메뉴 건너뛰기




Volumn 20, Issue 3, 2013, Pages 259-266

Regulation of nucleosome dynamics by histone modifications

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE DIPHOSPHATE; HISTONE;

EID: 84875149194     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2470     Document Type: Review
Times cited : (709)

References (110)
  • 2
    • 77949874234 scopus 로고    scopus 로고
    • Histone variants-ancient wrap artists of the epigenome
    • Talbert, P.B. & Henikoff, S. Histone variants-ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264-275 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 264-275
    • Talbert, P.B.1    Henikoff, S.2
  • 3
    • 79952539053 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms
    • Hargreaves, D.C. & Crabtree, G.R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396-420 (2011).
    • (2011) Cell Res , vol.21 , pp. 396-420
    • Hargreaves, D.C.1    Crabtree, G.R.2
  • 4
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
    • Allfrey, V.G., Faulkner, R. & Mirsky, A.E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51, 786-794 (1964).
    • (1964) Proc. Natl. Acad. Sci. USA , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 5
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides, T. Chromatin modifications and their function. Cell 128, 693-705 (2007).
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 6
    • 80052942443 scopus 로고    scopus 로고
    • Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
    • Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016-1028 (2011).
    • (2011) Cell , vol.146 , pp. 1016-1028
    • Tan, M.1
  • 7
    • 79956066320 scopus 로고    scopus 로고
    • Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
    • Roudier, F. et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928-1938 (2011).
    • (2011) EMBO J , vol.30 , pp. 1928-1938
    • Roudier, F.1
  • 8
    • 26444508841 scopus 로고    scopus 로고
    • Single-nucleosome mapping of histone modifications in S. cerevisiae
    • Liu, C.L. et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3, e328 (2005).
    • (2005) PLoS Biol , vol.3
    • Liu, C.L.1
  • 9
    • 46249112085 scopus 로고    scopus 로고
    • Combinatorial patterns of histone acetylations and methylations in the human genome
    • Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897-903 (2008).
    • (2008) Nat. Genet , vol.40 , pp. 897-903
    • Wang, Z.1
  • 10
    • 34547624303 scopus 로고    scopus 로고
    • Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
    • Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553-560 (2007).
    • (2007) Nature , vol.448 , pp. 553-560
    • Mikkelsen, T.S.1
  • 11
    • 79953060951 scopus 로고    scopus 로고
    • Comprehensive analysis of the chromatin landscape in Drosophila melanogaster
    • Kharchenko, P.V. et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480-485 (2011).
    • (2011) Nature , vol.471 , pp. 480-485
    • Kharchenko, P.V.1
  • 12
    • 80051564877 scopus 로고    scopus 로고
    • Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions
    • Zentner, G.E., Tesar, P.J. & Scacheri, P.C. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21, 1273-1283 (2011).
    • (2011) Genome Res , vol.21 , pp. 1273-1283
    • Zentner, G.E.1    Tesar, P.J.2    Scacheri, P.C.3
  • 13
    • 79951516056 scopus 로고    scopus 로고
    • A unique chromatin signature uncovers early developmental enhancers in humans
    • Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283 (2011).
    • (2011) Nature , vol.470 , pp. 279-283
    • Rada-Iglesias, A.1
  • 14
    • 0007852927 scopus 로고
    • The presence of acetyl groups in histones
    • Phillips, D.M.P. The presence of acetyl groups in histones. Biochem. J. 87, 258-263 (1963).
    • (1963) Biochem. J , vol.87 , pp. 258-263
    • Phillips, D.M.P.1
  • 15
    • 0013900616 scopus 로고
    • RNA synthesis and histone acetylation during the course of gene activation in lymphocytes
    • Pogo, B.G., Allfrey, V.G. & Mirsky, A.E. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl. Acad. Sci. USA 55, 805-812 (1966).
    • (1966) Proc. Natl. Acad. Sci. USA , vol.55 , pp. 805-812
    • Pogo, B.G.1    Allfrey, V.G.2    Mirsky, A.E.3
  • 16
    • 0027525970 scopus 로고
    • Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA
    • Hong, L., Schroth, G.P., Matthews, H.R., Yau, P. & Bradbury, E.M. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA. J. Biol. Chem. 268, 305-314 (1993).
    • (1993) J. Biol. Chem , vol.268 , pp. 305-314
    • Hong, L.1    Schroth, G.P.2    Matthews, H.R.3    Yau, P.4    Bradbury, E.M.5
  • 17
    • 0029123092 scopus 로고
    • Histone H4 and the maintenance of genome integrity
    • Megee, P.C., Morgan, B.A. & Smith, M.M. Histone H4 and the maintenance of genome integrity. Genes Dev. 9, 1716-1727 (1995).
    • (1995) Genes Dev , vol.9 , pp. 1716-1727
    • Megee, P.C.1    Morgan, B.A.2    Smith, M.M.3
  • 18
    • 17244368913 scopus 로고    scopus 로고
    • Genomic characterization reveals a simple histone H4 acetylation code
    • Dion, M.F., Altschuler, S.J., Wu, L.F. & Rando, O.J. Genomic characterization reveals a simple histone H4 acetylation code. Proc. Natl. Acad. Sci. USA 102, 5501-5506 (2005).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5501-5506
    • Dion, M.F.1    Altschuler, S.J.2    Wu, L.F.3    Rando, O.J.4
  • 19
    • 3843103739 scopus 로고    scopus 로고
    • Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae
    • Martin, A.M., Pouchnik, D.J., Walker, J.L. & Wyrick, J.J. Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae. Genetics 167, 1123-1132 (2004).
    • (2004) Genetics , vol.167 , pp. 1123-1132
    • Martin, A.M.1    Pouchnik, D.J.2    Walker, J.L.3    Wyrick, J.J.4
  • 20
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell, S.P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333-374 (2002).
    • (2002) Annu. Rev. Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 21
    • 77950519650 scopus 로고    scopus 로고
    • Dynamic changes in histone acetylation regulate origins of DNA replication
    • Unnikrishnan, A., Gafken, P.R. & Tsukiyama, T. Dynamic changes in histone acetylation regulate origins of DNA replication. Nat. Struct. Mol. Biol. 17, 430-437 (2010).
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 430-437
    • Unnikrishnan, A.1    Gafken, P.R.2    Tsukiyama, T.3
  • 22
    • 79551529513 scopus 로고    scopus 로고
    • Chromatin dynamics and the repair of DNA double strand breaks
    • Xu, Y. & Price, B.D. Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 10, 261-267 (2011).
    • (2011) Cell Cycle , vol.10 , pp. 261-267
    • Xu, Y.1    Price, B.D.2
  • 23
    • 78049246250 scopus 로고    scopus 로고
    • Fast signals and slow marks: The dynamics of histone modifications
    • Barth, T.K. & Imhof, A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem. Sci. 35, 618-626 (2010).
    • (2010) Trends Biochem. Sci , vol.35 , pp. 618-626
    • Barth, T.K.1    Imhof, A.2
  • 24
    • 36049028058 scopus 로고    scopus 로고
    • New nomenclature for chromatin-modifying enzymes
    • Allis, C.D. et al. New nomenclature for chromatin-modifying enzymes. Cell 131, 633-636 (2007).
    • (2007) Cell , vol.131 , pp. 633-636
    • Allis, C.D.1
  • 25
    • 69449102464 scopus 로고    scopus 로고
    • Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes
    • Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019-1031 (2009).
    • (2009) Cell , vol.138 , pp. 1019-1031
    • Wang, Z.1
  • 26
    • 0035986095 scopus 로고    scopus 로고
    • Dynamics of histone acetylation in vivo. A function for acetylation turnover?
    • Waterborg, J.H. Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem. Cell Biol. 80, 363-378 (2002).
    • (2002) Biochem. Cell Biol. , vol.80 , pp. 363-378
    • Waterborg, J.H.1
  • 27
    • 0026580006 scopus 로고
    • Brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2
    • Tamkun, J.W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561-572 (1992).
    • (1992) Cell , vol.68 , pp. 561-572
    • Tamkun, J.W.1
  • 28
    • 0037138363 scopus 로고    scopus 로고
    • Bromodomain: An acetyl-lysine binding domain
    • Zeng, L. & Zhou, M.-M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124-128 (2002).
    • (2002) FEBS Lett , vol.513 , pp. 124-128
    • Zeng, L.1    Zhou, M.-M.2
  • 29
    • 0036208153 scopus 로고    scopus 로고
    • Modulation of ISWI function by site-specific histone acetylation
    • Corona, D.F.V., Clapier, C.R., Becker, P.B. & Tamkun, J.W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3, 242-247 (2002).
    • (2002) EMBO Rep , vol.3 , pp. 242-247
    • Corona, D.F.V.1    Clapier, C.R.2    Becker, P.B.3    Tamkun, J.W.4
  • 30
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4-K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844-847 (2006).
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1
  • 31
    • 0036464569 scopus 로고    scopus 로고
    • A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI
    • Clapier, C.R., Nightingale, K.P. & Becker, P.B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649-655 (2002).
    • (2002) Nucleic Acids Res , vol.30 , pp. 649-655
    • Clapier, C.R.1    Nightingale, K.P.2    Becker, P.B.3
  • 32
    • 84859748655 scopus 로고    scopus 로고
    • Expansion of the lysine acylation landscape
    • Olsen, C.A. Expansion of the lysine acylation landscape. Angew. Chem. Int. Ed. Engl. 51, 3755-3756 (2012).
    • (2012) Angew. Chem. Int. Ed. Engl , vol.51 , pp. 3755-3756
    • Olsen, C.A.1
  • 33
    • 58149295717 scopus 로고    scopus 로고
    • Protein arginine methylation in mammals: Who, what, and why
    • Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1-13 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 1-13
    • Bedford, M.T.1    Clarke, S.G.2
  • 34
    • 77649177097 scopus 로고    scopus 로고
    • Predictive chromatin signatures in the mammalian genome
    • Hon, G.C., Hawkins, R.D. & Ren, B. Predictive chromatin signatures in the mammalian genome. Hum. Mol. Genet. 18, R195-R201 (2009).
    • (2009) Hum. Mol. Genet , vol.18
    • Hon, G.C.1    Hawkins, R.D.2    Ren, B.3
  • 35
    • 79955949044 scopus 로고    scopus 로고
    • The specificity and topology of chromatin interaction pathways in yeast
    • Lenstra, T.L. et al. The specificity and topology of chromatin interaction pathways in yeast. Mol. Cell 42, 536-549 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 536-549
    • Lenstra, T.L.1
  • 36
    • 79951711112 scopus 로고    scopus 로고
    • Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains
    • Jiang, H. et al. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513-525 (2011).
    • (2011) Cell , vol.144 , pp. 513-525
    • Jiang, H.1
  • 37
    • 84856120332 scopus 로고    scopus 로고
    • Understanding the language of Lys36 methylation at histone H3
    • Wagner, E.J. & Carpenter, P.B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13, 115-126 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 115-126
    • Wagner, E.J.1    Carpenter, P.B.2
  • 38
    • 79955494277 scopus 로고    scopus 로고
    • Histone methylation by PRC2 is inhibited by active chromatin marks
    • Schmitges, F.W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330-341 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 330-341
    • Schmitges, F.W.1
  • 39
    • 33845799903 scopus 로고    scopus 로고
    • Polycomb silencing mechanisms and the management of genomic programmes
    • Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9-22 (2007).
    • (2007) Nat. Rev. Genet , vol.8 , pp. 9-22
    • Schwartz, Y.B.1    Pirrotta, V.2
  • 40
    • 27744587302 scopus 로고    scopus 로고
    • Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
    • Keogh, M.-C. et al. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593-605 (2005).
    • (2005) Cell , vol.123 , pp. 593-605
    • Keogh, M.-C.1
  • 41
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581-592 (2005).
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1
  • 42
    • 34249874030 scopus 로고    scopus 로고
    • Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription
    • Li, B. et al. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev. 21, 1422-1430 (2007).
    • (2007) Genes Dev , vol.21 , pp. 1422-1430
    • Li, B.1
  • 43
    • 78449255017 scopus 로고    scopus 로고
    • DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes
    • Drouin, S. et al. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet. 6, e1001173 (2010).
    • (2010) PLoS Genet , vol.6
    • Drouin, S.1
  • 44
    • 35848961668 scopus 로고    scopus 로고
    • How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers
    • Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025-1040 (2007).
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 1025-1040
    • Taverna, S.D.1    Li, H.2    Ruthenburg, A.J.3    Allis, C.D.4    Patel, D.J.5
  • 45
    • 0043127085 scopus 로고    scopus 로고
    • Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains
    • Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870-1881 (2003).
    • (2003) Genes Dev , vol.17 , pp. 1870-1881
    • Fischle, W.1
  • 46
    • 78650734995 scopus 로고    scopus 로고
    • Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly
    • Canzio, D. et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol. Cell 41, 67-81 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 67-81
    • Canzio, D.1
  • 47
    • 84866497062 scopus 로고    scopus 로고
    • Set2 methylation of histone H3 lysine36 suppresses histone exchange on transcribed genes
    • Venkatesh, S. et al. Set2 methylation of histone H3 lysine36 suppresses histone exchange on transcribed genes. Nature 489, 452-455 (2012).
    • (2012) Nature , vol.489 , pp. 452-455
    • Venkatesh, S.1
  • 48
    • 84866114872 scopus 로고    scopus 로고
    • Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange
    • Smolle, M. et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19, 884-892 (2012).
    • (2012) Nat. Struct. Mol. Biol , vol.19 , pp. 884-892
    • Smolle, M.1
  • 49
    • 84866271965 scopus 로고    scopus 로고
    • Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin
    • Maltby, V.E. et al. Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol. Cell Biol. 32, 3479-3485 (2012).
    • (2012) Mol. Cell Biol , vol.32 , pp. 3479-3485
    • Maltby, V.E.1
  • 50
    • 0036682364 scopus 로고    scopus 로고
    • Gene silencing: Trans-histone regulatory pathway in chromatin
    • Briggs, S.D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).
    • (2002) Nature , vol.418 , pp. 498
    • Briggs, S.D.1
  • 51
    • 11144241618 scopus 로고    scopus 로고
    • Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase
    • Patnaik, D. et al. Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase. J. Biol. Chem. 279, 53248-53258 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 53248-53258
    • Patnaik, D.1
  • 52
    • 23944509075 scopus 로고    scopus 로고
    • The SET-domain protein superfamily: Protein lysine methyltransferases
    • Dillon, S., Zhang, X., Trievel, R. & Cheng, X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227 (2005).
    • (2005) Genome Biol , vol.6 , pp. 227
    • Dillon, S.1    Zhang, X.2    Trievel, R.3    Cheng, X.4
  • 53
    • 83255192184 scopus 로고    scopus 로고
    • A peek into the complex realm of histone phosphorylation
    • Banerjee, T. & Chakravarti, D. A peek into the complex realm of histone phosphorylation. Mol. Cell Biol. 31, 4858-4873 (2011).
    • (2011) Mol. Cell Biol , vol.31 , pp. 4858-4873
    • Banerjee, T.1    Chakravarti, D.2
  • 54
    • 0015425375 scopus 로고
    • Blocking by histones of accessibility to DNA in chromatin: Addition of histones
    • Mirsky, A.E., Silverman, B. & Panda, N.C. Blocking by histones of accessibility to DNA in chromatin: addition of histones. Proc. Natl. Acad. Sci. USA 69, 3243-3246 (1972).
    • (1972) Proc. Natl. Acad. Sci. USA , vol.69 , pp. 3243-3246
    • Mirsky, A.E.1    Silverman, B.2    Panda, N.C.3
  • 55
    • 79961231750 scopus 로고    scopus 로고
    • Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling
    • North, J.A. et al. Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res. 39, 6465-6474 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. 6465-6474
    • North, J.A.1
  • 56
    • 0343280013 scopus 로고    scopus 로고
    • A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage
    • Paull, T.T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886-895 (2000).
    • (2000) Curr. Biol , vol.10 , pp. 886-895
    • Paull, T.T.1
  • 57
    • 84861647319 scopus 로고    scopus 로고
    • A unified phylogeny-based nomenclature for histone variants
    • Talbert, P. et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5, 7 (2012).
    • (2012) Epigenetics Chromatin , vol.5 , pp. 7
    • Talbert, P.1
  • 58
    • 10844233155 scopus 로고    scopus 로고
    • Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions
    • Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084-2087 (2004).
    • (2004) Science , vol.306 , pp. 2084-2087
    • Kusch, T.1
  • 59
    • 0021954151 scopus 로고
    • Phosphorylation of sea urchin sperm H1 and H2B histones precedes chromatin decondensation and H1 exchange during pronuclear formation
    • Green, G.R. & Poccia, D.L. Phosphorylation of sea urchin sperm H1 and H2B histones precedes chromatin decondensation and H1 exchange during pronuclear formation. Dev. Biol. 108, 235-245 (1985).
    • (1985) Dev. Biol , vol.108 , pp. 235-245
    • Green, G.R.1    Poccia, D.L.2
  • 60
    • 28844475262 scopus 로고    scopus 로고
    • Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin
    • Hirota, T., Lipp, J.J., Toh, B.-H. & Peters, J.-M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176-1180 (2005).
    • (2005) Nature , vol.438 , pp. 1176-1180
    • Hirota, T.1    Lipp, J.J.2    Toh, B.-H.3    Peters, J.-M.4
  • 61
    • 28844477653 scopus 로고    scopus 로고
    • Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
    • Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116-1122 (2005).
    • (2005) Nature , vol.438 , pp. 1116-1122
    • Fischle, W.1
  • 62
    • 77956919550 scopus 로고    scopus 로고
    • Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation
    • Gehani, S.S. et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39, 886-900 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 886-900
    • Gehani, S.S.1
  • 63
    • 33749260519 scopus 로고    scopus 로고
    • Nuclear ADP-ribosylation reactions in mammalian cells: Where are we today and where are we going?
    • Hassa, P.O., Haenni, S.S., Elser, M. & Hottiger, M.O. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70, 789-829 (2006).
    • (2006) Microbiol. Mol. Biol. Rev. , vol.70 , pp. 789-829
    • Hassa, P.O.1    Haenni, S.S.2    Elser, M.3    Hottiger, M.O.4
  • 64
    • 80052172007 scopus 로고    scopus 로고
    • Histone ADP-ribosylation in DNA repair, replication and transcription
    • Messner, S. & Hottiger, M.O. Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 21, 534-542 (2011).
    • (2011) Trends Cell Biol , vol.21 , pp. 534-542
    • Messner, S.1    Hottiger, M.O.2
  • 65
    • 84855895036 scopus 로고    scopus 로고
    • Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70
    • Petesch, S.J. & Lis, J.T. Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol. Cell 45, 64-74 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 64-74
    • Petesch, S.J.1    Lis, J.T.2
  • 66
    • 78650447665 scopus 로고    scopus 로고
    • β-N-acetylglucosamine (O-GlcNAc) is part of the histone code
    • Sakabe, K., Wang, Z. & Hart, G.W. β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl. Acad. Sci. USA 107, 19915-19920 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 19915-19920
    • Sakabe, K.1    Wang, Z.2    Hart, G.W.3
  • 67
    • 80054818714 scopus 로고    scopus 로고
    • Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated
    • Zhang, S., Roche, K., Nasheuer, H.-P. & Lowndes, N.F. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 286, 37483-37495 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 37483-37495
    • Zhang, S.1    Roche, K.2    Nasheuer, H.-P.3    Lowndes, N.F.4
  • 68
    • 84355161950 scopus 로고    scopus 로고
    • GlcNAcylation of histone H2B facilitates its monoubiquitination
    • Fujiki, R. et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480, 557-560 (2011).
    • (2011) Nature , vol.480 , pp. 557-560
    • Fujiki, R.1
  • 69
    • 46149091721 scopus 로고    scopus 로고
    • H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation
    • Fleming, A.B., Kao, C.-F., Hillyer, C., Pikaart, M. & Osley, M.A. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol. Cell 31, 57-66 (2008).
    • (2008) Mol. Cell , vol.31 , pp. 57-66
    • Fleming, A.B.1    Kao, C.-F.2    Hillyer, C.3    Pikaart, M.4    Osley, M.A.5
  • 70
    • 80455162312 scopus 로고    scopus 로고
    • Genome-wide function of H2B ubiquitylation in promoter and genic regions
    • Batta, K., Zhang, Z., Yen, K., Goffman, D.B. & Pugh, B.F. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev. 25, 2254-2265 (2011).
    • (2011) Genes Dev , vol.25 , pp. 2254-2265
    • Batta, K.1    Zhang, Z.2    Yen, K.3    Goffman, D.B.4    Pugh, B.F.5
  • 71
    • 84860518345 scopus 로고    scopus 로고
    • Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1
    • Lee, J.-S. et al. Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev. 26, 914-919 (2012).
    • (2012) Genes Dev , vol.26 , pp. 914-919
    • Lee, J.-S.1
  • 72
    • 70349731733 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability
    • Chandrasekharan, M.B., Huang, F. & Sun, Z.-W. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl. Acad. Sci. USA 106, 16686-16691 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 16686-16691
    • Chandrasekharan, M.B.1    Huang, F.2    Sun, Z.-W.3
  • 73
    • 78751515133 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction
    • Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat. Chem. Biol. 7, 113-119 (2011).
    • (2011) Nat. Chem. Biol , vol.7 , pp. 113-119
    • Fierz, B.1
  • 74
    • 79951974992 scopus 로고    scopus 로고
    • Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks
    • Moyal, L. et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol. Cell 41, 529-542 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 529-542
    • Moyal, L.1
  • 75
    • 7244234099 scopus 로고    scopus 로고
    • Role of histone H2A ubiquitination in Polycomb silencing
    • Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873-878 (2004).
    • (2004) Nature , vol.431 , pp. 873-878
    • Wang, H.1
  • 76
    • 38149098408 scopus 로고    scopus 로고
    • Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation
    • Zhou, W. et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 29, 69-80 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 69-80
    • Zhou, W.1
  • 77
    • 0344824404 scopus 로고    scopus 로고
    • Histone sumoylation is associated with transcriptional repression
    • Shiio, Y. & Eisenman, R.N. Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. USA 100, 13225-13230 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 13225-13230
    • Shiio, Y.1    Eisenman, R.N.2
  • 78
    • 33645879818 scopus 로고    scopus 로고
    • Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications
    • Nathan, D. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20, 966-976 (2006).
    • (2006) Genes Dev , vol.20 , pp. 966-976
    • Nathan, D.1
  • 79
    • 36849046285 scopus 로고    scopus 로고
    • Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS
    • Lee, J.-S. et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131, 1084-1096 (2007).
    • (2007) Cell , vol.131 , pp. 1084-1096
    • Lee, J.-S.1
  • 80
    • 37249012276 scopus 로고    scopus 로고
    • Nucleosome destabilization in the epigenetic regulation of gene expression
    • Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15-26 (2008).
    • (2008) Nat. Rev. Genet , vol.9 , pp. 15-26
    • Henikoff, S.1
  • 81
    • 79952536146 scopus 로고    scopus 로고
    • The double face of the histone variant H3.3
    • Szenker, E., Ray-Gallet, D. & Almouzni, G. The double face of the histone variant H3.3. Cell Res. 21, 421-434 (2011).
    • (2011) Cell Res , vol.21 , pp. 421-434
    • Szenker, E.1    Ray-Gallet, D.2    Almouzni, G.3
  • 82
    • 33846663256 scopus 로고    scopus 로고
    • Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication
    • Jamai, A., Imoberdorf, R.M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345-355 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 345-355
    • Jamai, A.1    Imoberdorf, R.M.2    Strubin, M.3
  • 83
    • 33947137710 scopus 로고    scopus 로고
    • Dynamics of replication-independent histone turnover in budding yeast
    • Dion, M.F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405-1408 (2007).
    • (2007) Science , vol.315 , pp. 1405-1408
    • Dion, M.F.1
  • 84
    • 77952996319 scopus 로고    scopus 로고
    • Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones
    • Deal, R.B., Henikoff, J.G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161-1164 (2010).
    • (2010) Science , vol.328 , pp. 1161-1164
    • Deal, R.B.1    Henikoff, J.G.2    Henikoff, S.3
  • 85
    • 78650331647 scopus 로고    scopus 로고
    • Identification of functional elements and regulatory circuits by Drosophila mod ENCODE
    • mod ENCODE Consortium
    • mod ENCODE Consortium. Identification of functional elements and regulatory circuits by Drosophila mod ENCODE. Science 330, 1787-1797 (2010).
    • (2010) Science , vol.330 , pp. 1787-1797
  • 86
    • 78650410139 scopus 로고    scopus 로고
    • Integrative analysis of the Caenorhabditis elegans genome by the mod ENCODE Project
    • Gerstein, M.B. et al. Integrative analysis of the Caenorhabditis elegans genome by the mod ENCODE Project. Science 330, 1775-1787 (2010).
    • (2010) Science , vol.330 , pp. 1775-1787
    • Gerstein, M.B.1
  • 87
    • 1242342240 scopus 로고    scopus 로고
    • Histone H3.3 is enriched in covalent modifications associated with active chromatin
    • McKittrick, E., Gafken, P.R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. USA 101, 1525-1530 (2004).
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 1525-1530
    • McKittrick, E.1    Gafken, P.R.2    Ahmad, K.3    Henikoff, S.4
  • 88
    • 34548433964 scopus 로고    scopus 로고
    • Marking histone H3 variants: How, when and why?
    • Loyola, A. & Almouzni, G. Marking histone H3 variants: how, when and why? Trends Biochem. Sci. 32, 425-433 (2007).
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 425-433
    • Loyola, A.1    Almouzni, G.2
  • 89
    • 23044460521 scopus 로고    scopus 로고
    • Epigenetics, histone H3 variants and the inheritance of chromatin states
    • Henikoff, S., McKittrick, E. & Ahmad, K. Epigenetics, histone H3 variants and the inheritance of chromatin states. Cold Spring Harb. Symp. Quant. Biol. 69, 235-243 (2004).
    • (2004) Cold Spring Harb. Symp. Quant. Biol , vol.69 , pp. 235-243
    • Henikoff, S.1    McKittrick, E.2    Ahmad, K.3
  • 90
    • 84864059329 scopus 로고    scopus 로고
    • In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae
    • Gossett, A.J. & Lieb, J.D. in vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet. 8, e1002771 (2012).
    • (2012) PLoS Genet , vol.8
    • Gossett, A.J.1    Lieb, J.D.2
  • 91
    • 0033118322 scopus 로고    scopus 로고
    • Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31
    • Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923-1938 (1999).
    • (1999) EMBO J , vol.18 , pp. 1923-1938
    • Aagaard, L.1
  • 92
    • 0035282458 scopus 로고    scopus 로고
    • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    • Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124 (2001).
    • (2001) Nature , vol.410 , pp. 120-124
    • Bannister, A.J.1
  • 93
    • 79960063257 scopus 로고    scopus 로고
    • Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin
    • Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18, 777-782 (2011).
    • (2011) Nat. Struct. Mol. Biol , vol.18 , pp. 777-782
    • Eustermann, S.1
  • 94
    • 77649099092 scopus 로고    scopus 로고
    • Distinct factors control histone variant H3.3 localization at specific genomic regions
    • Goldberg, A.D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678-691 (2010).
    • (2010) Cell , vol.140 , pp. 678-691
    • Goldberg, A.D.1
  • 95
    • 77950462427 scopus 로고    scopus 로고
    • Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly
    • Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94-98 (2010).
    • (2010) Science , vol.328 , pp. 94-98
    • Xu, M.1
  • 96
    • 79952536795 scopus 로고    scopus 로고
    • Epigenetic inheritance: Uncontested?
    • Zhu, B. & Reinberg, D. Epigenetic inheritance: uncontested? Cell Res. 21, 435-441 (2011).
    • (2011) Cell Res. , vol.21 , pp. 435-441
    • Zhu, B.1    Reinberg, D.2
  • 97
    • 33847076248 scopus 로고    scopus 로고
    • Chromatin challenges during DNA replication and repair
    • Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721-733 (2007).
    • (2007) Cell , vol.128 , pp. 721-733
    • Groth, A.1    Rocha, W.2    Verreault, A.3    Almouzni, G.4
  • 98
    • 45549087777 scopus 로고    scopus 로고
    • Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication
    • Huen, M.S.Y., Sy, S.M.-H., van Deursen, J.M. & Chen, J. Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J. Biol. Chem. 283, 11073-11077 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 11073-11077
    • Huen, M.S.Y.1    Sy, S.M.-H.2    Van Deursen, J.M.3    Chen, J.4
  • 99
    • 84865681429 scopus 로고    scopus 로고
    • TrxG and PcG proteins but not methylated histones remain associated with DNA through replication
    • Petruk, S. et al. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150, 922-933 (2012).
    • (2012) Cell , vol.150 , pp. 922-933
    • Petruk, S.1
  • 100
    • 84862977214 scopus 로고    scopus 로고
    • A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro
    • Lo, S.M. et al. A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro. Mol. Cell 46, 784-796 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 784-796
    • Lo, S.M.1
  • 101
    • 78649836342 scopus 로고    scopus 로고
    • Reciprocal intronic and exonic histone modification regions in humans
    • Huff, J.T., Plocik, A.M., Guthrie, C. & Yamamoto, K.R. Reciprocal intronic and exonic histone modification regions in humans. Nat. Struct. Mol. Biol. 17, 1495-1499 (2010).
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 1495-1499
    • Huff, J.T.1    Plocik, A.M.2    Guthrie, C.3    Yamamoto, K.R.4
  • 102
    • 79955583542 scopus 로고    scopus 로고
    • Mapping and analysis of chromatin state dynamics in nine human cell types
    • Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43-49 (2011).
    • (2011) Nature , vol.473 , pp. 43-49
    • Ernst, J.1
  • 103
    • 80052805267 scopus 로고    scopus 로고
    • Histone modification: Cause or cog?
    • Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389-396 (2011).
    • (2011) Trends Genet. , vol.27 , pp. 389-396
    • Henikoff, S.1    Shilatifard, A.2
  • 104
    • 84865777820 scopus 로고    scopus 로고
    • Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements
    • Kundaje, A. et al. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res. 22, 1735-1747 (2012).
    • (2012) Genome Res , vol.22 , pp. 1735-1747
    • Kundaje, A.1
  • 105
    • 2342465953 scopus 로고    scopus 로고
    • Recent highlights of RNA-polymerase-II-mediated transcription
    • Sims, R.J. III, Mandal, S.S. & Reinberg, D. Recent highlights of RNA-polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263-271 (2004).
    • (2004) Curr. Opin. Cell Biol , vol.16 , pp. 263-271
    • Sims III, R.J.1    Mandal, S.S.2    Reinberg, D.3
  • 106
    • 77956928375 scopus 로고    scopus 로고
    • Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1)
    • Buro, L., Chipumuro, E. & Henriksen, M. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1). Epigenetics Chromatin 3, 16 (2010).
    • (2010) Epigenetics Chromatin , vol.3 , pp. 16
    • Buro, L.1    Chipumuro, E.2    Henriksen, M.3
  • 107
    • 79954577502 scopus 로고    scopus 로고
    • The histone modifications governing TFF1 transcription mediated by estrogen receptor
    • Li, Y. et al. The histone modifications governing TFF1 transcription mediated by estrogen receptor. J. Biol. Chem. 286, 13925-13936 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 13925-13936
    • Li, Y.1
  • 108
    • 80052410556 scopus 로고    scopus 로고
    • Assembly and functions of heterochromatin in the fission yeast genome
    • Aygün, O. & Grewal, S.I.S. Assembly and functions of heterochromatin in the fission yeast genome. Cold Spring Harb. Symp. Quant. Biol. 75, 259-267 (2010).
    • (2010) Cold Spring Harb. Symp. Quant. Biol , vol.75 , pp. 259-267
    • Aygün, O.1    Grewal, S.I.S.2
  • 109
    • 79953748673 scopus 로고    scopus 로고
    • A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression
    • Wang, K.C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120-124 (2011).
    • (2011) Nature , vol.472 , pp. 120-124
    • Wang, K.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.