1 signalling inputs, substrates and feedback mechanisms
-
Dunlop, E. A., and A. R. Tee. 2009. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal. 21: 827-835.
-
(2009)
Cell Signal
, vol.21
, pp. 827-835
-
-
Dunlop, E.A.1
Tee, A.R.2
-
16
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman, M. E., et al. 2009. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7:e38.
-
(2009)
PLoS Biol
, vol.7
-
-
Feldman, M.E.1
-
17
-
-
2342545519
-
Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression
-
Fingar, D. C., and J. Blenis. 2004. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151-3171.
-
(2004)
Oncogene
, vol.23
, pp. 3151-3171
-
-
Fingar, D.C.1
Blenis, J.2
-
18
-
-
0345732640
-
mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E
-
Fingar, D. C., et al. 2004. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24:200-216.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 200-216
-
-
Fingar, D.C.1
-
19
-
-
0037097863
-
Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
-
Fingar, D. C., S. Salama, C. Tsou, E. Harlow, and J. Blenis. 2002. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16:1472-1487.
-
(2002)
Genes Dev
, vol.16
, pp. 1472-1487
-
-
Fingar, D.C.1
Salama, S.2
Tsou, C.3
Harlow, E.4
Blenis, J.5
-
20
-
-
34548359244
-
PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
-
Fonseca, B. D., E. M. Smith, V. H. Lee, C. MacKintosh, and C. G. Proud. 2007. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J. Biol. Chem. 282: 24514-24524.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24514-24524
-
-
Fonseca, B.D.1
Smith, E.M.2
Lee, V.H.3
MacKintosh, C.4
Proud, C.G.5
-
21
-
-
73649098283
-
Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation
-
Foster, K. G., et al. 2010. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 285:80-94.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 80-94
-
-
Foster, K.G.1
-
22
-
-
77952007543
-
Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony
-
Foster, K. G., and D. C. Fingar. 2010. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J. Biol. Chem. 285: 14071-14077.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 14071-14077
-
-
Foster, K.G.1
Fingar, D.C.2
-
23
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
Garami, A., et al. 2003. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11:1457-1466.
-
(2003)
Mol. Cell
, vol.11
, pp. 1457-1466
-
-
Garami, A.1
-
24
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin, D. A., and D. M. Sabatini. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9-22.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
25
-
-
68149096799
-
The pharmacology of mTOR inhibition
-
Guertin, D. A., and D. M. Sabatini. 2009. The pharmacology of mTOR inhibition. Sci. Signal. 2:pe24.
-
(2009)
Sci. Signal.
, vol.2
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
26
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn, D. M., et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214-226.
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
-
27
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara, K., et al. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
-
28
-
-
27744569843
-
mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
Holz, M. K., B. A. Ballif, S. P. Gygi, and J. Blenis. 2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569-580.
-
(2005)
Cell
, vol.123
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
Blenis, J.4
-
29
-
-
22544455676
-
Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
-
Holz, M. K., and J. Blenis. 2005. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 280:26089-26093.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26089-26093
-
-
Holz, M.K.1
Blenis, J.2
-
30
-
-
44449161481
-
The TSC1-TSC2 complex: a molecular switchboard controlling cell growth
-
Huang, J., and B. D. Manning. 2008. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412:179-190.
-
(2008)
Biochem. J.
, vol.412
, pp. 179-190
-
-
Huang, J.1
Manning, B.D.2
-
31
-
-
11244297916
-
Dysregulation of the TSC-mTOR pathway in human disease
-
Inoki, K., M. N. Corradetti, and K. L. Guan. 2005. Dysregulation of the TSC-mTOR pathway in human disease. Nat. Genet. 37:19-24.
-
(2005)
Nat. Genet.
, vol.37
, pp. 19-24
-
-
Inoki, K.1
Corradetti, M.N.2
Guan, K.L.3
-
32
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki, K., Y. Li, T. Zhu, J. Wu, and K. L. Guan. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4:648-657.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
33
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki, K., T. Zhu, and K. L. Guan. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
34
-
-
52049091512
-
What controls TOR?
-
Jacinto, E. 2008. What controls TOR? IUBMB Life 60:483-496.
-
(2008)
IUBMB Life
, vol.60
, pp. 483-496
-
-
Jacinto, E.1
-
35
-
-
39749100492
-
TOR regulation of AGC kinases in yeast and mammals
-
Jacinto, E., and A. Lorberg. 2008. TOR regulation of AGC kinases in yeast and mammals. Biochem. J. 410:19-37.
-
(2008)
Biochem. J.
, vol.410
, pp. 19-37
-
-
Jacinto, E.1
Lorberg, A.2
-
36
-
-
0017581306
-
Coordination of growth with cell division in the yeast Saccharomyces cerevisiae
-
Johnston, G. C., J. R. Pringle, and L. H. Hartwell. 1977. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105:79-98.
-
(1977)
Exp. Cell Res.
, vol.105
, pp. 79-98
-
-
Johnston, G.C.1
Pringle, J.R.2
Hartwell, L.H.3
-
37
-
-
77950501014
-
mTOR regulation of autophagy
-
Jung, C. H., S. H. Ro, J. Cao, N. M. Otto, and D. H. Kim. 2010. mTOR regulation of autophagy. FEBS Lett. 584:1287-1295.
-
(2010)
FEBS Lett
, vol.584
, pp. 1287-1295
-
-
Jung, C.H.1
Ro, S.H.2
Cao, J.3
Otto, N.M.4
Kim, D.H.5
-
38
-
-
0037178786
-
mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery
-
Kim, D. H., et al. 2002. mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery. Cell 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
-
39
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim, D. H., D. Sarbassov dos, et al. 2003. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11:895-904.
-
(2003)
Mol. Cell
, vol.11
, pp. 895-904
-
-
Kim, D.H.1
Sarbassov dos, D.2
-
40
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim, E., P. Goraksha-Hicks, L. Li, T. P. Neufeld, and K. L. Guan. 2008. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10:935-945.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
41
-
-
27744588780
-
Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways
-
Kwiatkowski, D. J., and B. D. Manning. 2005. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet. 14(Spec. No. 2):R251-R258.
-
(2005)
Hum. Mol. Genet.
, vol.14
, Issue.SPEC. NO. 2
-
-
Kwiatkowski, D.J.1
Manning, B.D.2
-
42
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante, M., and D. M. Sabatini. 2009. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 19:R1046-R1052.
-
(2009)
Curr. Biol.
, vol.19
-
-
Laplante, M.1
Sabatini, D.M.2
-
43
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith, R., et al. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10:457-468.
-
(2002)
Mol. Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
-
44
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
-
Ma, L., Z. Chen, H. Erdjument-Bromage, P. Tempst, and P. P. Pandolfi. 2005. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179-193.
-
(2005)
Cell
, vol.121
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
45
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma, X. M., and J. Blenis. 2009. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10:307-318.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
46
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
-
Manning, B. D., A. R. Tee, M. N. Logsdon, J. Blenis, and L. C. Cantley. 2002. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10:151-162.
-
(2002)
Mol. Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
47
-
-
0036837863
-
The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin
-
McMahon, L. P., K. M. Choi, T. A. Lin, R. T. Abraham, and J. C. Lawrence, Jr. 2002. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol. Cell. Biol. 22:7428-7438.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 7428-7438
-
-
McMahon, L.P.1
Choi, K.M.2
Lin, T.A.3
Abraham, R.T.4
Lawrence Jr., J.C.5
-
48
-
-
0033429554
-
Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
-
Nave, B. T., M. Ouwens, D. J. Withers, D. R. Alessi, and P. R. Shepherd. 1999. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344:427-431.
-
(1999)
Biochem. J.
, vol.344
, pp. 427-431
-
-
Nave, B.T.1
Ouwens, M.2
Withers, D.J.3
Alessi, D.R.4
Shepherd, P.R.5
-
49
-
-
0037507252
-
The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif
-
Nojima, H., et al. 2003. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278:15461-15464.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 15461-15464
-
-
Nojima, H.1
-
50
-
-
34547133519
-
The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
-
Oshiro, N., et al. 2007. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282:20329-20339.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20329-20339
-
-
Oshiro, N.1
-
51
-
-
0034629365
-
FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions
-
Peterson, R. T., P. A. Beal, M. J. Comb, and S. L. Schreiber. 2000. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J. Biol. Chem. 275:7416-7423.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 7416-7423
-
-
Peterson, R.T.1
Beal, P.A.2
Comb, M.J.3
Schreiber, S.L.4
-
52
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson, T. R., et al. 2009. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873-886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
-
53
-
-
33750044112
-
Stress and mTORture signaling
-
Reiling, J. H., and D. M. Sabatini. 2006. Stress and mTORture signaling. Oncogene 25:6373-6383.
-
(2006)
Oncogene
, vol.25
, pp. 6373-6383
-
-
Reiling, J.H.1
Sabatini, D.M.2
-
54
-
-
4544384577
-
Tumorpromoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
-
Roux, P. P., B. A. Ballif, R. Anjum, S. P. Gygi, and J. Blenis. 2004. Tumorpromoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. U. S. A. 101:13489-13494.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 13489-13494
-
-
Roux, P.P.1
Ballif, B.A.2
Anjum, R.3
Gygi, S.P.4
Blenis, J.5
-
55
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y., et al. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
56
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak, Y., et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
57
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak, Y., et al. 2007. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25:903-915.
-
(2007)
Mol. Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
-
58
-
-
67649823420
-
Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
-
Sato, T., A. Nakashima, L. Guo, and F. Tamanoi. 2009. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 284:12783-12791.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12783-12791
-
-
Sato, T.1
Nakashima, A.2
Guo, L.3
Tamanoi, F.4
-
59
-
-
0037117409
-
Identification of a conserved motif required for mTOR signaling
-
Schalm, S. S., and J. Blenis. 2002. Identification of a conserved motif required for mTOR signaling. Curr. Biol. 12:632-639.
-
(2002)
Curr. Biol.
, vol.12
, pp. 632-639
-
-
Schalm, S.S.1
Blenis, J.2
-
60
-
-
0037718389
-
TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
-
Schalm, S. S., D. C. Fingar, D. M. Sabatini, and J. Blenis. 2003. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13:797-806.
-
(2003)
Curr. Biol.
, vol.13
, pp. 797-806
-
-
Schalm, S.S.1
Fingar, D.C.2
Sabatini, D.M.3
Blenis, J.4
-
61
-
-
0034234924
-
A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells
-
Sekulic, A., et al. 2000. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60:3504-3513.
-
(2000)
Cancer Res
, vol.60
, pp. 3504-3513
-
-
Sekulic, A.1
-
62
-
-
77950900079
-
mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
-
Soliman, G. A., et al. 2010. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem. 285:7866-7879.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7866-7879
-
-
Soliman, G.A.1
-
63
-
-
0141733228
-
Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin
-
Tee, A. R., R. Anjum, and J. Blenis. 2003. Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin. J. Biol. Chem. 278:37288-37296.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37288-37296
-
-
Tee, A.R.1
Anjum, R.2
Blenis, J.3
-
64
-
-
0037108750
-
Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling
-
Tee, A. R., et al. 2002. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl. Acad. Sci. U. S. A. 99:13571-13576.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 13571-13576
-
-
Tee, A.R.1
-
65
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee, A. R., B. D. Manning, P. P. Roux, L. C. Cantley, and J. Blenis. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13:1259-1268.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
66
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen, C. C., et al. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284:8023-8032.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
-
67
-
-
33847397874
-
Insulin signaling to mTOR mediated by the AKT/PKB substrate PRAS40
-
van der Haar, E., S. I. Lee, S. Bandhakavi, T. J. Griffin, and D. H. Kim. 2007. Insulin signaling to mTOR mediated by the AKT/PKB substrate PRAS40. Nat. Cell Biol. 9:316-323.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 316-323
-
-
van der Haar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
68
-
-
0033548071
-
The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression
-
Vilella-Bach, M., P. Nuzzi, Y. Fang, and J. Chen. 1999. The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression. J. Biol. Chem. 274:4266-4272.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 4266-4272
-
-
Vilella-Bach, M.1
Nuzzi, P.2
Fang, Y.3
Chen, J.4
-
69
-
-
47049127002
-
Regulation of prolinerich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
-
Wang, L., T. E. Harris, and J. C. Lawrence, Jr. 2008. Regulation of prolinerich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 283:15619-15627.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 15619-15627
-
-
Wang, L.1
Harris, T.E.2
Lawrence Jr., J.C.3
-
70
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang, L., T. E. Harris, R. A. Roth, and J. C. Lawrence, Jr. 2007. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 282:20036-20044.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence Jr., J.C.4
-
71
-
-
67649344456
-
Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR
-
Wang, L., J. C. Lawrence, Jr., T. W. Sturgill, and T. E. Harris. 2009. Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J. Biol. Chem. 284:14693-14697.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14693-14697
-
-
Wang, L.1
Lawrence Jr., J.C.2
Sturgill, T.W.3
Harris, T.E.4
-
72
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger, S., R. Loewith, and M. N. Hall. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
|