메뉴 건너뛰기




Volumn 20, Issue 9, 2014, Pages 1638-1654

Linking immunity, epigenetics, and cancer in inflammatory bowel disease

Author keywords

Adaptive immunity; Animal models; Colitis associated cancer; Crohn's disease; Cytokines; DNA methylation; Gene environment interactions; Histone modification; Host defense; Innate immunity; Micro RNAs; Microbiota; Ulcerative colitis

Indexed keywords

BIOLOGICAL MARKER;

EID: 84925878557     PISSN: 10780998     EISSN: 15364844     Source Type: Journal    
DOI: 10.1097/MIB.0000000000000063     Document Type: Review
Times cited : (41)

References (227)
  • 2
    • 79959216005 scopus 로고    scopus 로고
    • Genetics and pathogenesis of inflammatory bowel disease
    • Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307-317.
    • (2011) Nature , vol.474 , pp. 307-317
    • Khor, B.1    Gardet, A.2    Xavier, R.J.3
  • 3
    • 84855672962 scopus 로고    scopus 로고
    • New pathogenic paradigms in inflammatory bowel disease
    • Di Sabatino A, Biancheri P, Rovedatti L, et al. New pathogenic paradigms in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:368-371.
    • (2012) Inflamm Bowel Dis. , vol.18 , pp. 368-371
    • Di Sabatino, A.1    Biancheri, P.2    Rovedatti, L.3
  • 4
    • 77957970301 scopus 로고    scopus 로고
    • Epigenetic modifications and human disease
    • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057-1068.
    • (2010) Nat Biotechnol. , vol.28 , pp. 1057-1068
    • Portela, A.1    Esteller, M.2
  • 5
    • 78049402859 scopus 로고    scopus 로고
    • Molecular signals of epigenetic states
    • Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330:612-616.
    • (2010) Science , vol.330 , pp. 612-616
    • Bonasio, R.1    Tu, S.2    Reinberg, D.3
  • 6
    • 0033916388 scopus 로고    scopus 로고
    • Epigenetics of inflammatory bowel disease
    • Petronis A, Petroniene R. Epigenetics of inflammatory bowel disease. Gut. 2000;47:302-306.
    • (2000) Gut. , vol.47 , pp. 302-306
    • Petronis, A.1    Petroniene, R.2
  • 7
    • 84866367184 scopus 로고    scopus 로고
    • Epigenetics: Concepts and relevance to IBD pathogenesis
    • Scarpa M, Stylianou E. Epigenetics: concepts and relevance to IBD pathogenesis. Inflamm Bowel Dis. 2012;18:1982-1996.
    • (2012) Inflamm Bowel Dis. , vol.18 , pp. 1982-1996
    • Scarpa, M.1    Stylianou, E.2
  • 8
    • 84880595486 scopus 로고    scopus 로고
    • Beyond gene discovery in inflammatory bowel disease: The emerging role of epigenetics
    • Ventham NT, Kennedy NA, Nimmo ER, et al. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology. 2013;145:293-308.
    • (2013) Gastroenterology , vol.145 , pp. 293-308
    • Ventham, N.T.1    Kennedy, N.A.2    Nimmo, E.R.3
  • 9
    • 84868374218 scopus 로고    scopus 로고
    • Epigenetics in inflammatory bowel disease
    • Jenke AC, Zilbauer M. Epigenetics in inflammatory bowel disease. Curr Opin Gastroenterol. 2012;28:577-584.
    • (2012) Curr Opin Gastroenterol , vol.28 , pp. 577-584
    • Jenke, A.C.1    Zilbauer, M.2
  • 10
    • 84879983575 scopus 로고    scopus 로고
    • Epigenetics: The fine-tuner in inflammatory bowel disease?
    • Stylianou E. Epigenetics: the fine-tuner in inflammatory bowel disease? Curr Opin Gastroenterol. 2013;29:370-377.
    • (2013) Curr Opin Gastroenterol , vol.29 , pp. 370-377
    • Stylianou, E.1
  • 11
    • 84871070315 scopus 로고    scopus 로고
    • Epigenetics and the developmental origins of inflammatory bowel diseases
    • Kellermayer R. Epigenetics and the developmental origins of inflammatory bowel diseases. Can J Gastroenterol. 2012;26:909-915.
    • (2012) Can J Gastroenterol , vol.26 , pp. 909-915
    • Kellermayer, R.1
  • 12
    • 84883041993 scopus 로고    scopus 로고
    • DNA methylation in inflammatory bowel disease and beyond
    • Low D, Mizoguchi A, Mizoguchi E. DNA methylation in inflammatory bowel disease and beyond. World J Gastroenterol. 2013;19:5238-5249.
    • (2013) World J Gastroenterol , vol.19 , pp. 5238-5249
    • Low, D.1    Mizoguchi, A.2    Mizoguchi, E.3
  • 13
    • 83555161689 scopus 로고    scopus 로고
    • MicroRNAs in inflammatory bowel disease
    • Pekow JR, Kwon JH. MicroRNAs in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:187-193.
    • (2012) Inflamm Bowel Dis. , vol.18 , pp. 187-193
    • Pekow, J.R.1    Kwon, J.H.2
  • 14
    • 84857506097 scopus 로고    scopus 로고
    • MicroRNAs in autoimmunity and inflammatory bowel disease: Crucial regulators in immune response
    • Iborra M, Bernuzzi F, Invernizzi P, et al. MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun Rev. 2012;11:305-314.
    • (2012) Autoimmun Rev. , vol.11 , pp. 305-314
    • Iborra, M.1    Bernuzzi, F.2    Invernizzi, P.3
  • 16
  • 17
    • 77956222562 scopus 로고    scopus 로고
    • Polycomb group proteins: Multi-faceted regulators of somatic stem cells and cancer
    • Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7: 299-313.
    • (2010) Cell Stem Cell. , vol.7 , pp. 299-313
    • Sauvageau, M.1    Sauvageau, G.2
  • 18
    • 34247540446 scopus 로고    scopus 로고
    • Epigenetics and microRNAs
    • Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007; 61:24R-29R.
    • (2007) Pediatr Res. , vol.61 , pp. 24R-29R
    • Chuang, J.C.1    Jones, P.A.2
  • 20
    • 0034713375 scopus 로고    scopus 로고
    • Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene
    • Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000;405:482-485.
    • (2000) Nature , vol.405 , pp. 482-485
    • Bell, A.C.1    Felsenfeld, G.2
  • 21
    • 84866074106 scopus 로고    scopus 로고
    • RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis
    • Tuorto F, Liebers R, Musch T, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19:900-905.
    • (2012) Nat Struct Mol Biol. , vol.19 , pp. 900-905
    • Tuorto, F.1    Liebers, R.2    Musch, T.3
  • 22
    • 0037039323 scopus 로고    scopus 로고
    • Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome
    • Greally JM. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc Natl Acad Sci U S A. 2002;99:327-332.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 327-332
    • Greally, J.M.1
  • 23
    • 4544223707 scopus 로고    scopus 로고
    • Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L
    • Bourc'his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431:96-99.
    • (2004) Nature , vol.431 , pp. 96-99
    • Bourc'his, D.1    Bestor, T.H.2
  • 24
    • 23044514669 scopus 로고    scopus 로고
    • Epigenetic differences arise during the lifetime of monozygotic twins
    • Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102: 10604-10609.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 10604-10609
    • Fraga, M.F.1    Ballestar, E.2    Paz, M.F.3
  • 25
    • 75649151209 scopus 로고    scopus 로고
    • Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus
    • Javierre BM, Fernandez AF, Richter J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010;20:170-179.
    • (2010) Genome Res. , vol.20 , pp. 170-179
    • Javierre, B.M.1    Fernandez, A.F.2    Richter, J.3
  • 26
    • 59249107052 scopus 로고    scopus 로고
    • DNA methylation profiles in monozygotic and dizygotic twins
    • Kaminsky ZA, Tang T, Wang SC, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 2009;41:240-245.
    • (2009) Nat Genet. , vol.41 , pp. 240-245
    • Kaminsky, Z.A.1    Tang, T.2    Wang, S.C.3
  • 27
    • 79952929840 scopus 로고    scopus 로고
    • Gene-environment interactions in chronic inflammatory disease
    • Renz H, von Mutius E, Brandtzaeg P, et al. Gene-environment interactions in chronic inflammatory disease. Nat Immunol. 2011;12:273-277.
    • (2011) Nat Immunol. , vol.12 , pp. 273-277
    • Renz, H.1    Von Mutius, E.2    Brandtzaeg, P.3
  • 28
    • 84855956247 scopus 로고    scopus 로고
    • Epigenetics and the environment: Emerging patterns and implications
    • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2011;13:97-109.
    • (2011) Nat Rev Genet. , vol.13 , pp. 97-109
    • Feil, R.1    Fraga, M.F.2
  • 29
    • 49649092218 scopus 로고    scopus 로고
    • Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life
    • Painter RC, Osmond C, Gluckman P, et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115:1243-1249.
    • (2008) BJOG , vol.115 , pp. 1243-1249
    • Painter, R.C.1    Osmond, C.2    Gluckman, P.3
  • 30
    • 31344434726 scopus 로고    scopus 로고
    • Sex-specific, male-line transgenerational responses in humans
    • Pembrey ME, Bygren LO, Kaati G, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14:159-166.
    • (2006) Eur J Hum Genet. , vol.14 , pp. 159-166
    • Pembrey, M.E.1    Bygren, L.O.2    Kaati, G.3
  • 31
    • 70349999407 scopus 로고    scopus 로고
    • DNA methylation differences after exposure to prenatal famine are common and timing- and sexspecific
    • Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sexspecific. Hum Mol Genet. 2009;18:4046-4053.
    • (2009) Hum Mol Genet. , vol.18 , pp. 4046-4053
    • Tobi, E.W.1    Lumey, L.H.2    Talens, R.P.3
  • 32
    • 0032751471 scopus 로고    scopus 로고
    • Epigenetic inheritance at the agouti locus in the mouse
    • Morgan HD, Sutherland HG, Martin DI, et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314-318.
    • (1999) Nat Genet. , vol.23 , pp. 314-318
    • Morgan, H.D.1    Sutherland, H.G.2    Martin, D.I.3
  • 33
    • 0043093697 scopus 로고    scopus 로고
    • Transposable elements: Targets for early nutritional effects on epigenetic gene regulation
    • Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23:5293-5300.
    • (2003) Mol Cell Biol. , vol.23 , pp. 5293-5300
    • Waterland, R.A.1    Jirtle, R.L.2
  • 34
    • 84874625478 scopus 로고    scopus 로고
    • Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice
    • Chamorro-Garcia R, Sahu M, Abbey RJ, et al. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ Health Perspect. 2013;121:359-366.
    • (2013) Environ Health Perspect. , vol.121 , pp. 359-366
    • Chamorro-Garcia, R.1    Sahu, M.2    Abbey, R.J.3
  • 35
    • 0035865012 scopus 로고    scopus 로고
    • Cancer risk in patients with inflammatory bowel disease: A population-based study
    • Bernstein CN, Blanchard JF, Kliewer E, et al. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer. 2001;91:854-862.
    • (2001) Cancer , vol.91 , pp. 854-862
    • Bernstein, C.N.1    Blanchard, J.F.2    Kliewer, E.3
  • 36
    • 3042599473 scopus 로고    scopus 로고
    • Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation
    • Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7-G17.
    • (2004) Am J Physiol Gastrointest Liver Physiol. , vol.287 , pp. G7-G17
    • Itzkowitz, S.H.1    Yio, X.2
  • 37
    • 0022391691 scopus 로고
    • Differential activity of maternally and paternally derived chromosome regions in mice
    • Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature. 1985;315:496-498.
    • (1985) Nature , vol.315 , pp. 496-498
    • Cattanach, B.M.1    Kirk, M.2
  • 38
    • 79960530899 scopus 로고    scopus 로고
    • Genomic imprinting: The emergence of an epigenetic paradigm
    • Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565-575.
    • (2011) Nat Rev Genet. , vol.12 , pp. 565-575
    • Ferguson-Smith, A.C.1
  • 39
    • 0021139084 scopus 로고
    • Completion of mouse embryogenesis requires both the maternal and paternal genomes
    • McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179-183.
    • (1984) Cell. , vol.37 , pp. 179-183
    • McGrath, J.1    Solter, D.2
  • 40
    • 0022534916 scopus 로고
    • Nuclear transplantation in the mouse: Heritable differences between parental genomes after activation of the embryonic genome
    • Surani MA, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell. 1986;45:127-136.
    • (1986) Cell. , vol.45 , pp. 127-136
    • Surani, M.A.1    Barton, S.C.2    Norris, M.L.3
  • 41
    • 33751364987 scopus 로고    scopus 로고
    • Genomic imprinting in mammals: Emerging themes and established theories
    • Wood AJ, Oakey RJ. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2006;2:e147.
    • (2006) PLoS Genet. , vol.2 , pp. e147
    • Wood, A.J.1    Oakey, R.J.2
  • 42
    • 3543036987 scopus 로고    scopus 로고
    • The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding
    • Plagge A, Gordon E, Dean W, et al. The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet. 2004;36: 818-826.
    • (2004) Nat Genet. , vol.36 , pp. 818-826
    • Plagge, A.1    Gordon, E.2    Dean, W.3
  • 43
    • 38549165276 scopus 로고    scopus 로고
    • Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II
    • Smith ER, Lee MG, Winter B, et al. Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II. Mol Cell Biol. 2008;28:1041-1046.
    • (2008) Mol Cell Biol. , vol.28 , pp. 1041-1046
    • Smith, E.R.1    Lee, M.G.2    Winter, B.3
  • 44
    • 9244257381 scopus 로고    scopus 로고
    • The impact of chromosome sorting and painting on the comparative analysis of primate genomes
    • Ferguson-Smith MA, Yang F, Rens W, et al. The impact of chromosome sorting and painting on the comparative analysis of primate genomes. Cytogenet Genome Res. 2005;108:112-121.
    • (2005) Cytogenet Genome Res. , vol.108 , pp. 112-121
    • Ferguson-Smith, M.A.1    Yang, F.2    Rens, W.3
  • 45
    • 79251578041 scopus 로고    scopus 로고
    • Distinct physiological and behavioural functions for parental alleles of imprinted Grb10
    • Garfield AS, Cowley M, Smith FM, et al. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature. 2011;469:534-538.
    • (2011) Nature , vol.469 , pp. 534-538
    • Garfield, A.S.1    Cowley, M.2    Smith, F.M.3
  • 46
    • 79960631454 scopus 로고    scopus 로고
    • Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis
    • Ferron SR, Charalambous M, Radford E, et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature. 2011;475:381-385.
    • (2011) Nature , vol.475 , pp. 381-385
    • Ferron, S.R.1    Charalambous, M.2    Radford, E.3
  • 47
    • 84895453068 scopus 로고    scopus 로고
    • Developmental programming mediated by complementary roles of imprinted grb10 in mother and pup
    • Cowley M, Garfield AS, Madon-Simon M, et al. Developmental programming mediated by complementary roles of imprinted grb10 in mother and pup. PLoS Biol. 2014;12:e1001799.
    • (2014) PLoS Biol. , vol.12 , pp. e1001799
    • Cowley, M.1    Garfield, A.S.2    Madon-Simon, M.3
  • 48
    • 52549106583 scopus 로고    scopus 로고
    • Molecular and clinical findings and their correlations in Silver-Russell syndrome: Implications for a positive role of IGF2 in growth determination and differential imprinting regulation of the IGF2-H19 domain in bodies and placentas
    • Yamazawa K, Kagami M, Nagai T, et al. Molecular and clinical findings and their correlations in Silver-Russell syndrome: implications for a positive role of IGF2 in growth determination and differential imprinting regulation of the IGF2-H19 domain in bodies and placentas. J Mol Med (Berl). 2008;86:1171-1181.
    • (2008) J Mol Med (Berl) , vol.86 , pp. 1171-1181
    • Yamazawa, K.1    Kagami, M.2    Nagai, T.3
  • 50
    • 0033651946 scopus 로고    scopus 로고
    • Prader-Willi and Angelman syndromes: Sister imprinted disorders
    • Cassidy SB, Dykens E, Williams CA. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet. 2000;97: 136-146.
    • (2000) Am J Med Genet. , vol.97 , pp. 136-146
    • Cassidy, S.B.1    Dykens, E.2    Williams, C.A.3
  • 51
    • 2642519400 scopus 로고    scopus 로고
    • Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer
    • Soejima H, Nakagawachi T, Zhao W, et al. Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer. Oncogene. 2004;23:4380-4388.
    • (2004) Oncogene , vol.23 , pp. 4380-4388
    • Soejima, H.1    Nakagawachi, T.2    Zhao, W.3
  • 52
    • 77957338939 scopus 로고    scopus 로고
    • Genomic imprinting syndromes and cancer
    • Lim DH, Maher ER. Genomic imprinting syndromes and cancer. Adv Genet. 2010;70:145-175.
    • (2010) Adv Genet. , vol.70 , pp. 145-175
    • Lim, D.H.1    Maher, E.R.2
  • 53
    • 0037436509 scopus 로고    scopus 로고
    • Loss of IGF2 imprinting: A potential marker of colorectal cancer risk
    • Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299:1753-1755.
    • (2003) Science , vol.299 , pp. 1753-1755
    • Cui, H.1    Cruz-Correa, M.2    Giardiello, F.M.3
  • 54
    • 0030784426 scopus 로고    scopus 로고
    • Differences in risk of Crohn's disease in offspring of mothers and fathers with inflammatory bowel disease
    • Akolkar PN, Gulwani-Akolkar B, Heresbach D, et al. Differences in risk of Crohn's disease in offspring of mothers and fathers with inflammatory bowel disease. Am J Gastroenterol. 1997;92:2241-2244.
    • (1997) Am J Gastroenterol , vol.92 , pp. 2241-2244
    • Akolkar, P.N.1    Gulwani-Akolkar, B.2    Heresbach, D.3
  • 55
    • 84863466421 scopus 로고    scopus 로고
    • Maternal imprinting and female predominance in familial Crohn's disease
    • Zelinkova Z, Stokkers PC, van der Linde K, et al. Maternal imprinting and female predominance in familial Crohn's disease. J Crohns Colitis. 2012;6:771-776.
    • (2012) J Crohns Colitis. , vol.6 , pp. 771-776
    • Zelinkova, Z.1    Stokkers, P.C.2    Van Der-Linde, K.3
  • 56
    • 84866951659 scopus 로고    scopus 로고
    • Limited evidence for parent-of-origin effects in inflammatory bowel disease associated loci
    • Fransen K, Mitrovic M, van Diemen CC, et al. Limited evidence for parent-of-origin effects in inflammatory bowel disease associated loci. PLoS One. 2012;7:e45287.
    • (2012) PLoS One. , vol.7 , pp. e45287
    • Fransen, K.1    Mitrovic, M.2    Van Diemen, C.C.3
  • 57
    • 29644440388 scopus 로고    scopus 로고
    • Establishment and maintenance of DNA methylation patterns in mammals
    • Chen T, Li E. Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol. 2006;301:179-201.
    • (2006) Curr Top Microbiol Immunol. , vol.301 , pp. 179-201
    • Chen, T.1    Li, E.2
  • 58
    • 9144256125 scopus 로고    scopus 로고
    • The Dnmt1 DNA-(cytosine-C5)- methyltransferase methylates DNA processively with high preference for hemimethylated target sites
    • Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)- methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 2004;279:48350-48359.
    • (2004) J Biol Chem. , vol.279 , pp. 48350-48359
    • Hermann, A.1    Goyal, R.2    Jeltsch, A.3
  • 59
    • 0022005746 scopus 로고
    • DNA methylation and CpG suppression
    • Cooper DN, Gerber-Huber S. DNA methylation and CpG suppression. Cell Differ. 1985;17:199-205.
    • (1985) Cell Differ. , vol.17 , pp. 199-205
    • Cooper, D.N.1    Gerber-Huber, S.2
  • 60
    • 0037068393 scopus 로고    scopus 로고
    • DNA methylation and gene silencing in cancer: Which is the guilty party?
    • Clark SJ, Melki J. DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene. 2002;21:5380-5387.
    • (2002) Oncogene , vol.21 , pp. 5380-5387
    • Clark, S.J.1    Melki, J.2
  • 61
    • 84863986133 scopus 로고    scopus 로고
    • Functions of DNA methylation: Islands, start sites, gene bodies and beyond
    • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484-492.
    • (2012) Nat Rev Genet. , vol.13 , pp. 484-492
    • Jones, P.A.1
  • 62
    • 34047116826 scopus 로고    scopus 로고
    • Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome
    • Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39:457-466.
    • (2007) Nat Genet. , vol.39 , pp. 457-466
    • Weber, M.1    Hellmann, I.2    Stadler, M.B.3
  • 63
    • 80054880084 scopus 로고    scopus 로고
    • DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter
    • Han H, Cortez CC, Yang X, et al. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet. 2011;20:4299-4310.
    • (2011) Hum Mol Genet. , vol.20 , pp. 4299-4310
    • Han, H.1    Cortez, C.C.2    Yang, X.3
  • 64
    • 59149084538 scopus 로고    scopus 로고
    • The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores
    • Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178-186.
    • (2009) Nat Genet. , vol.41 , pp. 178-186
    • Irizarry, R.A.1    Ladd-Acosta, C.2    Wen, B.3
  • 65
    • 70649095120 scopus 로고    scopus 로고
    • Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts
    • Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009; 41:1350-1353.
    • (2009) Nat Genet. , vol.41 , pp. 1350-1353
    • Doi, A.1    Park, I.H.2    Wen, B.3
  • 66
    • 0033601073 scopus 로고    scopus 로고
    • Methylation-induced repression-belts, braces, and chromatin
    • Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell. 1999;99:451-454.
    • (1999) Cell. , vol.99 , pp. 451-454
    • Bird, A.P.1    Wolffe, A.P.2
  • 67
    • 31744433660 scopus 로고    scopus 로고
    • Evidence for an instructive mechanism of de novo methylation in cancer cells
    • Keshet I, Schlesinger Y, Farkash S, et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet. 2006;38: 149-153.
    • (2006) Nat Genet. , vol.38 , pp. 149-153
    • Keshet, I.1    Schlesinger, Y.2    Farkash, S.3
  • 68
    • 79952716583 scopus 로고    scopus 로고
    • Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer
    • Sproul D, Nestor C, Culley J, et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A. 2011;108:4364-4369.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 4364-4369
    • Sproul, D.1    Nestor, C.2    Culley, J.3
  • 69
    • 84866844032 scopus 로고    scopus 로고
    • Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns
    • Sproul D, Kitchen RR, Nestor CE, et al. Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol. 2012;13:R84.
    • (2012) Genome Biol. , vol.13 , pp. R84
    • Sproul, D.1    Kitchen, R.R.2    Nestor, C.E.3
  • 70
    • 0033753779 scopus 로고    scopus 로고
    • The DNA methyltransferases of mammals
    • Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395-2402.
    • (2000) Hum Mol Genet. , vol.9 , pp. 2395-2402
    • Bestor, T.H.1
  • 71
    • 31144449613 scopus 로고    scopus 로고
    • Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2
    • Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311:395-398.
    • (2006) Science , vol.311 , pp. 395-398
    • Goll, M.G.1    Kirpekar, F.2    Maggert, K.A.3
  • 72
    • 0035930660 scopus 로고    scopus 로고
    • Dnmt3L and the establishment of maternal genomic imprints
    • Bourc'his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294:2536-2539.
    • (2001) Science , vol.294 , pp. 2536-2539
    • Bourc'his, D.1    Xu, G.L.2    Lin, C.S.3
  • 73
    • 0037168587 scopus 로고    scopus 로고
    • The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a
    • Chedin F, Lieber MR, Hsieh CL. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A. 2002;99:16916-16921.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 16916-16921
    • Chedin, F.1    Lieber, M.R.2    Hsieh, C.L.3
  • 74
    • 79958074728 scopus 로고    scopus 로고
    • Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants
    • Van Emburgh BO, Robertson KD. Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res. 2011;39:4984-5002.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 4984-5002
    • Van Emburgh, B.O.1    Robertson, K.D.2
  • 75
    • 0035933337 scopus 로고    scopus 로고
    • Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: The enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites
    • Gowher H, Jeltsch A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol. 2001;309:1201-1208.
    • (2001) J Mol Biol. , vol.309 , pp. 1201-1208
    • Gowher, H.1    Jeltsch, A.2
  • 76
    • 0042311434 scopus 로고    scopus 로고
    • Distinct enzymatic properties of recombinant mouse DNA methyltransferases Dnmt3a and Dnmt3b
    • Suetake I, Miyazaki J, Murakami C, et al. Distinct enzymatic properties of recombinant mouse DNA methyltransferases Dnmt3a and Dnmt3b. J Biochem. 2003;133:737-744.
    • (2003) J Biochem. , vol.133 , pp. 737-744
    • Suetake, I.1    Miyazaki, J.2    Murakami, C.3
  • 77
    • 0037023761 scopus 로고    scopus 로고
    • Preferential methylation of unmethylated DNA by mammalian de novo DNA methyltransferase Dnmt3a
    • Yokochi T, Robertson KD. Preferential methylation of unmethylated DNA by mammalian de novo DNA methyltransferase Dnmt3a. J Biol Chem. 2002;277:11735-11745.
    • (2002) J Biol Chem. , vol.277 , pp. 11735-11745
    • Yokochi, T.1    Robertson, K.D.2
  • 78
    • 0036415141 scopus 로고    scopus 로고
    • Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA
    • Fatemi M, Hermann A, Gowher H, et al. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem. 2002;269:4981-4984.
    • (2002) Eur J Biochem. , vol.269 , pp. 4981-4984
    • Fatemi, M.1    Hermann, A.2    Gowher, H.3
  • 79
    • 0036837862 scopus 로고    scopus 로고
    • DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/bindependent de novo methylation
    • Lorincz MC, Schubeler D, Hutchinson SR, et al. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/bindependent de novo methylation. Mol Cell Biol. 2002;22:7572-7580.
    • (2002) Mol Cell Biol. , vol.22 , pp. 7572-7580
    • Lorincz, M.C.1    Schubeler, D.2    Hutchinson, S.R.3
  • 80
    • 0042132027 scopus 로고    scopus 로고
    • Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b
    • Chen T, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol. 2003;23:5594-5605.
    • (2003) Mol Cell Biol. , vol.23 , pp. 5594-5605
    • Chen, T.1    Ueda, Y.2    Dodge, J.E.3
  • 81
    • 0036135014 scopus 로고    scopus 로고
    • Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements
    • Liang G, Chan MF, Tomigahara Y, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22:480-491.
    • (2002) Mol Cell Biol. , vol.22 , pp. 480-491
    • Liang, G.1    Chan, M.F.2    Tomigahara, Y.3
  • 82
    • 0026708177 scopus 로고
    • Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
    • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915-926.
    • (1992) Cell. , vol.69 , pp. 915-926
    • Li, E.1    Bestor, T.H.2    Jaenisch, R.3
  • 83
    • 0036120654 scopus 로고    scopus 로고
    • Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality
    • Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol. 2002;22:2124-2135.
    • (2002) Mol Cell Biol. , vol.22 , pp. 2124-2135
    • Biniszkiewicz, D.1    Gribnau, J.2    Ramsahoye, B.3
  • 84
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
    • Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247-257.
    • (1999) Cell. , vol.99 , pp. 247-257
    • Okano, M.1    Bell, D.W.2    Haber, D.A.3
  • 85
    • 84869216522 scopus 로고    scopus 로고
    • Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases
    • Harris RA, Nagy-Szakal D, Pedersen N, et al. Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases. Inflamm Bowel Dis. 2012;18:2334-2341.
    • (2012) Inflamm Bowel Dis. , vol.18 , pp. 2334-2341
    • Harris, R.A.1    Nagy-Szakal, D.2    Pedersen, N.3
  • 86
    • 79958119436 scopus 로고    scopus 로고
    • Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease
    • Lin Z, Hegarty JP, Cappel JA, et al. Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clin Genet. 2011;80:59-67.
    • (2011) Clin Genet. , vol.80 , pp. 59-67
    • Lin, Z.1    Hegarty, J.P.2    Cappel, J.A.3
  • 87
    • 84871631237 scopus 로고    scopus 로고
    • Identification of disease-associated DNA methylation in B cells from Crohn's disease and ulcerative colitis patients
    • Lin Z, Hegarty JP, Yu W, et al. Identification of disease-associated DNA methylation in B cells from Crohn's disease and ulcerative colitis patients. Dig Dis Sci. 2012;57:3145-3153.
    • (2012) Dig Dis Sci. , vol.57 , pp. 3145-3153
    • Lin, Z.1    Hegarty, J.P.2    Yu, W.3
  • 88
    • 84859795659 scopus 로고    scopus 로고
    • Genome-wide methylation profiling in Crohn's disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway
    • Nimmo ER, Prendergast JG, Aldhous MC, et al. Genome-wide methylation profiling in Crohn's disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012;18:889-899.
    • (2012) Inflamm Bowel Dis. , vol.18 , pp. 889-899
    • Nimmo, E.R.1    Prendergast, J.G.2    Aldhous, M.C.3
  • 89
    • 84867581318 scopus 로고    scopus 로고
    • Mucosal genome-wide methylation changes in inflammatory bowel disease
    • Cooke J, Zhang H, Greger L, et al. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18: 2128-2137.
    • (2012) Inflamm Bowel Dis. , vol.18 , pp. 2128-2137
    • Cooke, J.1    Zhang, H.2    Greger, L.3
  • 90
    • 84866849405 scopus 로고    scopus 로고
    • A functional methylome map of ulcerative colitis
    • Hasler R, Feng Z, Backdahl L, et al. A functional methylome map of ulcerative colitis. Genome Res. 2012;22:2130-2137.
    • (2012) Genome Res. , vol.22 , pp. 2130-2137
    • Hasler, R.1    Feng, Z.2    Backdahl, L.3
  • 91
    • 0035328527 scopus 로고    scopus 로고
    • Accelerated age-related CpG island methylation in ulcerative colitis
    • Issa JP, Ahuja N, Toyota M, et al. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001;61:3573-3577.
    • (2001) Cancer Res. , vol.61 , pp. 3573-3577
    • Issa, J.P.1    Ahuja, N.2    Toyota, M.3
  • 92
    • 80051539323 scopus 로고    scopus 로고
    • DNA methylation of colon mucosa in ulcerative colitis patients: Correlation with inflammatory status
    • Saito S, Kato J, Hiraoka S, et al. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis. 2011;17:1955-1965.
    • (2011) Inflamm Bowel Dis. , vol.17 , pp. 1955-1965
    • Saito, S.1    Kato, J.2    Hiraoka, S.3
  • 93
    • 0035058012 scopus 로고    scopus 로고
    • Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer
    • Wheeler JM, Kim HC, Efstathiou JA, et al. Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut. 2001;48:367-371.
    • (2001) Gut. , vol.48 , pp. 367-371
    • Wheeler, J.M.1    Kim, H.C.2    Efstathiou, J.A.3
  • 94
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128:693-705.
    • (2007) Cell. , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 95
    • 33947315736 scopus 로고    scopus 로고
    • Cancer epigenomics: DNA methylomes and histonemodification maps
    • Esteller M. Cancer epigenomics: DNA methylomes and histonemodification maps. Nat Rev Genet. 2007;8:286-298.
    • (2007) Nat Rev Genet. , vol.8 , pp. 286-298
    • Esteller, M.1
  • 96
    • 84875149194 scopus 로고    scopus 로고
    • Regulation of nucleosome dynamics by histone modifications
    • Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013;20:259-266.
    • (2013) Nat Struct Mol Biol. , vol.20 , pp. 259-266
    • Zentner, G.E.1    Henikoff, S.2
  • 97
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41-45.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 98
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293: 1074-1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 99
    • 78650747491 scopus 로고    scopus 로고
    • Discovery and characterization of chromatin states for systematic annotation of the human genome
    • Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010;28: 817-825.
    • (2010) Nat Biotechnol. , vol.28 , pp. 817-825
    • Ernst, J.1    Kellis, M.2
  • 100
    • 80052805267 scopus 로고    scopus 로고
    • Histone modification: Cause or cog?
    • Henikoff S, Shilatifard A. Histone modification: cause or cog? Trends Genet. 2011;27:389-396.
    • (2011) Trends Genet. , vol.27 , pp. 389-396
    • Henikoff, S.1    Shilatifard, A.2
  • 101
    • 78649855810 scopus 로고    scopus 로고
    • Small molecule modulators of histone acetylation and methylation: A disease perspective
    • Selvi BR, Mohankrishna DV, Ostwal YB, et al. Small molecule modulators of histone acetylation and methylation: a disease perspective. Biochim Biophys Acta. 2010;1799:810-828.
    • (2010) Biochim Biophys Acta. , vol.1799 , pp. 810-828
    • Selvi, B.R.1    Mohankrishna, D.V.2    Ostwal, Y.B.3
  • 102
    • 84867082035 scopus 로고    scopus 로고
    • Epigenetic cancer therapy: Rationales, targets and drugs
    • Rius M, Lyko F. Epigenetic cancer therapy: rationales, targets and drugs. Oncogene. 2012;31:4257-4265.
    • (2012) Oncogene , vol.31 , pp. 4257-4265
    • Rius, M.1    Lyko, F.2
  • 103
    • 79954992362 scopus 로고    scopus 로고
    • Nucleosome distribution and linker DNA: Connecting nuclear function to dynamic chromatin structure
    • Szerlong HJ, Hansen JC. Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure. Biochem Cell Biol. 2011;89:24-34.
    • (2011) Biochem Cell Biol. , vol.89 , pp. 24-34
    • Szerlong, H.J.1    Hansen, J.C.2
  • 104
    • 84891811524 scopus 로고    scopus 로고
    • Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence
    • Parmar JJ, Marko JF, Padinhateeri R. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence. Nucleic Acids Res. 2014;42:128-136.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 128-136
    • Parmar, J.J.1    Marko, J.F.2    Padinhateeri, R.3
  • 105
    • 77954659099 scopus 로고    scopus 로고
    • Relationship between nucleosome positioning and DNA methylation
    • Chodavarapu RK, Feng S, Bernatavichute YV, et al. Relationship between nucleosome positioning and DNA methylation. Nature. 2010; 466:388-392.
    • (2010) Nature , vol.466 , pp. 388-392
    • Chodavarapu, R.K.1    Feng, S.2    Bernatavichute, Y.V.3
  • 106
    • 75749101495 scopus 로고    scopus 로고
    • Chromatin remodelling during development
    • Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463:474-484.
    • (2010) Nature , vol.463 , pp. 474-484
    • Ho, L.1    Crabtree, G.R.2
  • 107
  • 108
    • 80052962505 scopus 로고    scopus 로고
    • Chromatin remodelling in mammalian cells by ISWItype complexes-where, when and why?
    • Erdel F, Rippe K. Chromatin remodelling in mammalian cells by ISWItype complexes-where, when and why? FEBS J. 2011;278:3608-3618.
    • (2011) FEBS J. , vol.278 , pp. 3608-3618
    • Erdel, F.1    Rippe, K.2
  • 109
    • 1542268361 scopus 로고    scopus 로고
    • Mi-2/NuRD: Multiple complexes for many purposes
    • Bowen NJ, Fujita N, Kajita M, et al. Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta. 2004;1677:52-57.
    • (2004) Biochim Biophys Acta. , vol.1677 , pp. 52-57
    • Bowen, N.J.1    Fujita, N.2    Kajita, M.3
  • 110
    • 34547856653 scopus 로고    scopus 로고
    • The human Mi-2/NuRD complex and gene regulation
    • Denslow SA, Wade PA. The human Mi-2/NuRD complex and gene regulation. Oncogene. 2007;26:5433-5438.
    • (2007) Oncogene , vol.26 , pp. 5433-5438
    • Denslow, S.A.1    Wade, P.A.2
  • 111
    • 43249095257 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling shapes the DNA replication landscape
    • Vincent JA, Kwong TJ, Tsukiyama T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol. 2008; 15:477-484.
    • (2008) Nat Struct Mol Biol. , vol.15 , pp. 477-484
    • Vincent, J.A.1    Kwong, T.J.2    Tsukiyama, T.3
  • 112
    • 42049094866 scopus 로고    scopus 로고
    • Ino80 chromatin remodeling complex promotes recovery of stalled replication forks
    • Shimada K, Oma Y, Schleker T, et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr Biol. 2008;18:566-575.
    • (2008) Curr Biol. , vol.18 , pp. 566-575
    • Shimada, K.1    Oma, Y.2    Schleker, T.3
  • 113
    • 59649124959 scopus 로고    scopus 로고
    • The INO80 chromatin remodeling complex in transcription, replication and repair
    • Conaway RC, Conaway JW. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci. 2009;34:71-77.
    • (2009) Trends Biochem Sci. , vol.34 , pp. 71-77
    • Conaway, R.C.1    Conaway, J.W.2
  • 114
    • 66549089832 scopus 로고    scopus 로고
    • MicroRNA in the immune system, microRNA as an immune system
    • Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology. 2009;127:291-298.
    • (2009) Immunology , vol.127 , pp. 291-298
    • Lu, L.F.1    Liston, A.2
  • 115
    • 84875778506 scopus 로고    scopus 로고
    • Regulation of miRNA biogenesis and turnover in the immune system
    • Bronevetsky Y, Ansel KM. Regulation of miRNA biogenesis and turnover in the immune system. Immunol Rev. 2013;253:304-316.
    • (2013) Immunol Rev. , vol.253 , pp. 304-316
    • Bronevetsky, Y.1    Ansel, K.M.2
  • 116
    • 77950353786 scopus 로고    scopus 로고
    • Homeostasis and inflammation in the intestine
    • Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140:859-870.
    • (2010) Cell. , vol.140 , pp. 859-870
    • Garrett, W.S.1    Gordon, J.I.2    Glimcher, L.H.3
  • 117
    • 38549167515 scopus 로고    scopus 로고
    • Innate and adaptive mechanisms to control [corrected] pathological intestinal inflammation
    • Kelsall BL. Innate and adaptive mechanisms to control [corrected] pathological intestinal inflammation. J Pathol. 2008;214:242-259.
    • (2008) J Pathol. , vol.214 , pp. 242-259
    • Kelsall, B.L.1
  • 118
    • 80054882496 scopus 로고    scopus 로고
    • Mucosal macrophages in intestinal homeostasis and inflammation
    • Mowat AM, Bain CC. Mucosal macrophages in intestinal homeostasis and inflammation. J Innate Immun. 2011;3:550-564.
    • (2011) J Innate Immun. , vol.3 , pp. 550-564
    • Mowat, A.M.1    Bain, C.C.2
  • 119
    • 59149099611 scopus 로고    scopus 로고
    • Monocytes and their pathophysiological role in Crohn's disease
    • Zhou L, Braat H, Faber KN, et al. Monocytes and their pathophysiological role in Crohn's disease. Cell Mol Life Sci. 2009;66:192-202.
    • (2009) Cell Mol Life Sci. , vol.66 , pp. 192-202
    • Zhou, L.1    Braat, H.2    Faber, K.N.3
  • 120
    • 84885658881 scopus 로고    scopus 로고
    • Recent advances in inflammatory bowel disease: Mucosal immune cells in intestinal inflammation
    • Cader MZ, Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut. 2013;62:1653-1664.
    • (2013) Gut. , vol.62 , pp. 1653-1664
    • Cader, M.Z.1    Kaser, A.2
  • 121
    • 77349123232 scopus 로고    scopus 로고
    • Regulation of intestinal homeostasis by dendritic cells
    • Tezuka H, Ohteki T. Regulation of intestinal homeostasis by dendritic cells. Immunol Rev. 2010;234:247-258.
    • (2010) Immunol Rev. , vol.234 , pp. 247-258
    • Tezuka, H.1    Ohteki, T.2
  • 122
    • 84868115886 scopus 로고    scopus 로고
    • Regulation of intestinal homeostasis by innate and adaptive immunity
    • Kayama H, Takeda K. Regulation of intestinal homeostasis by innate and adaptive immunity. Int Immunol. 2012;24:673-680.
    • (2012) Int Immunol. , vol.24 , pp. 673-680
    • Kayama, H.1    Takeda, K.2
  • 123
    • 84877119701 scopus 로고    scopus 로고
    • Epigenetic regulation of macrophage polarization and function
    • Ivashkiv LB. Epigenetic regulation of macrophage polarization and function. Trends Immunol. 2013;34:216-223.
    • (2013) Trends Immunol. , vol.34 , pp. 216-223
    • Ivashkiv, L.B.1
  • 124
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: In vivo veritas
    • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787-795.
    • (2012) J Clin Invest. , vol.122 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 126
    • 84867909516 scopus 로고    scopus 로고
    • Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes
    • Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109:17537-17542.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 17537-17542
    • Kleinnijenhuis, J.1    Quintin, J.2    Preijers, F.3
  • 127
    • 77955405117 scopus 로고    scopus 로고
    • Cytokine-induced monocyte characteristics in SLE
    • Zhang Z, Maurer K, Perin JC, et al. Cytokine-induced monocyte characteristics in SLE. J Biomed Biotechnol. 2010;2010:507475.
    • (2010) J Biomed Biotechnol. , vol.2010 , pp. 507475
    • Zhang, Z.1    Maurer, K.2    Perin, J.C.3
  • 128
    • 84991408407 scopus 로고    scopus 로고
    • Oral contraceptives modify DNA methylation and monocyte-derived macrophage function
    • Campesi I, Sanna M, Zinellu A, et al. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function. Biol Sex Differ. 2012;3:4.
    • (2012) Biol Sex Differ. , vol.3 , pp. 4
    • Campesi, I.1    Sanna, M.2    Zinellu, A.3
  • 129
    • 84862794633 scopus 로고    scopus 로고
    • Global mapping of H3K4me3 and H3K27me3 reveals chromatin state-based regulation of human monocytederived dendritic cells in different environments
    • Huang Y, Min S, Lui Y, et al. Global mapping of H3K4me3 and H3K27me3 reveals chromatin state-based regulation of human monocytederived dendritic cells in different environments. Genes Immun. 2012;13: 311-320.
    • (2012) Genes Immun. , vol.13 , pp. 311-320
    • Huang, Y.1    Min, S.2    Lui, Y.3
  • 130
    • 84890173547 scopus 로고    scopus 로고
    • Simvastatin reduces CCL2 expression in monocyte-derived cells by induction of a repressive CCL2 chromatin state
    • Zanette DL, van Eggermond MC, Haasnoot G, et al. Simvastatin reduces CCL2 expression in monocyte-derived cells by induction of a repressive CCL2 chromatin state. Hum Immunol. 2014;75:10-14.
    • (2014) Hum Immunol. , vol.75 , pp. 10-14
    • Zanette, D.L.1    Van Eggermond, M.C.2    Haasnoot, G.3
  • 131
    • 43349088279 scopus 로고    scopus 로고
    • Dendritic cells at the interface of innate and acquired immunity: The role for epigenetic changes
    • Wen H, Schaller MA, Dou Y, et al. Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes. J Leukoc Biol. 2008;83:439-446.
    • (2008) J Leukoc Biol. , vol.83 , pp. 439-446
    • Wen, H.1    Schaller, M.A.2    Dou, Y.3
  • 132
    • 41349119386 scopus 로고    scopus 로고
    • Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response
    • Wen H, Dou Y, Hogaboam CM, et al. Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood. 2008;111:1797-1804.
    • (2008) Blood , vol.111 , pp. 1797-1804
    • Wen, H.1    Dou, Y.2    Hogaboam, C.M.3
  • 133
    • 84876154364 scopus 로고    scopus 로고
    • Transcriptional and epigenetic networks in the development and maturation of dendritic cells
    • Kim HP, Lee YS, Park JH, et al. Transcriptional and epigenetic networks in the development and maturation of dendritic cells. Epigenomics. 2013;5:195-204.
    • (2013) Epigenomics , vol.5 , pp. 195-204
    • Kim, H.P.1    Lee, Y.S.2    Park, J.H.3
  • 134
    • 84864861276 scopus 로고    scopus 로고
    • The role of neutrophils during intestinal inflammation
    • Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5:354-366.
    • (2012) Mucosal Immunol. , vol.5 , pp. 354-366
    • Fournier, B.M.1    Parkos, C.A.2
  • 135
    • 84862059476 scopus 로고    scopus 로고
    • CRTH2 is a critical regulator of neutrophil migration and resistance to polymicrobial sepsis
    • Ishii M, Asano K, Namkoong H, et al. CRTH2 is a critical regulator of neutrophil migration and resistance to polymicrobial sepsis. J Immunol. 2012;188:5655-5664.
    • (2012) J Immunol. , vol.188 , pp. 5655-5664
    • Ishii, M.1    Asano, K.2    Namkoong, H.3
  • 136
    • 84870909437 scopus 로고    scopus 로고
    • The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation
    • Maruyama K, Fukasaka M, Vandenbon A, et al. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation. Immunity. 2012;37:1024-1036.
    • (2012) Immunity , vol.37 , pp. 1024-1036
    • Maruyama, K.1    Fukasaka, M.2    Vandenbon, A.3
  • 137
    • 77952313777 scopus 로고    scopus 로고
    • Differentiation of effector CD4 T cell populations (∗)
    • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (∗). Annu Rev Immunol. 2010;28:445-489.
    • (2010) Annu Rev Immunol. , vol.28 , pp. 445-489
    • Zhu, J.1    Yamane, H.2    Paul, W.E.3
  • 138
    • 58849092225 scopus 로고    scopus 로고
    • Epigenetic control of T-helper-cell differentiation
    • Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol. 2009;9:91-105.
    • (2009) Nat Rev Immunol. , vol.9 , pp. 91-105
    • Wilson, C.B.1    Rowell, E.2    Sekimata, M.3
  • 139
    • 84863724616 scopus 로고    scopus 로고
    • An epigenetic silencing pathway controlling T helper 2 cell lineage commitment
    • Allan RS, Zueva E, Cammas F, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012;487:249-253.
    • (2012) Nature , vol.487 , pp. 249-253
    • Allan, R.S.1    Zueva, E.2    Cammas, F.3
  • 140
    • 77949876116 scopus 로고    scopus 로고
    • Transcriptional regulation of Th2 cell differentiation
    • Zhu J. Transcriptional regulation of Th2 cell differentiation. Immunol Cell Biol. 2010;88:244-249.
    • (2010) Immunol Cell Biol. , vol.88 , pp. 244-249
    • Zhu, J.1
  • 141
    • 68349121366 scopus 로고    scopus 로고
    • At the crossroads of T helper lineage commitment-epigenetics points the way
    • Janson PC, Winerdal ME, Winqvist O. At the crossroads of T helper lineage commitment-epigenetics points the way. Biochim Biophys Acta. 2009;1790:906-919.
    • (2009) Biochim Biophys Acta. , vol.1790 , pp. 906-919
    • Janson, P.C.1    Winerdal, M.E.2    Winqvist, O.3
  • 142
    • 84878392088 scopus 로고    scopus 로고
    • Essentials of Th17 cell commitment and plasticity
    • Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121:2402-2414.
    • (2013) Blood , vol.121 , pp. 2402-2414
    • Muranski, P.1    Restifo, N.P.2
  • 143
    • 84859401055 scopus 로고    scopus 로고
    • Transcriptional and epigenetic control of T helper cell specification: Molecular mechanisms underlying commitment and plasticity
    • Kanno Y, Vahedi G, Hirahara K, et al. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol. 2012;30:707-731.
    • (2012) Annu Rev Immunol. , vol.30 , pp. 707-731
    • Kanno, Y.1    Vahedi, G.2    Hirahara, K.3
  • 144
    • 84859416933 scopus 로고    scopus 로고
    • Regulatory T cells: Mechanisms of differentiation and function
    • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531-564.
    • (2012) Annu Rev Immunol. , vol.30 , pp. 531-564
    • Josefowicz, S.Z.1    Lu, L.F.2    Rudensky, A.Y.3
  • 145
    • 84875936395 scopus 로고    scopus 로고
    • FOXP3: Genetic and epigenetic implications for autoimmunity
    • Katoh H, Zheng P, Liu Y. FOXP3: genetic and epigenetic implications for autoimmunity. J Autoimmun. 2013;41:72-78.
    • (2013) J Autoimmun. , vol.41 , pp. 72-78
    • Katoh, H.1    Zheng, P.2    Liu, Y.3
  • 146
    • 83455225616 scopus 로고    scopus 로고
    • FOXP3 orchestrates H4K16 acetylation and H3K4 trimethylation for activation of multiple genes by recruiting MOF and causing displacement of PLU-1
    • Katoh H, Qin ZS, Liu R, et al. FOXP3 orchestrates H4K16 acetylation and H3K4 trimethylation for activation of multiple genes by recruiting MOF and causing displacement of PLU-1. Mol Cell. 2011;44:770-784.
    • (2011) Mol Cell. , vol.44 , pp. 770-784
    • Katoh, H.1    Qin, Z.S.2    Liu, R.3
  • 147
    • 33847220736 scopus 로고    scopus 로고
    • Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells
    • Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007; 445:936-940.
    • (2007) Nature , vol.445 , pp. 936-940
    • Zheng, Y.1    Josefowicz, S.Z.2    Kas, A.3
  • 148
    • 67650090496 scopus 로고    scopus 로고
    • Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity
    • Schmidl C, Klug M, Boeld TJ, et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 2009;19:1165-1174.
    • (2009) Genome Res. , vol.19 , pp. 1165-1174
    • Schmidl, C.1    Klug, M.2    Boeld, T.J.3
  • 150
    • 73249125168 scopus 로고    scopus 로고
    • Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan
    • Leung CH, Lam W, Ma DL, et al. Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan. Eur J Immunol. 2009;39:3529-3537.
    • (2009) Eur J Immunol. , vol.39 , pp. 3529-3537
    • Leung, C.H.1    Lam, W.2    Ma, D.L.3
  • 151
    • 33845994373 scopus 로고    scopus 로고
    • The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression
    • Malo MS, Biswas S, Abedrapo MA, et al. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA Cell Biol. 2006;25:684-695.
    • (2006) DNA Cell Biol. , vol.25 , pp. 684-695
    • Malo, M.S.1    Biswas, S.2    Abedrapo, M.A.3
  • 152
    • 77953336761 scopus 로고    scopus 로고
    • LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes
    • Angrisano T, Pero R, Peluso S, et al. LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiol. 2010;10:172.
    • (2010) BMC Microbiol , vol.10 , pp. 172
    • Angrisano, T.1    Pero, R.2    Peluso, S.3
  • 153
    • 23844549198 scopus 로고    scopus 로고
    • Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification
    • Schmeck B, Beermann W, van Laak V, et al. Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification. J Immunol. 2005;175:2843-2850.
    • (2005) J Immunol. , vol.175 , pp. 2843-2850
    • Schmeck, B.1    Beermann, W.2    Van Laak, V.3
  • 154
    • 49049090212 scopus 로고    scopus 로고
    • Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression
    • Schmeck B, Lorenz J, N'Guessan PD, et al. Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. J Immunol. 2008;181:940-947.
    • (2008) J Immunol. , vol.181 , pp. 940-947
    • Schmeck, B.1    Lorenz, J.2    N'Guessan, P.D.3
  • 155
    • 33646584884 scopus 로고    scopus 로고
    • Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-kappaB activation and histone deacetylase activity reduction
    • Slevogt H, Schmeck B, Jonatat C, et al. Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-kappaB activation and histone deacetylase activity reduction. Am J Physiol Lung Cell Mol Physiol. 2006;290:L818-L826.
    • (2006) Am J Physiol Lung Cell Mol Physiol. , vol.290 , pp. L818-L826
    • Slevogt, H.1    Schmeck, B.2    Jonatat, C.3
  • 156
    • 0037592269 scopus 로고    scopus 로고
    • Transforming growth factor-beta 1 inhibits non-pathogenic Gram negative bacteria-induced NF-kappa B recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation
    • Haller D, Holt L, Kim SC, et al. Transforming growth factor-beta 1 inhibits non-pathogenic Gram negative bacteria-induced NF-kappa B recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J Biol Chem. 2003; 278:23851-23860.
    • (2003) J Biol Chem. , vol.278 , pp. 23851-23860
    • Haller, D.1    Holt, L.2    Kim, S.C.3
  • 157
    • 48849105158 scopus 로고    scopus 로고
    • Histone modifications and chromatin remodeling during bacterial infections
    • Hamon MA, Cossart P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe. 2008;4:100-109.
    • (2008) Cell Host Microbe. , vol.4 , pp. 100-109
    • Hamon, M.A.1    Cossart, P.2
  • 158
    • 74549131857 scopus 로고    scopus 로고
    • Helicobacter pylori-induced modification of the histone H3 phosphorylation status in gastric epithelial cells reflects its impact on cell cycle regulation
    • Fehri LF, Rechner C, Janssen S, et al. Helicobacter pylori-induced modification of the histone H3 phosphorylation status in gastric epithelial cells reflects its impact on cell cycle regulation. Epigenetics. 2009;4:577-586.
    • (2009) Epigenetics , vol.4 , pp. 577-586
    • Fehri, L.F.1    Rechner, C.2    Janssen, S.3
  • 159
    • 77956303574 scopus 로고    scopus 로고
    • Helicobacter pyloriinduced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis
    • Ding SZ, Fischer W, Kaparakis-Liaskos M, et al. Helicobacter pyloriinduced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS One. 2010;5:e9875.
    • (2010) PLoS One. , vol.5 , pp. e9875
    • Ding, S.Z.1    Fischer, W.2    Kaparakis-Liaskos, M.3
  • 160
    • 84864332855 scopus 로고    scopus 로고
    • Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells
    • Angrisano T, Lembo F, Peluso S, et al. Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells. Med Microbiol Immunol. 2012;201:249-257.
    • (2012) Med Microbiol Immunol. , vol.201 , pp. 249-257
    • Angrisano, T.1    Lembo, F.2    Peluso, S.3
  • 161
    • 84868136017 scopus 로고    scopus 로고
    • Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system
    • Ghadimi D, Helwig U, Schrezenmeir J, et al. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. J Leukoc Biol. 2012;92:895-911.
    • (2012) J Leukoc Biol. , vol.92 , pp. 895-911
    • Ghadimi, D.1    Helwig, U.2    Schrezenmeir, J.3
  • 162
    • 78650102072 scopus 로고    scopus 로고
    • Distinct IFNG methylation in a subset of ulcerative colitis patients based on reactivity to microbial antigens
    • Gonsky R, Deem RL, Landers CJ, et al. Distinct IFNG methylation in a subset of ulcerative colitis patients based on reactivity to microbial antigens. Inflamm Bowel Dis. 2011;17:171-178.
    • (2011) Inflamm Bowel Dis. , vol.17 , pp. 171-178
    • Gonsky, R.1    Deem, R.L.2    Landers, C.J.3
  • 163
    • 79952664813 scopus 로고    scopus 로고
    • Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid
    • Mohamadzadeh M, Pfeiler EA, Brown JB, et al. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A. 2011;108(suppl 1):4623-4630.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 4623-4630
    • Mohamadzadeh, M.1    Pfeiler, E.A.2    Brown, J.B.3
  • 164
    • 84871770219 scopus 로고    scopus 로고
    • Targeting aberrant colon cancerspecific DNA methylation with lipoteichoic acid-deficient Lactobacillus acidophilus
    • Lightfoot YL, Yang T, Sahay B, et al. Targeting aberrant colon cancerspecific DNA methylation with lipoteichoic acid-deficient Lactobacillus acidophilus. Gut Microbes. 2013;4:84-88.
    • (2013) Gut Microbes. , vol.4 , pp. 84-88
    • Lightfoot, Y.L.1    Yang, T.2    Sahay, B.3
  • 165
    • 84878676002 scopus 로고    scopus 로고
    • Tailoring gut immune responses with lipoteichoic acid-deficient Lactobacillus acidophilus
    • Lightfoot YL, Mohamadzadeh M. Tailoring gut immune responses with lipoteichoic acid-deficient Lactobacillus acidophilus. Front Immunol. 2013;4:25.
    • (2013) Front Immunol. , vol.4 , pp. 25
    • Lightfoot, Y.L.1    Mohamadzadeh, M.2
  • 166
    • 77951583810 scopus 로고    scopus 로고
    • Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis
    • Takahashi K, Sugi Y, Hosono A, et al. Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. J Immunol. 2009;183:6522-6529.
    • (2009) J Immunol. , vol.183 , pp. 6522-6529
    • Takahashi, K.1    Sugi, Y.2    Hosono, A.3
  • 167
    • 80053922802 scopus 로고    scopus 로고
    • Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells
    • Takahashi K, Sugi Y, Nakano K, et al. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J Biol Chem. 2011;286:35755-35762.
    • (2011) J Biol Chem. , vol.286 , pp. 35755-35762
    • Takahashi, K.1    Sugi, Y.2    Nakano, K.3
  • 168
    • 79955664245 scopus 로고    scopus 로고
    • Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice
    • Kellermayer R, Dowd SE, Harris RA, et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J. 2011;25:1449-1460.
    • (2011) FASEB J. , vol.25 , pp. 1449-1460
    • Kellermayer, R.1    Dowd, S.E.2    Harris, R.A.3
  • 169
    • 79959437681 scopus 로고    scopus 로고
    • Epigenetic regulation of human beta-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria
    • Yin L, Chung WO. Epigenetic regulation of human beta-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 2011;4:409-419.
    • (2011) Mucosal Immunol. , vol.4 , pp. 409-419
    • Yin, L.1    Chung, W.O.2
  • 170
    • 84860216630 scopus 로고    scopus 로고
    • Microbial exposure during early life has persistent effects on natural killer T cell function
    • Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489-493.
    • (2012) Science , vol.336 , pp. 489-493
    • Olszak, T.1    An, D.2    Zeissig, S.3
  • 171
    • 77953597976 scopus 로고    scopus 로고
    • Epigenetic maturation in colonic mucosa continues beyond infancy in mice
    • Kellermayer R, Balasa A, Zhang W, et al. Epigenetic maturation in colonic mucosa continues beyond infancy in mice. Hum Mol Genet. 2010;19:2168-2176.
    • (2010) Hum Mol Genet. , vol.19 , pp. 2168-2176
    • Kellermayer, R.1    Balasa, A.2    Zhang, W.3
  • 172
    • 79954519615 scopus 로고    scopus 로고
    • Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes
    • Schaible TD, Harris RA, Dowd SE, et al. Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet. 2011;20:1687-1696.
    • (2011) Hum Mol Genet. , vol.20 , pp. 1687-1696
    • Schaible, T.D.1    Harris, R.A.2    Dowd, S.E.3
  • 173
    • 85046981892 scopus 로고    scopus 로고
    • Maternal micronutrients can modify colonic mucosal microbiota maturation in murine offspring
    • Nagy-Szakal D, Ross MC, Dowd SE, et al. Maternal micronutrients can modify colonic mucosal microbiota maturation in murine offspring. Gut Microbes. 2012;3:426-433.
    • (2012) Gut Microbes. , vol.3 , pp. 426-433
    • Nagy-Szakal, D.1    Ross, M.C.2    Dowd, S.E.3
  • 174
    • 84905652291 scopus 로고    scopus 로고
    • Prenatal methyl-donor supplementation augments colitis in young adult mice
    • Mir SA, Nagy-Szakal D, Dowd SE, et al. Prenatal methyl-donor supplementation augments colitis in young adult mice. PLoS One. 2013;8:e73162.
    • (2013) PLoS One. , vol.8 , pp. e73162
    • Mir, S.A.1    Nagy-Szakal, D.2    Dowd, S.E.3
  • 175
    • 79960556965 scopus 로고    scopus 로고
    • Epigenome-wide association studies for common human diseases
    • Rakyan VK, Down TA, Balding DJ, et al. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529-541.
    • (2011) Nat Rev Genet. , vol.12 , pp. 529-541
    • Rakyan, V.K.1    Down, T.A.2    Balding, D.J.3
  • 176
    • 79251550434 scopus 로고    scopus 로고
    • Differential patterns of histone acetylation in inflammatory bowel diseases
    • Tsaprouni LG, Ito K, Powell JJ, et al. Differential patterns of histone acetylation in inflammatory bowel diseases. J Inflamm (Lond). 2011;8:1.
    • (2011) J Inflamm (Lond) , vol.8 , pp. 1
    • Tsaprouni, L.G.1    Ito, K.2    Powell, J.J.3
  • 177
    • 84879102821 scopus 로고    scopus 로고
    • Cytokine-induced chromatin modifications of the type I collagen alpha 2 gene during intestinal endothelial-tomesenchymal transition
    • Sadler T, Scarpa M, Rieder F, et al. Cytokine-induced chromatin modifications of the type I collagen alpha 2 gene during intestinal endothelial-tomesenchymal transition. Inflamm Bowel Dis. 2013;19:1354-1364.
    • (2013) Inflamm Bowel Dis. , vol.19 , pp. 1354-1364
    • Sadler, T.1    Scarpa, M.2    Rieder, F.3
  • 178
    • 78049468823 scopus 로고    scopus 로고
    • MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function
    • 1664 e1651
    • McKenna LB, Schug J, Vourekas A, et al. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology. 2010;139:1654-1664, 1664 e1651.
    • (2010) Gastroenterology , vol.139 , pp. 1654-1664
    • McKenna, L.B.1    Schug, J.2    Vourekas, A.3
  • 179
    • 84888617067 scopus 로고    scopus 로고
    • MicroRNAs as tools to predict glucocorticoid response in inflammatory bowel diseases
    • De Iudicibus S, Lucafo M, Martelossi S, et al. MicroRNAs as tools to predict glucocorticoid response in inflammatory bowel diseases. World J Gastroenterol. 2013;19:7947-7954.
    • (2013) World J Gastroenterol , vol.19 , pp. 7947-7954
    • De Iudicibus, S.1    Lucafo, M.2    Martelossi, S.3
  • 180
    • 84867731967 scopus 로고    scopus 로고
    • MicroRNAs in inflammatory bowel disease-pathogenesis, diagnostics and therapeutics
    • Coskun M, Bjerrum JT, Seidelin JB, et al. MicroRNAs in inflammatory bowel disease-pathogenesis, diagnostics and therapeutics. World J Gastroenterol. 2012;18:4629-4634.
    • (2012) World J Gastroenterol , vol.18 , pp. 4629-4634
    • Coskun, M.1    Bjerrum, J.T.2    Seidelin, J.B.3
  • 181
    • 0016705559 scopus 로고
    • A model for gastric cancer epidemiology
    • Correa P, Haenszel W, Cuello C, et al. A model for gastric cancer epidemiology. Lancet. 1975;2:58-60.
    • (1975) Lancet , vol.2 , pp. 58-60
    • Correa, P.1    Haenszel, W.2    Cuello, C.3
  • 182
    • 78649706953 scopus 로고    scopus 로고
    • Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans
    • Peterson AJ, Menheniott TR, O'Connor L, et al. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology. 2010;139:2005-2017.
    • (2010) Gastroenterology , vol.139 , pp. 2005-2017
    • Peterson, A.J.1    Menheniott, T.R.2    O'Connor, L.3
  • 183
    • 79952311137 scopus 로고    scopus 로고
    • Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing
    • Tomita H, Takaishi S, Menheniott TR, et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology. 2011;140:879-891.
    • (2011) Gastroenterology , vol.140 , pp. 879-891
    • Tomita, H.1    Takaishi, S.2    Menheniott, T.R.3
  • 184
    • 84871296892 scopus 로고    scopus 로고
    • Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis
    • Cheng AS, Li MS, Kang W, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology. 2013;144:122-133.e129.
    • (2013) Gastroenterology , vol.144 , pp. 122-133
    • Cheng, A.S.1    Li, M.S.2    Kang, W.3
  • 185
    • 84871316971 scopus 로고    scopus 로고
    • FoxD3 is a novel, epigenetically regulated tumor suppressor in gastric carcinogenesis
    • Schmid CA, Muller A. FoxD3 is a novel, epigenetically regulated tumor suppressor in gastric carcinogenesis. Gastroenterology. 2013;144:22-25.
    • (2013) Gastroenterology , vol.144 , pp. 22-25
    • Schmid, C.A.1    Muller, A.2
  • 186
    • 44349124113 scopus 로고    scopus 로고
    • The genetics and immunopathogenesis of inflammatory bowel disease
    • Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8:458-466.
    • (2008) Nat Rev Immunol. , vol.8 , pp. 458-466
    • Cho, J.H.1
  • 187
    • 84857577343 scopus 로고    scopus 로고
    • Inflammation, DNA methylation and colitisassociated cancer
    • Hartnett L, Egan LJ. Inflammation, DNA methylation and colitisassociated cancer. Carcinogenesis. 2012;33:723-731.
    • (2012) Carcinogenesis , vol.33 , pp. 723-731
    • Hartnett, L.1    Egan, L.J.2
  • 188
    • 57749090255 scopus 로고    scopus 로고
    • Methylation of polycomb target genes in intestinal cancer is mediated by inflammation
    • Hahn MA, Hahn T, Lee DH, et al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res. 2008;68: 10280-10289.
    • (2008) Cancer Res. , vol.68 , pp. 10280-10289
    • Hahn, M.A.1    Hahn, T.2    Lee, D.H.3
  • 189
    • 77954661906 scopus 로고    scopus 로고
    • DNA hypomethylation in cancer cells
    • Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1: 239-259.
    • (2009) Epigenomics. , vol.1 , pp. 239-259
    • Ehrlich, M.1
  • 190
  • 191
    • 58249089525 scopus 로고    scopus 로고
    • CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer
    • Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58:90-96.
    • (2009) Gut. , vol.58 , pp. 90-96
    • Ogino, S.1    Nosho, K.2    Kirkner, G.J.3
  • 192
    • 34247273521 scopus 로고    scopus 로고
    • Rare CpG island methylator phenotype in ulcerative colitis-associated neoplasias
    • Konishi K, Shen L, Wang S, et al. Rare CpG island methylator phenotype in ulcerative colitis-associated neoplasias. Gastroenterology. 2007; 132:1254-1260.
    • (2007) Gastroenterology , vol.132 , pp. 1254-1260
    • Konishi, K.1    Shen, L.2    Wang, S.3
  • 193
    • 0036778630 scopus 로고    scopus 로고
    • Epigenetic control of the E-cadherin gene (CDH1) by CpG methylation in colectomy samples of patients with ulcerative colitis
    • Azarschab P, Porschen R, Gregor M, et al. Epigenetic control of the E-cadherin gene (CDH1) by CpG methylation in colectomy samples of patients with ulcerative colitis. Genes Chromosomes Cancer. 2002;35: 121-126.
    • (2002) Genes Chromosomes Cancer , vol.35 , pp. 121-126
    • Azarschab, P.1    Porschen, R.2    Gregor, M.3
  • 194
    • 34748900060 scopus 로고    scopus 로고
    • Hypermethylation of p14 (ARF) may be predictive of colitic cancer in patients with ulcerative colitis
    • Moriyama T, Matsumoto T, Nakamura S, et al. Hypermethylation of p14 (ARF) may be predictive of colitic cancer in patients with ulcerative colitis. Dis Colon Rectum. 2007;50:1384-1392.
    • (2007) Dis Colon Rectum. , vol.50 , pp. 1384-1392
    • Moriyama, T.1    Matsumoto, T.2    Nakamura, S.3
  • 195
    • 41549125402 scopus 로고    scopus 로고
    • Aberrant DNA methylation in ulcerative colitis without neoplasia
    • Wang FY, Arisawa T, Tahara T, et al. Aberrant DNA methylation in ulcerative colitis without neoplasia. Hepatogastroenterology. 2008;55:62-65.
    • (2008) Hepatogastroenterology , vol.55 , pp. 62-65
    • Wang, F.Y.1    Arisawa, T.2    Tahara, T.3
  • 196
    • 52549133774 scopus 로고    scopus 로고
    • Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia
    • Dhir M, Montgomery EA, Glockner SC, et al. Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia. J Gastrointest Surg. 2008;12:1745-1753.
    • (2008) J Gastrointest Surg. , vol.12 , pp. 1745-1753
    • Dhir, M.1    Montgomery, E.A.2    Glockner, S.C.3
  • 197
    • 77149155643 scopus 로고    scopus 로고
    • Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis
    • Li Y, de Haar C, Chen M, et al. Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut. 2010;59:227-235.
    • (2010) Gut. , vol.59 , pp. 227-235
    • Li, Y.1    De Haar, C.2    Chen, M.3
  • 198
    • 84858700966 scopus 로고    scopus 로고
    • Unique patterns of CpG island methylation in inflammatory bowel disease-associated colorectal cancers
    • Olaru AV, Cheng Y, Agarwal R, et al. Unique patterns of CpG island methylation in inflammatory bowel disease-associated colorectal cancers. Inflamm Bowel Dis. 2012;18:641-648.
    • (2012) Inflamm Bowel Dis. , vol.18 , pp. 641-648
    • Olaru, A.V.1    Cheng, Y.2    Agarwal, R.3
  • 199
    • 0033404952 scopus 로고    scopus 로고
    • Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production
    • Hmadcha A, Bedoya FJ, Sobrino F, et al. Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med. 1999;190:1595-1604.
    • (1999) J Exp Med. , vol.190 , pp. 1595-1604
    • Hmadcha, A.1    Bedoya, F.J.2    Sobrino, F.3
  • 200
    • 77951188458 scopus 로고    scopus 로고
    • Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6
    • Foran E, Garrity-Park MM, Mureau C, et al. Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res. 2010;8:471-481.
    • (2010) Mol Cancer Res. , vol.8 , pp. 471-481
    • Foran, E.1    Garrity-Park, M.M.2    Mureau, C.3
  • 201
    • 79958025266 scopus 로고    scopus 로고
    • An endogenously antiinflammatory role for methylation in mucosal inflammation identified through metabolite profiling
    • Kominsky DJ, Keely S, MacManus CF, et al. An endogenously antiinflammatory role for methylation in mucosal inflammation identified through metabolite profiling. J Immunol. 2011;186:6505-6514.
    • (2011) J Immunol. , vol.186 , pp. 6505-6514
    • Kominsky, D.J.1    Keely, S.2    MacManus, C.F.3
  • 202
    • 81255162523 scopus 로고    scopus 로고
    • Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands
    • O'Hagan HM, Wang W, Sen S, et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell. 2011;20:606-619.
    • (2011) Cancer Cell. , vol.20 , pp. 606-619
    • O'Hagan, H.M.1    Wang, W.2    Sen, S.3
  • 203
    • 84867322245 scopus 로고    scopus 로고
    • IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer
    • Li Y, Deuring J, Peppelenbosch MP, et al. IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. Carcinogenesis. 2012;33:1889-1896.
    • (2012) Carcinogenesis , vol.33 , pp. 1889-1896
    • Li, Y.1    Deuring, J.2    Peppelenbosch, M.P.3
  • 204
    • 84873407557 scopus 로고    scopus 로고
    • Novel methylation panel for the early detection of neoplasia in high-risk ulcerative colitis and Crohn's colitis patients
    • Azuara D, Rodriguez-Moranta F, de Oca J, et al. Novel methylation panel for the early detection of neoplasia in high-risk ulcerative colitis and Crohn's colitis patients. Inflamm Bowel Dis. 2013;19:165-173.
    • (2013) Inflamm Bowel Dis. , vol.19 , pp. 165-173
    • Azuara, D.1    Rodriguez-Moranta, F.2    De Oca, J.3
  • 205
    • 84893778094 scopus 로고    scopus 로고
    • FOXE1 and SYNE1 genes hypermethylation panel as promising biomarker in colitis-associated colorectal neoplasia
    • Papadia C, Louwagie J, Del Rio P, et al. FOXE1 and SYNE1 genes hypermethylation panel as promising biomarker in colitis-associated colorectal neoplasia. Inflamm Bowel Dis. 2014;20:271-277.
    • (2014) Inflamm Bowel Dis. , vol.20 , pp. 271-277
    • Papadia, C.1    Louwagie, J.2    Del Rio, P.3
  • 206
    • 67349285075 scopus 로고    scopus 로고
    • Promoter methylation of protease-activated receptor (PAR2) is associated with severe clinical phenotypes of ulcerative colitis (UC)
    • Tahara T, Shibata T, Nakamura M, et al. Promoter methylation of protease-activated receptor (PAR2) is associated with severe clinical phenotypes of ulcerative colitis (UC). Clin Exp Med. 2009;9:125-130.
    • (2009) Clin Exp Med. , vol.9 , pp. 125-130
    • Tahara, T.1    Shibata, T.2    Nakamura, M.3
  • 207
    • 67649451991 scopus 로고    scopus 로고
    • Effect of MDR1 gene promoter methylation in patients with ulcerative colitis
    • Tahara T, Shibata T, Nakamura M, et al. Effect of MDR1 gene promoter methylation in patients with ulcerative colitis. Int J Mol Med. 2009;23: 521-527.
    • (2009) Int J Mol Med. , vol.23 , pp. 521-527
    • Tahara, T.1    Shibata, T.2    Nakamura, M.3
  • 208
    • 77954426562 scopus 로고    scopus 로고
    • Methylation status of genes in non-neoplastic mucosa from patients with ulcerative colitisassociated colorectal cancer
    • Garrity-Park MM, Loftus EV Jr, Sandborn WJ, et al. Methylation status of genes in non-neoplastic mucosa from patients with ulcerative colitisassociated colorectal cancer. Am J Gastroenterol. 2010;105:1610-1619.
    • (2010) Am J Gastroenterol , vol.105 , pp. 1610-1619
    • Garrity-Park, M.M.1    Loftus, E.V.2    Sandborn, W.J.3
  • 209
    • 84867893908 scopus 로고    scopus 로고
    • Abnormal genetic and epigenetic changes in signal transducer and activator of transcription 4 in the pathogenesis of inflammatory bowel diseases
    • Kim SW, Kim ES, Moon CM, et al. Abnormal genetic and epigenetic changes in signal transducer and activator of transcription 4 in the pathogenesis of inflammatory bowel diseases. Dig Dis Sci. 2012;57:2600-2607.
    • (2012) Dig Dis Sci. , vol.57 , pp. 2600-2607
    • Kim, S.W.1    Kim, E.S.2    Moon, C.M.3
  • 210
    • 79959852640 scopus 로고    scopus 로고
    • Circulating microRNA is a biomarker of pediatric Crohn disease
    • Zahm AM, Thayu M, Hand NJ, et al. Circulating microRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2011; 53:26-33.
    • (2011) J Pediatr Gastroenterol Nutr. , vol.53 , pp. 26-33
    • Zahm, A.M.1    Thayu, M.2    Hand, N.J.3
  • 211
    • 78049340862 scopus 로고    scopus 로고
    • Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease
    • Fasseu M, Treton X, Guichard C, et al. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One. 2010;5.
    • (2010) PLoS One. , pp. 5
    • Fasseu, M.1    Treton, X.2    Guichard, C.3
  • 212
    • 55249119513 scopus 로고    scopus 로고
    • MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha
    • Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624-1635.e1624.
    • (2008) Gastroenterology , vol.135 , pp. 1624-1635
    • Wu, F.1    Zikusoka, M.2    Trindade, A.3
  • 213
    • 84857135660 scopus 로고    scopus 로고
    • Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis
    • Duttagupta R, DiRienzo S, Jiang R, et al. Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS One. 2012;7:e31241.
    • (2012) PLoS One. , vol.7 , pp. e31241
    • Duttagupta, R.1    Dirienzo, S.2    Jiang, R.3
  • 214
    • 78650119948 scopus 로고    scopus 로고
    • Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn's disease
    • Wu F, Guo NJ, Tian H, et al. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn's disease. Inflamm Bowel Dis. 2011; 17:241-250.
    • (2011) Inflamm Bowel Dis. , vol.17 , pp. 241-250
    • Wu, F.1    Guo, N.J.2    Tian, H.3
  • 215
    • 84880437626 scopus 로고    scopus 로고
    • MiR-20b, miR-98, miR-125b-1∗, and let-7e∗as new potential diagnostic biomarkers in ulcerative colitis
    • Coskun M, Bjerrum JT, Seidelin JB, et al. miR-20b, miR-98, miR-125b-1∗, and let-7e∗as new potential diagnostic biomarkers in ulcerative colitis. World J Gastroenterol. 2013;19:4289-4299.
    • (2013) World J Gastroenterol , vol.19 , pp. 4289-4299
    • Coskun, M.1    Bjerrum, J.T.2    Seidelin, J.B.3
  • 216
    • 84880008053 scopus 로고    scopus 로고
    • Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease
    • Iborra M, Bernuzzi F, Correale C, et al. Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease. Clin Exp Immunol. 2013;173:250-258.
    • (2013) Clin Exp Immunol. , vol.173 , pp. 250-258
    • Iborra, M.1    Bernuzzi, F.2    Correale, C.3
  • 217
    • 79957944138 scopus 로고    scopus 로고
    • Inhibition of histone deacetylases in inflammatory bowel diseases
    • Glauben R, Siegmund B. Inhibition of histone deacetylases in inflammatory bowel diseases. Mol Med. 2011;17:426-433.
    • (2011) Mol Med. , vol.17 , pp. 426-433
    • Glauben, R.1    Siegmund, B.2
  • 218
    • 79960880985 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors and their potential role in inflammatory bowel diseases
    • Edwards AJ, Pender SL. Histone deacetylase inhibitors and their potential role in inflammatory bowel diseases. Biochem Soc Trans. 2011;39: 1092-1095.
    • (2011) Biochem Soc Trans. , vol.39 , pp. 1092-1095
    • Edwards, A.J.1    Pender, S.L.2
  • 219
    • 80054760346 scopus 로고    scopus 로고
    • STAT6 activation in ulcerative colitis: A new target for prevention of IL-13-induced colon epithelial cell dysfunction
    • Rosen MJ, Frey MR, Washington MK, et al. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis. 2011;17:2224-2234.
    • (2011) Inflamm Bowel Dis. , vol.17 , pp. 2224-2234
    • Rosen, M.J.1    Frey, M.R.2    Washington, M.K.3
  • 220
    • 84888984717 scopus 로고    scopus 로고
    • Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis
    • Wang LS, Kuo CT, Stoner K, et al. Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis. Carcinogenesis. 2013;34:2842-2850.
    • (2013) Carcinogenesis , vol.34 , pp. 2842-2850
    • Wang, L.S.1    Kuo, C.T.2    Stoner, K.3
  • 221
    • 84885761817 scopus 로고    scopus 로고
    • Dietary folate does not significantly affect the intestinal microbiome, inflammation or tumorigenesis in azoxymethane-dextran sodium sulphate-treated mice
    • Macfarlane AJ, Behan NA, Matias FM, et al. Dietary folate does not significantly affect the intestinal microbiome, inflammation or tumorigenesis in azoxymethane-dextran sodium sulphate-treated mice. Br J Nutr. 2013;109:630-638.
    • (2013) Br J Nutr. , vol.109 , pp. 630-638
    • MacFarlane, A.J.1    Behan, N.A.2    Matias, F.M.3
  • 222
    • 80054946988 scopus 로고    scopus 로고
    • Methyl deficient diet aggravates experimental colitis in rats
    • Chen M, Peyrin-Biroulet L, George A, et al. Methyl deficient diet aggravates experimental colitis in rats. J Cell Mol Med. 2011;15: 2486-2497.
    • (2011) J Cell Mol Med. , vol.15 , pp. 2486-2497
    • Chen, M.1    Peyrin-Biroulet, L.2    George, A.3
  • 223
    • 84878097254 scopus 로고    scopus 로고
    • Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: Impact on inflammation
    • Yara S, Lavoie JC, Beaulieu JF, et al. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: impact on inflammation. PLoS One. 2013; 8:e63456.
    • (2013) PLoS One. , vol.8 , pp. e63456
    • Yara, S.1    Lavoie, J.C.2    Beaulieu, J.F.3
  • 224
    • 77954365690 scopus 로고    scopus 로고
    • Regulation of NF-kappaB responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells
    • O'Gorman A, Colleran A, Ryan A, et al. Regulation of NF-kappaB responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G96-G105.
    • (2010) Am J Physiol Gastrointest Liver Physiol. , vol.299 , pp. G96-G105
    • O'Gorman, A.1    Colleran, A.2    Ryan, A.3
  • 225
    • 84900564655 scopus 로고    scopus 로고
    • The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis
    • Turgeon N, Moore Gagne J, Blais M, et al. The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2014;306:G594-G605.
    • (2014) Am J Physiol Gastrointest Liver Physiol. , vol.306 , pp. G594-G605
    • Turgeon, N.1    Moore Gagne, J.2    Blais, M.3
  • 226
    • 84871954192 scopus 로고    scopus 로고
    • A novel tylophorine analog W-8 upregulates forkhead boxP3 expression and ameliorates murine colitis
    • Meng X, Zhang Y, Jia Z, et al. A novel tylophorine analog W-8 upregulates forkhead boxP3 expression and ameliorates murine colitis. J Leukoc Biol. 2013;93:83-93.
    • (2013) J Leukoc Biol. , vol.93 , pp. 83-93
    • Meng, X.1    Zhang, Y.2    Jia, Z.3
  • 227
    • 80051676534 scopus 로고    scopus 로고
    • Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis
    • Singh NP, Singh UP, Singh B, et al. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS One. 2011;6:e23522.
    • (2011) PLoS One. , vol.6 , pp. e23522
    • Singh, N.P.1    Singh, U.P.2    Singh, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.