-
1
-
-
84930363624
-
MTOR signaling in cellular and organismal energetics
-
Albert, V. & Hall, M. N. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol. 33, 55-66 (2015).
-
(2015)
Curr. Opin. Cell Biol
, vol.33
, pp. 55-66
-
-
Albert, V.1
Hall, M.N.2
-
2
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
4
-
-
84957587533
-
TOR complexes and the maintenance of cellular homeostasis
-
Eltschinger, S. & Loewith, R. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol. 26, 148-159 (2015).
-
(2015)
Trends Cell Biol
, vol.26
, pp. 148-159
-
-
Eltschinger, S.1
Loewith, R.2
-
5
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909 (1991).
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
Movva, N.R.2
Hall, M.N.3
-
6
-
-
84856351274
-
Evolution of the TOR pathway
-
van Dam, T. J. P., Zwartkruis, F. J. T., Bos, J. L. & Snel, B. Evolution of the TOR pathway. J. Mol. Evol. 73, 209-220 (2011).
-
(2011)
J. Mol. Evol
, vol.73
, pp. 209-220
-
-
Van Dam, T.J.P.1
Zwartkruis, F.J.T.2
Bos, J.L.3
Snel, B.4
-
7
-
-
0027311858
-
Target of rapamycin in yeast TOR 2, is an essential phosphatidylinositol kinase homolog required for G1 progression
-
Kunz, J. et al. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73, 585-596 (1993).
-
(1993)
Cell
, vol.73
, pp. 585-596
-
-
Kunz, J.1
-
8
-
-
0028137771
-
TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast
-
Helliwell, S. B. et al. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell 5, 105-118 (1994).
-
(1994)
Mol. Biol. Cell
, vol.5
, pp. 105-118
-
-
Helliwell, S.B.1
-
9
-
-
0028239893
-
RAFT1: A mammalian protein that binds to FKBP12 in a rapamycindependent fashion and is homologous to yeast TORs
-
Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycindependent fashion and is homologous to yeast TORs. Cell 78, 35-43 (1994).
-
(1994)
Cell
, vol.78
, pp. 35-43
-
-
Sabatini, D.M.1
Erdjument-Bromage, H.2
Lui, M.3
Tempst, P.4
Snyder, S.H.5
-
10
-
-
0028360374
-
A mammalian protein targeted by G1-arresting rapamycinreceptor complex
-
Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycinreceptor complex. Nature 369, 756-758 (1994).
-
(1994)
Nature
, vol.369
, pp. 756-758
-
-
Brown, E.J.1
-
11
-
-
0037178781
-
Raptor a binding partner of target of rapamycin (TOR) mediates TOR action
-
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189 (2002).
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
-
12
-
-
0037345059
-
Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae
-
Wedaman, K. P. et al. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 1204-1220 (2003).
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1204-1220
-
-
Wedaman, K.P.1
-
13
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122-1128 (2004).
-
(2004)
Nat. Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
-
14
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175 (2002).
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.-H.1
-
15
-
-
0036753494
-
Two TOR complexes, only one of which is Rapamycin sensitive, have distinct roles in cell growth control
-
Loewith, R. et al. Two TOR complexes, only one of which is Rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457-468 (2002).
-
(2002)
Mol. Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
-
16
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith, R. & Hall, M. N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177-1201 (2011).
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
17
-
-
84912528393
-
MTOR and autophagy: A dynamic relationship governed by nutrients and energy
-
Dunlop, E. A. & Tee, A. R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 36, 121-129 (2014).
-
(2014)
Semin. Cell Dev. Biol
, vol.36
, pp. 121-129
-
-
Dunlop, E.A.1
Tee, A.R.2
-
18
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell, J. L., Russell, R. C. & Guan, K.-L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 14, 133-139 (2013).
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
Russell, R.C.2
Guan, K.-L.3
-
19
-
-
84906101292
-
TORC2 - A new player in genome stability
-
Weisman, R., Cohen, A. & Gasser, S. M. TORC2-a new player in genome stability. EMBO Mol Med. 6, 995-1002 (2014).
-
(2014)
EMBO Mol Med
, vol.6
, pp. 995-1002
-
-
Weisman, R.1
Cohen, A.2
Gasser, S.M.3
-
20
-
-
84885187437
-
A central role for mTOR in lipid homeostasis
-
Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell Metab. 18, 465-469 (2013).
-
(2013)
Cell Metab
, vol.18
, pp. 465-469
-
-
Lamming, D.W.1
Sabatini, D.M.2
-
21
-
-
33748471980
-
MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
-
Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 1865-1870 (2006).
-
(2006)
Curr. Biol
, vol.16
, pp. 1865-1870
-
-
Frias, M.A.1
-
22
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim, D.-H. et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895-904 (2003).
-
(2003)
Mol. Cell
, vol.11
, pp. 895-904
-
-
Kim, D.-H.1
-
23
-
-
33751079895
-
Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity
-
Yang, Q., Inoki, K., Ikenoue, T. & Guan, K.-L. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev. 20, 2820-2832 (2006).
-
(2006)
Genes Dev
, vol.20
, pp. 2820-2832
-
-
Yang, Q.1
Inoki, K.2
Ikenoue, T.3
Guan, K.-L.4
-
24
-
-
24744439255
-
Molecular organization of target of rapamycin complex 2
-
Wullschleger, S., Loewith, R., Oppliger, W. & Hall, M. N. Molecular organization of target of rapamycin complex 2. J. Biol. Chem. 280, 30697-30704 (2005).
-
(2005)
J. Biol. Chem
, vol.280
, pp. 30697-30704
-
-
Wullschleger, S.1
Loewith, R.2
Oppliger, W.3
Hall, M.N.4
-
25
-
-
0037732600
-
LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway
-
Chen, E. J. & Kaiser, C. A. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J. Cell. Biol. 161, 333-347 (2003).
-
(2003)
J. Cell. Biol
, vol.161
, pp. 333-347
-
-
Chen, E.J.1
Kaiser, C.A.2
-
26
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K.-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935-945 (2008).
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.-L.5
-
27
-
-
69749113579
-
The Vam6 GEF controls TORC1 by activating the EGO complex
-
Binda, M. et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563-573 (2009).
-
(2009)
Mol. Cell
, vol.35
, pp. 563-573
-
-
Binda, M.1
-
28
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
29
-
-
84856453804
-
Regulation of TOR by small GTPases
-
Durán, R. V. & Hall, M. N. Regulation of TOR by small GTPases. EMBO Rep. 13, 121-128 (2012).
-
(2012)
EMBO Rep
, vol.13
, pp. 121-128
-
-
Durán, R.V.1
Hall, M.N.2
-
30
-
-
84954467884
-
Dynamic relocation of the TORC1-Gtr1/2-Ego1/2/3 complex is regulated by Gtr1 and Gtr2
-
Kira, S. et al. Dynamic relocation of the TORC1-Gtr1/2-Ego1/2/3 complex is regulated by Gtr1 and Gtr2. Mol. Biol. Cell 27, 382-396 (2015).
-
(2015)
Mol. Biol. Cell
, vol.27
, pp. 382-396
-
-
Kira, S.1
-
31
-
-
84922210268
-
Current treatment strategies for inhibiting mTOR in cancer
-
Chiarini, F., Evangelisti, C., McCubrey, J. A. & Martelli, A. M. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol. Sci. 36, 124-135 (2015).
-
(2015)
Trends Pharmacol. Sci
, vol.36
, pp. 124-135
-
-
Chiarini, F.1
Evangelisti, C.2
McCubrey, J.A.3
Martelli, A.M.4
-
32
-
-
84880709668
-
MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
-
Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566-1236566 (2013).
-
(2013)
Science
, vol.341
, pp. 1236566
-
-
Kang, S.A.1
-
33
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109-113 (2012).
-
(2012)
Nature
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
-
34
-
-
0037718389
-
TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
-
Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13, 797-806 (2003).
-
(2003)
Curr. Biol
, vol.13
, pp. 797-806
-
-
Schalm, S.S.1
Fingar, D.C.2
Sabatini, D.M.3
Blenis, J.4
-
35
-
-
84913597045
-
PIKKs - The solenoid nest where partners and kinases meet
-
Baretić, D. & Williams, R. L. PIKKs-the solenoid nest where partners and kinases meet. Curr. Opin. Struct. Biol. 29, 134-142 (2014).
-
(2014)
Curr. Opin. Struct. Biol
, vol.29
, pp. 134-142
-
-
Baretić, D.1
Williams, R.L.2
-
36
-
-
0034193150
-
FAT: A novel domain in PIK-related kinases
-
Bosotti, R., Isacchi, A. & Sonnhammer, E. L. FAT: a novel domain in PIK-related kinases. Trends Biochem. Sci. 25, 225-227 (2000).
-
(2000)
Trends Biochem. Sci
, vol.25
, pp. 225-227
-
-
Bosotti, R.1
Isacchi, A.2
Sonnhammer, E.L.3
-
37
-
-
84877761058
-
MTOR kinase structure, mechanism and regulation
-
Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217-223 (2013).
-
(2013)
Nature
, vol.497
, pp. 217-223
-
-
Yang, H.1
-
38
-
-
0029842109
-
Structure of the FKBP12- rapamycin complex interacting with the binding domain of human FRAP
-
Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12- rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239-242 (1996).
-
(1996)
Science
, vol.273
, pp. 239-242
-
-
Choi, J.1
Chen, J.2
Schreiber, S.L.3
Clardy, J.4
-
39
-
-
0037462453
-
The ATRs ATMs, and TORs are giant HEAT repeat proteins
-
Perry, J. & Kleckner, N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112, 151-155 (2003).
-
(2003)
Cell
, vol.112
, pp. 151-155
-
-
Perry, J.1
Kleckner, N.2
-
40
-
-
84905705220
-
Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD
-
Melero, R. et al. Structures of SMG1-UPFs Complexes: SMG1 Contributes to Regulate UPF2-Dependent Activation of UPF1 in NMD. Structure 22, 1105-1119 (2014).
-
(2014)
Structure
, vol.22
, pp. 1105-1119
-
-
Melero, R.1
-
41
-
-
73849140503
-
Crystal structure of DNAPKcs reveals a large open-ring cradle comprised of HEAT repeats
-
Sibanda, B. L., Chirgadze, D. Y. & Blundell, T. L. Crystal structure of DNAPKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463, 118-121 (2010).
-
(2010)
Nature
, vol.463
, pp. 118-121
-
-
Sibanda, B.L.1
Chirgadze, D.Y.2
Blundell, T.L.3
-
42
-
-
0034711280
-
HEAT repeats mediate plasma membrane localization of Tor2p in yeast
-
Kunz, J., Schneider, U., Howald, I., Schmidt, A. & Hall, M. N. HEAT repeats mediate plasma membrane localization of Tor2p in yeast. J. Biol. Chem. 275, 37011-37020 (2000).
-
(2000)
J. Biol. Chem
, vol.275
, pp. 37011-37020
-
-
Kunz, J.1
Schneider, U.2
Howald, I.3
Schmidt, A.4
Hall, M.N.5
-
43
-
-
54249110478
-
TOR1 and TOR2 have distinct locations in live cells
-
Sturgill, T. W. et al. TOR1 and TOR2 have distinct locations in live cells. Eukaryot. Cell 7, 1819-1830 (2008).
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 1819-1830
-
-
Sturgill, T.W.1
-
44
-
-
37349014081
-
Tel2 regulates the stability of PI3K-related protein kinases
-
Takai, H., Wang, R., Takai, K., Yang, H. & de Lange, T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 131, 1248-1259 (2007).
-
(2007)
Cell
, vol.131
, pp. 1248-1259
-
-
Takai, H.1
Wang, R.2
Takai, K.3
Yang, H.4
De Lange, T.5
-
45
-
-
77956856907
-
Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes
-
Takai, H., Xie, Y., de Lange, T. & Pavletich, N. P. Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev. 24, 2019-2030 (2010).
-
(2010)
Genes Dev
, vol.24
, pp. 2019-2030
-
-
Takai, H.1
Xie, Y.2
De Lange, T.3
Pavletich, N.P.4
-
46
-
-
77953800576
-
Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
-
Kaizuka, T. et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 285, 20109-20116 (2010).
-
(2010)
J. Biol. Chem
, vol.285
, pp. 20109-20116
-
-
Kaizuka, T.1
-
47
-
-
34547169439
-
Structure of TOR and its complex with KOG1
-
Adami, A., Garcia-Alvarez, B., Arias-Palomo, E., Barford, D. & Llorca, O. Structure of TOR and its complex with KOG1. Mol. Cell 27, 509-516 (2007).
-
(2007)
Mol. Cell
, vol.27
, pp. 509-516
-
-
Adami, A.1
Garcia-Alvarez, B.2
Arias-Palomo, E.3
Barford, D.4
Llorca, O.5
-
48
-
-
77953091045
-
Structure of the human mTOR complex i and its implications for rapamycin inhibition
-
Yip, C. K., Murata, K., Walz, T., Sabatini, D. M. & Kang, S. A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38, 768-774 (2010).
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
Murata, K.2
Walz, T.3
Sabatini, D.M.4
Kang, S.A.5
-
49
-
-
84952950121
-
Architecture of human mTOR complex 1
-
Aylett, C. H. S. et al. Architecture of human mTOR complex 1. Science 351, 48-52 (2016).
-
(2016)
Science
, vol.351
, Issue.48-52
-
-
Aylett, C.H.S.1
-
50
-
-
17644392830
-
TM-align: A protein structure alignment algorithm based on the TM-score
-
Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302-2309 (2005).
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 2302-2309
-
-
Zhang, Y.1
Skolnick, J.2
-
51
-
-
0034234924
-
A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogenstimulated and transformed cells
-
Sekulic, A. et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogenstimulated and transformed cells. Cancer Res. 60, 3504-3513 (2000).
-
(2000)
Cancer Res
, vol.60
, pp. 3504-3513
-
-
Sekulic, A.1
-
52
-
-
0036837863
-
The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin
-
McMahon, L. P., Choi, K. M., Lin, T.-A., Abraham, R. T. & Lawrence, J. C. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7428-7438 (2002).
-
(2002)
Mol. Cell Biol
, vol.22
, pp. 7428-7438
-
-
McMahon, L.P.1
Choi, K.M.2
Lin, T.-A.3
Abraham, R.T.4
Lawrence, J.C.5
-
53
-
-
77951978637
-
Insights into the domain and repeat architecture of target of rapamycin
-
Knutson, B. A. Insights into the domain and repeat architecture of target of rapamycin. J. Struct. Biol. 170, 354-363 (2010).
-
(2010)
J. Struct. Biol
, vol.170
, pp. 354-363
-
-
Knutson, B.A.1
-
54
-
-
74249104499
-
Fast and accurate automatic structure prediction with HHpred
-
Hildebrand, A., Remmert, M., Biegert, A. & Söding, J. Fast and accurate automatic structure prediction with HHpred. Proteins 77, 128-132 (2009).
-
(2009)
Proteins
, vol.77
, pp. 128-132
-
-
Hildebrand, A.1
Remmert, M.2
Biegert, A.3
Söding, J.4
-
55
-
-
23144452044
-
The HHpred interactive server for protein homology detection and structure prediction
-
Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244-W248 (2005).
-
(2005)
Nucleic Acids Res
, vol.33
, pp. W244-W248
-
-
Söding, J.1
Biegert, A.2
Lupas, A.N.3
-
56
-
-
84937633778
-
Molecular basis of the rapamycin insensitivity of target of Rapamycin complex 2
-
Gaubitz, C. et al. Molecular basis of the rapamycin insensitivity of target of Rapamycin complex 2. Mol. Cell 58, 977-988 (2015).
-
(2015)
Mol. Cell
, vol.58
, pp. 977-988
-
-
Gaubitz, C.1
-
57
-
-
0031453135
-
The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus
-
Brunn, G. J., Fadden, P., Haystead, T. A. & Lawrence, J. C. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J. Biol. Chem. 272, 32547-32550 (1997).
-
(1997)
J. Biol. Chem
, vol.272
, pp. 32547-32550
-
-
Brunn, G.J.1
Fadden, P.2
Haystead, T.A.3
Lawrence, J.C.4
-
58
-
-
51849114713
-
Activation of ATR and related PIKKs
-
Mordes, D. A. & Cortez, D. Activation of ATR and related PIKKs. Cell Cycle 7, 2809-2812 (2008).
-
(2008)
Cell Cycle
, vol.7
, pp. 2809-2812
-
-
Mordes, D.A.1
Cortez, D.2
-
59
-
-
21844468767
-
Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase
-
Chiang, G. G. & Abraham, R. T. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280, 25485-25490 (2005).
-
(2005)
J. Biol. Chem
, vol.280
, pp. 25485-25490
-
-
Chiang, G.G.1
Abraham, R.T.2
-
60
-
-
22544455676
-
Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
-
Holz, M. K. & Blenis, J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 280, 26089-26093 (2005).
-
(2005)
J. Biol. Chem
, vol.280
, pp. 26089-26093
-
-
Holz, M.K.1
Blenis, J.2
-
61
-
-
77956886751
-
Conservation duplication and loss of the Tor signaling pathway in the fungal kingdom
-
Shertz, C. A., Bastidas, R. J., Li, W., Heitman, J. & Cardenas, M. E. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 11, 510 (2010).
-
(2010)
BMC Genomics
, vol.11
, pp. 510
-
-
Shertz, C.A.1
Bastidas, R.J.2
Li, W.3
Heitman, J.4
Cardenas, M.E.5
-
62
-
-
33845332754
-
EMAN2: An extensible image processing suite for electron microscopy
-
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38-46 (2007).
-
(2007)
J. Struct. Biol
, vol.157
, pp. 38-46
-
-
Tang, G.1
-
63
-
-
84880848354
-
Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
-
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Meth. 10, 584-590 (2013).
-
(2013)
Nat. Meth
, vol.10
, pp. 584-590
-
-
Li, X.1
-
64
-
-
84868444740
-
RELION: Implementation of a Bayesian approach to cryo-EM structure determination
-
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530 (2012).
-
(2012)
J. Struct. Biol.
, vol.180
, pp. 519-530
-
-
Scheres, W.1
-
65
-
-
84922727036
-
Semi-automated selection of cryo-EM particles in RELION-1.3
-
Scheres, S. H. W. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114-122 (2015).
-
(2015)
J. Struct. Biol
, vol.189
, pp. 114-122
-
-
Scheres, S.H.W.1
-
66
-
-
84878580683
-
Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles
-
Bai, X.-C., Fernández, I. S., McMullan, G. & Scheres, S. H. W. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2, e00461 (2013).
-
(2013)
Elife
, vol.2
, pp. e00461
-
-
Bai, X.-C.1
Fernández, I.S.2
McMullan, G.3
Scheres, S.H.W.4
-
67
-
-
84920942671
-
Beam-induced motion correction for sub-megadalton cryo-EM particles
-
Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. Elife 3, e03665 (2014).
-
(2014)
Elife
, vol.3
, pp. e03665
-
-
Scheres, S.H.1
-
68
-
-
84866078359
-
Prevention of overfitting in cryo-EM structure determination
-
Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Meth. 9, 853-854 (2012).
-
(2012)
Nat. Meth
, vol.9
, pp. 853-854
-
-
Scheres, S.H.W.1
Chen, S.2
-
69
-
-
84880607763
-
High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
-
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24-35 (2013).
-
(2013)
Ultramicroscopy
, vol.135
, pp. 24-35
-
-
Chen, S.1
-
70
-
-
0142042865
-
Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy
-
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745 (2003).
-
(2003)
J. Mol. Biol
, vol.333
, pp. 721-745
-
-
Rosenthal, P.B.1
Henderson, R.2
-
71
-
-
84894623755
-
Quantifying the local resolution of cryo-EM density maps
-
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Meth. 11, 63-65 (2014).
-
(2014)
Nat. Meth
, vol.11
, pp. 63-65
-
-
Kucukelbir, A.1
Sigworth, F.J.2
Tagare, H.D.3
-
73
-
-
84909949436
-
Tool: Phenix.real-space-refine
-
Afonine, P., Headd, J. J., Terwilliger, T. & Adams, P. Tool: phenix.real-space-refine. Comput. Crystall. Newsletter 4, 43-44 (2013).
-
(2013)
Comput. Crystall. Newsletter
, vol.4
, pp. 43-44
-
-
Afonine, P.1
Headd, J.J.2
Terwilliger, T.3
Adams, P.4
-
74
-
-
44949165726
-
Image processing for electron microscopy single-particle analysis using XMIPP
-
Scheres, S. H. W., Núñez-Ramírez, R., Sorzano, C. O. S., Carazo, J. M. & Marabini, R. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977-990 (2008).
-
(2008)
Nat. Protoc
, vol.3
, pp. 977-990
-
-
Scheres, S.H.W.1
Núñez-Ramírez, R.2
Sorzano, C.O.S.3
Carazo, J.M.4
Marabini, R.5
-
75
-
-
84955307962
-
Sampling the conformational space of the catalytic subunit of human g-secretase
-
Bai, X.-C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. Sampling the conformational space of the catalytic subunit of human g-secretase. Elife 4, e11182 (2015).
-
(2015)
Elife
, vol.4
, pp. e11182
-
-
Bai, X.-C.1
Rajendra, E.2
Yang, G.3
Shi, Y.4
Scheres, S.H.5
|