-
1
-
-
84903642586
-
Diabetes, oxidative stress and therapeutic strategies
-
Rochette L, Zeller M, Cottin Y, Vergely C. 2014. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840:2709-2729. http://dx.doi.org/10.1016/j.bbagen.2014.05.017.
-
(2014)
Biochim Biophys Acta
, vol.1840
, pp. 2709-2729
-
-
Rochette, L.1
Zeller, M.2
Cottin, Y.3
Vergely, C.4
-
2
-
-
84901052694
-
ROS function in redox signaling and oxidative stress
-
Schieber M, Chandel NS. 2014. ROS function in redox signaling and oxidative stress. Curr Biol 24:R453-R462. http://dx.doi.org/10.1016/j.cub.2014.03.034.
-
(2014)
Curr Biol
, vol.24
, pp. R453-R462
-
-
Schieber, M.1
Chandel, N.S.2
-
3
-
-
79955965088
-
Glyoxalase system in yeasts: structure, function, and physiology
-
Inoue Y, Maeta K, Nomura W. 2011. Glyoxalase system in yeasts: structure, function, and physiology. Semin Cell Dev Biol 22:278-284. http://dx.doi.org/10.1016/j.semcdb.2011.02.002.
-
(2011)
Semin Cell Dev Biol
, vol.22
, pp. 278-284
-
-
Inoue, Y.1
Maeta, K.2
Nomura, W.3
-
4
-
-
43449094351
-
Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease
-
Thornalley PJ. 2008. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease. Drug Metabol Drug Interact 23:125-150.
-
(2008)
Drug Metabol Drug Interact
, vol.23
, pp. 125-150
-
-
Thornalley, P.J.1
-
5
-
-
79955945923
-
Glyoxalase in diabetes, obesity and related disorders
-
Rabbani N, Thornalley PJ. 2011. Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22:309-317. http://dx.doi.org/10.1016/j.semcdb.2011.02.015.
-
(2011)
Semin Cell Dev Biol
, vol.22
, pp. 309-317
-
-
Rabbani, N.1
Thornalley, P.J.2
-
6
-
-
84877873718
-
Methylglyoxal, obesity, and diabetes
-
Matafome P, Sena C, Seiça R. 2013. Methylglyoxal, obesity, and diabetes. Endocrine 43:472-484. http://dx.doi.org/10.1007/s12020-012-9795-8.
-
(2013)
Endocrine
, vol.43
, pp. 472-484
-
-
Matafome, P.1
Sena, C.2
Seiça, R.3
-
7
-
-
84897568346
-
Role of methylglyoxal in Alzheimer's disease
-
Angeloni C, Zambonin L, Hrelia S. 2014. Role of methylglyoxal in Alzheimer's disease. Biomed Res Int 2014:238485. http://dx.doi.org/10.1155/2014/238485.
-
(2014)
Biomed Res Int
, vol.2014
-
-
Angeloni, C.1
Zambonin, L.2
Hrelia, S.3
-
8
-
-
0033825418
-
AGEs and carbonyl stress: potential pathogenetic factors of long-term uraemic complications
-
Zoccali C, Mallamaci F, Tripepi G. 2000. AGEs and carbonyl stress: potential pathogenetic factors of long-term uraemic complications. Nephrol Dial Transplant 15:7-11. http://dx.doi.org/10.1093/ndt/15.suppl_1.7.
-
(2000)
Nephrol Dial Transplant
, vol.15
, pp. 7-11
-
-
Zoccali, C.1
Mallamaci, F.2
Tripepi, G.3
-
9
-
-
23744447530
-
Dicarbonyl intermediates in the Maillard reaction
-
Thornalley PJ. 2005. Dicarbonyl intermediates in the Maillard reaction. Ann N Y Acad Sci 1043:111-117. http://dx.doi.org/10.1196/annals.1333.014.
-
(2005)
Ann N Y Acad Sci
, vol.1043
, pp. 111-117
-
-
Thornalley, P.J.1
-
10
-
-
4544374631
-
Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis
-
Maeta K, Izawa S, Okazaki S, Kuge S, Inoue Y. 2004. Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol Cell Biol 24:8753-8764. http://dx.doi.org/10.1128/MCB.24.19.8753-8764.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8753-8764
-
-
Maeta, K.1
Izawa, S.2
Okazaki, S.3
Kuge, S.4
Inoue, Y.5
-
11
-
-
33646918686
-
Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe
-
Takatsume Y, Izawa S, Inoue Y. 2006. Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe. J Biol Chem 281:9086-9092. http://dx.doi.org/10.1074/jbc. M511037200.
-
(2006)
J Biol Chem
, vol.281
, pp. 9086-9092
-
-
Takatsume, Y.1
Izawa, S.2
Inoue, Y.3
-
12
-
-
12844281130
-
Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae
-
Maeta K, Izawa S, Inoue Y. 2005. Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253-260. http://dx.doi.org/10.1074/jbc. M408061200.
-
(2005)
J Biol Chem
, vol.280
, pp. 253-260
-
-
Maeta, K.1
Izawa, S.2
Inoue, Y.3
-
13
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
14
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177-1201. http://dx.doi.org/10.1534/genetics.111.133363.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
15
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457-468. http://dx.doi.org/10.1016/S1097-2765(02)00636-6.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
16
-
-
39749100492
-
TOR regulation of AGC kinases in yeast and mammals
-
Jacinto E, Lorberg A. 2008. TOR regulation of AGC kinases in yeast and mammals. Biochem J 410:19-37. http://dx.doi.org/10.1042/BJ20071518.
-
(2008)
Biochem J
, vol.410
, pp. 19-37
-
-
Jacinto, E.1
Lorberg, A.2
-
17
-
-
23344448223
-
Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
-
Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R, Hall MN, Ohsumi Y. 2005. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25:7239-7248. http://dx.doi.org/10.1128/MCB.25.16.7239-7248.2005.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 7239-7248
-
-
Kamada, Y.1
Fujioka, Y.2
Suzuki, N.N.3
Inagaki, F.4
Wullschleger, S.5
Loewith, R.6
Hall, M.N.7
Ohsumi, Y.8
-
18
-
-
84857131380
-
Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2
-
Niles BJ, Mogri H, Hill A, Vlahakis A, Powers T. 2012. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc Natl Acad Sci U S A 109:1536-1541. http://dx.doi.org/10.1073/pnas.1117563109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 1536-1541
-
-
Niles, B.J.1
Mogri, H.2
Hill, A.3
Vlahakis, A.4
Powers, T.5
-
19
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R. 2007. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663-674. http://dx.doi.org/10.1016/j.molcel.2007.04.020.
-
(2007)
Mol Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
Wanke, V.7
Anrather, D.8
Ammerer, G.9
Riezman, H.10
Broach, J.R.11
De Virgilio, C.12
Hall, M.N.13
Loewith, R.14
-
20
-
-
0028301447
-
Protein kinase C in yeast. Characteristics of the Saccharomyces cerevisiae PKC1 gene product
-
Antonsson B, Montessuit S, Friedli L, Payton MA, Paravicini G. 1994. Protein kinase C in yeast. Characteristics of the Saccharomyces cerevisiae PKC1 gene product. J Biol Chem 269:16821-16828.
-
(1994)
J Biol Chem
, vol.269
, pp. 16821-16828
-
-
Antonsson, B.1
Montessuit, S.2
Friedli, L.3
Payton, M.A.4
Paravicini, G.5
-
21
-
-
0028309762
-
Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC
-
Watanabe M, Chen CY, Levin DE. 1994. Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J Biol Chem 269:16829-16836.
-
(1994)
J Biol Chem
, vol.269
, pp. 16829-16836
-
-
Watanabe, M.1
Chen, C.Y.2
Levin, D.E.3
-
22
-
-
0031882240
-
TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae
-
Helliwell SB, Howald I, Barbet N, Hall MN. 1998. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148:99-112.
-
(1998)
Genetics
, vol.148
, pp. 99-112
-
-
Helliwell, S.B.1
Howald, I.2
Barbet, N.3
Hall, M.N.4
-
23
-
-
0032488042
-
The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton
-
Helliwell SB, Schmidt A, Ohya Y, Hall MN. 1998. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol 8:1211-1214. http://dx.doi.org/10.1016/S0960-9822(07)00511-8.
-
(1998)
Curr Biol
, vol.8
, pp. 1211-1214
-
-
Helliwell, S.B.1
Schmidt, A.2
Ohya, Y.3
Hall, M.N.4
-
24
-
-
19444376122
-
Saccharomyces cerevisiae TSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex
-
Ho HL, Shiau YS, Chen MY. 2005. Saccharomyces cerevisiae TSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet 47:273-288. http://dx.doi.org/10.1007/s00294-005-0570-8.
-
(2005)
Curr Genet
, vol.47
, pp. 273-288
-
-
Ho, H.L.1
Shiau, Y.S.2
Chen, M.Y.3
-
25
-
-
70449900928
-
TOR complex 2: a signaling pathway of its own
-
Cybulski N, Hall MN. 2009. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34:620-627. http://dx.doi.org/10.1016/j.tibs.2009.09.004.
-
(2009)
Trends Biochem Sci
, vol.34
, pp. 620-627
-
-
Cybulski, N.1
Hall, M.N.2
-
26
-
-
82555166000
-
mTOR signaling in disease
-
Dazert E, Hall MN. 2011. mTOR signaling in disease. Curr Opin Cell Biol 23:744-755. http://dx.doi.org/10.1016/j.ceb.2011.09.003.
-
(2011)
Curr Opin Cell Biol
, vol.23
, pp. 744-755
-
-
Dazert, E.1
Hall, M.N.2
-
27
-
-
78650510609
-
mTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21-35. http://dx.doi.org/10.1038/nrm3025.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
28
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098-1101. http://dx.doi.org/10.1126/science.1106148.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
29
-
-
0037088811
-
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
-
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. 2002. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23. http://dx.doi.org/10.1093/nar/30.6.e23.
-
(2002)
Nucleic Acids Res
, vol.30
-
-
Gueldener, U.1
Heinisch, J.2
Koehler, G.J.3
Voss, D.4
Hegemann, J.H.5
-
30
-
-
0036812207
-
Dissection of upstream regulatory components of the Rho1p effector, 1,3-ß-glucan synthase, in Saccharomyces cerevisiae
-
Sekiya-Kawasaki M, Abe M, Saka A, Watanabe D, Kono K, Minemura-Asakawa M, Ishihara S, Watanabe T, Ohya Y. 2002. Dissection of upstream regulatory components of the Rho1p effector, 1,3-ß-glucan synthase, in Saccharomyces cerevisiae. Genetics 162:663-676.
-
(2002)
Genetics
, vol.162
, pp. 663-676
-
-
Sekiya-Kawasaki, M.1
Abe, M.2
Saka, A.3
Watanabe, D.4
Kono, K.5
Minemura-Asakawa, M.6
Ishihara, S.7
Watanabe, T.8
Ohya, Y.9
-
31
-
-
0029938309
-
Genetic evidence for the functional redundancy of the calcineurin- and Mpk1-mediated pathways in the regulation of cellular events important for growth in Saccharomyces cerevisiae
-
Nakamura T, Ohmoto T, Hirata D, Tsuchiya E, Miyakawa T. 1996. Genetic evidence for the functional redundancy of the calcineurin- and Mpk1-mediated pathways in the regulation of cellular events important for growth in Saccharomyces cerevisiae. Mol Gen Genet 251:211-219. http://dx.doi.org/10.1007/BF02172920.
-
(1996)
Mol Gen Genet
, vol.251
, pp. 211-219
-
-
Nakamura, T.1
Ohmoto, T.2
Hirata, D.3
Tsuchiya, E.4
Miyakawa, T.5
-
32
-
-
0027192944
-
MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogenactivated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C
-
Irie K, Takase M, Lee KS, Levin DE, Araki H, Matsumoto K, Oshima Y. 1993. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogenactivated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13:3076-3083.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 3076-3083
-
-
Irie, K.1
Takase, M.2
Lee, K.S.3
Levin, D.E.4
Araki, H.5
Matsumoto, K.6
Oshima, Y.7
-
33
-
-
34248679167
-
Tricine-SDS-PAGE
-
Schägger H. 2006. Tricine-SDS-PAGE. Nat Protoc 1:16-22. http://dx.doi.org/10.1038/nprot.2006.4.
-
(2006)
Nat Protoc
, vol.1
, pp. 16-22
-
-
Schägger, H.1
-
34
-
-
79954989984
-
Activation of peroxisome proliferatoractivated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes
-
Goto T, Lee JY, Teraminami A, Kim YI, Hirai S, Uemura T, Inoue H, Takahashi N, Kawada T. 2011. Activation of peroxisome proliferatoractivated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J Lipid Res 52:873-884. http://dx.doi.org/10.1194/jlr. M011320.
-
(2011)
J Lipid Res
, vol.52
, pp. 873-884
-
-
Goto, T.1
Lee, J.Y.2
Teraminami, A.3
Kim, Y.I.4
Hirai, S.5
Uemura, T.6
Inoue, H.7
Takahashi, N.8
Kawada, T.9
-
35
-
-
47949125486
-
The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
-
Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E. 2008. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932-1943. http://dx.doi.org/10.1038/emboj.2008.120.
-
(2008)
EMBO J
, vol.27
, pp. 1932-1943
-
-
Facchinetti, V.1
Ouyang, W.2
Wei, H.3
Soto, N.4
Lazorchak, A.5
Gould, C.6
Lowry, C.7
Newton, A.C.8
Mao, Y.9
Miao, R.Q.10
Sessa, W.C.11
Qin, J.12
Zhang, P.13
Su, B.14
Jacinto, E.15
-
36
-
-
0034056057
-
Polarization of cell growth in yeast
-
Pruyne D, Bretscher A. 2000. Polarization of cell growth in yeast. J Cell Sci 113(Pt 4):571-585.
-
(2000)
J Cell Sci
, vol.113
, pp. 571-585
-
-
Pruyne, D.1
Bretscher, A.2
-
37
-
-
0028829555
-
A downstream target of RHO1 small GTPbinding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae
-
Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, Umikawa M, Mino A, Takai Y. 1995. A downstream target of RHO1 small GTPbinding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 14:5931-5938.
-
(1995)
EMBO J
, vol.14
, pp. 5931-5938
-
-
Nonaka, H.1
Tanaka, K.2
Hirano, H.3
Fujiwara, T.4
Kohno, H.5
Umikawa, M.6
Mino, A.7
Takai, Y.8
-
38
-
-
83455179434
-
Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway
-
Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145-1175. http://dx.doi.org/10.1534/genetics.111.128264.
-
(2011)
Genetics
, vol.189
, pp. 1145-1175
-
-
Levin, D.E.1
-
39
-
-
34547216984
-
Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae
-
Chen RE, Thorner J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311-1340. http://dx.doi.org/10.1016/j.bbamcr.2007.05.003.
-
(2007)
Biochim Biophys Acta
, vol.1773
, pp. 1311-1340
-
-
Chen, R.E.1
Thorner, J.2
-
40
-
-
0034749351
-
Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1
-
Philip B, Levin DE. 2001. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271-280. http://dx.doi.org/10.1128/MCB.21.1.271-280.2001.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 271-280
-
-
Philip, B.1
Levin, D.E.2
-
41
-
-
77956615461
-
A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo
-
Wilk S, Wittland J, Thywissen A, Schmitz HP, Heinisch JJ. 2010. A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo. Mol Genet Genomics 284:217-229. http://dx.doi.org/10.1007/s00438-010-0563-2.
-
(2010)
Mol Genet Genomics
, vol.284
, pp. 217-229
-
-
Wilk, S.1
Wittland, J.2
Thywissen, A.3
Schmitz, H.P.4
Heinisch, J.J.5
-
42
-
-
84887476060
-
The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast
-
Jin C, Parshin AV, Daly I, Strich R, Cooper KF. 2013. The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. Oxid Med Cell Longev 2013:320823. http://dx.doi.org/10.1155/2013/320823.
-
(2013)
Oxid Med Cell Longev
, vol.2013
-
-
Jin, C.1
Parshin, A.V.2
Daly, I.3
Strich, R.4
Cooper, K.F.5
-
43
-
-
0030906569
-
The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2
-
Schmidt A, Bickle M, Beck T, Hall MN. 1997. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531-542. http://dx.doi.org/10.1016/S0092-8674(00)81893-0.
-
(1997)
Cell
, vol.88
, pp. 531-542
-
-
Schmidt, A.1
Bickle, M.2
Beck, T.3
Hall, M.N.4
-
44
-
-
6444241901
-
Differential roles of PDK1-and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9
-
Roelants FM, Torrance PD, Thorner J. 2004. Differential roles of PDK1-and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology 150:3289-3304. http://dx.doi.org/10.1099/mic.0.27286-0.
-
(2004)
Microbiology
, vol.150
, pp. 3289-3304
-
-
Roelants, F.M.1
Torrance, P.D.2
Thorner, J.3
-
45
-
-
24744439255
-
Molecular organization of target of rapamycin complex 2
-
Wullschleger S, Loewith R, Oppliger W, Hall MN. 2005. Molecular organization of target of rapamycin complex 2. J Biol Chem 280:30697-30704. http://dx.doi.org/10.1074/jbc. M505553200.
-
(2005)
J Biol Chem
, vol.280
, pp. 30697-30704
-
-
Wullschleger, S.1
Loewith, R.2
Oppliger, W.3
Hall, M.N.4
-
46
-
-
0035824523
-
Complementing yeast rho1 mutation groups with distinct functional defects
-
Saka A, Abe M, Okano H, Minemura M, Qadota H, Utsugi T, Mino A, Tanaka K, Takai Y, Ohya Y. 2001. Complementing yeast rho1 mutation groups with distinct functional defects. J Biol Chem 276:46165-46171. http://dx.doi.org/10.1074/jbc. M103805200.
-
(2001)
J Biol Chem
, vol.276
, pp. 46165-46171
-
-
Saka, A.1
Abe, M.2
Okano, H.3
Minemura, M.4
Qadota, H.5
Utsugi, T.6
Mino, A.7
Tanaka, K.8
Takai, Y.9
Ohya, Y.10
-
47
-
-
0036091239
-
Regulation of yeast protein kinase C activity by interaction with the small GTPase Rho1p through its amino-terminal HR1 domain
-
Schmitz HP, Lorberg A, Heinisch JJ. 2002. Regulation of yeast protein kinase C activity by interaction with the small GTPase Rho1p through its amino-terminal HR1 domain. Mol Microbiol 44:829-840. http://dx.doi.org/10.1046/j.1365-2958.2002.02925.x.
-
(2002)
Mol Microbiol
, vol.44
, pp. 829-840
-
-
Schmitz, H.P.1
Lorberg, A.2
Heinisch, J.J.3
-
48
-
-
0035800598
-
Domain shuffling as a tool for investigation of protein function: substitution of the cysteine-rich region of Raf kinase and PKC eta for that of yeast Pkc1p
-
Schmitz HP, Jöckel J, Block C, Heinisch JJ. 2001. Domain shuffling as a tool for investigation of protein function: substitution of the cysteine-rich region of Raf kinase and PKC eta for that of yeast Pkc1p. J Mol Biol 311:1-7. http://dx.doi.org/10.1006/jmbi.2001.4848.
-
(2001)
J Mol Biol
, vol.311
, pp. 1-7
-
-
Schmitz, H.P.1
Jöckel, J.2
Block, C.3
Heinisch, J.J.4
-
49
-
-
0030728256
-
Mutants affected in the putative diacylglycerol binding site of yeast protein kinase C
-
Jacoby JJ, Schmitz HP, Heinisch JJ. 1997. Mutants affected in the putative diacylglycerol binding site of yeast protein kinase C. FEBS Lett 417:219-222. http://dx.doi.org/10.1016/S0014-5793(97)01287-8.
-
(1997)
FEBS Lett
, vol.417
, pp. 219-222
-
-
Jacoby, J.J.1
Schmitz, H.P.2
Heinisch, J.J.3
-
50
-
-
47949104258
-
Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
-
Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. 2008. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919-1931. http://dx.doi.org/10.1038/emboj.2008.119.
-
(2008)
EMBO J
, vol.27
, pp. 1919-1931
-
-
Ikenoue, T.1
Inoki, K.2
Yang, Q.3
Zhou, X.4
Guan, K.L.5
-
51
-
-
0026511056
-
Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect
-
Levin DE, Bartlett-Heubusch E. 1992. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116:1221-1229. http://dx.doi.org/10.1083/jcb.116.5.1221.
-
(1992)
J Cell Biol
, vol.116
, pp. 1221-1229
-
-
Levin, D.E.1
Bartlett-Heubusch, E.2
-
52
-
-
0026693868
-
The osmotic integrity of the yeast cell requires a functional PKC1 gene product
-
Paravicini G, Cooper M, Friedli L, Smith DJ, Carpentier JL, Klig LS, Payton MA. 1992. The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol Cell Biol 12:4896-4905.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 4896-4905
-
-
Paravicini, G.1
Cooper, M.2
Friedli, L.3
Smith, D.J.4
Carpentier, J.L.5
Klig, L.S.6
Payton, M.A.7
-
53
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023-8032. http://dx.doi.org/10.1074/jbc. M900301200.
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
54
-
-
28844434558
-
473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes
-
473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406-40416. http://dx.doi.org/10.1074/jbc. M508361200.
-
(2005)
J Biol Chem
, vol.280
, pp. 40406-40416
-
-
Hresko, R.C.1
Mueckler, M.2
-
55
-
-
20544432791
-
Cell wall integrity signaling in Saccharomyces cerevisiae
-
Levin DE. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262-291. http://dx.doi.org/10.1128/MMBR.69.2.262-291.2005.
-
(2005)
Microbiol Mol Biol Rev
, vol.69
, pp. 262-291
-
-
Levin, D.E.1
-
56
-
-
0032546419
-
Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast
-
Mizunuma M, Hirata D, Miyahara K, Tsuchiya E, Miyakawa T. 1998. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 392:303-306. http://dx.doi.org/10.1038/32695.
-
(1998)
Nature
, vol.392
, pp. 303-306
-
-
Mizunuma, M.1
Hirata, D.2
Miyahara, K.3
Tsuchiya, E.4
Miyakawa, T.5
-
57
-
-
63749117393
-
TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
-
Berchtold D, Walther TC. 2009. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol Biol Cell 20:1565-1575. http://dx.doi.org/10.1091/mbc. E08-10-1001.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1565-1575
-
-
Berchtold, D.1
Walther, T.C.2
-
58
-
-
54249110478
-
TOR1 and TOR2 have distinct locations in live cells
-
Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE, Hall MN. 2008. TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7:1819-1830. http://dx.doi.org/10.1128/EC.00088-08.
-
(2008)
Eukaryot Cell
, vol.7
, pp. 1819-1830
-
-
Sturgill, T.W.1
Cohen, A.2
Diefenbacher, M.3
Trautwein, M.4
Martin, D.E.5
Hall, M.N.6
-
59
-
-
0033621467
-
Prenylation of Rho1p is required for activation of yeast 1,3-ß-glucan synthase
-
Inoue SB, Qadota H, Arisawa M, Watanabe T, Ohya Y. 1999. Prenylation of Rho1p is required for activation of yeast 1,3-ß-glucan synthase. J Biol Chem 274:38119-38124. http://dx.doi.org/10.1074/jbc.274.53.38119.
-
(1999)
J Biol Chem
, vol.274
, pp. 38119-38124
-
-
Inoue, S.B.1
Qadota, H.2
Arisawa, M.3
Watanabe, T.4
Ohya, Y.5
-
60
-
-
13744251877
-
Molecular analysis reveals localization of Saccharomyces cerevisiae protein kinase C to sites of polarized growth and Pkc1p targeting to the nucleus and mitotic spindle
-
Denis V, Cyert MS. 2005. Molecular analysis reveals localization of Saccharomyces cerevisiae protein kinase C to sites of polarized growth and Pkc1p targeting to the nucleus and mitotic spindle. Eukaryot Cell 4:36-45. http://dx.doi.org/10.1128/EC.4.1.36-45.2005.
-
(2005)
Eukaryot Cell
, vol.4
, pp. 36-45
-
-
Denis, V.1
Cyert, M.S.2
|