-
1
-
-
33846572874
-
Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030
-
Dorsey, E.R., R. Constantinescu, J.P., Thompson, et al. 2007. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68: 384-386.
-
(2007)
Neurology
, vol.68
, pp. 384-386
-
-
Dorsey, E.R.1
Constantinescu, R.2
Thompson, J.P.3
-
3
-
-
77957262214
-
Clinical review of treatment options for select nonmotor symptoms of Parkinson's disease
-
Wood, L.D., J.J. Neumiller, S.M. Setter, et al. 2010. Clinical review of treatment options for select nonmotor symptoms of Parkinson's disease. Am. J. Geriatr. Pharmacother. 8: 294-315.
-
(2010)
Am. J. Geriatr. Pharmacother.
, vol.8
, pp. 294-315
-
-
Wood, L.D.1
Neumiller, J.J.2
Setter, S.M.3
-
4
-
-
84876501668
-
Parkinson's disease: from genetics to treatments
-
Fan, H., S. Chen, H. Harn, et al. 2013. Parkinson's disease: from genetics to treatments. Cell Transplant. 22: 639-652.
-
(2013)
Cell Transplant
, vol.22
, pp. 639-652
-
-
Fan, H.1
Chen, S.2
Harn, H.3
-
5
-
-
44949138796
-
A review of Parkinson's disease
-
Davie, C.A. 2008. A review of Parkinson's disease. Br. Med. Bull. 86: 109-127.
-
(2008)
Br. Med. Bull.
, vol.86
, pp. 109-127
-
-
Davie, C.A.1
-
6
-
-
33745919520
-
Epidemiology of Parkinson's disease
-
De Lau, L.M. & M.M. Breteler . 2006. Epidemiology of Parkinson's disease. Lancet Neurol. 5: 525-535.
-
(2006)
Lancet Neurol.
, vol.5
, pp. 525-535
-
-
De Lau, L.M.1
Breteler, M.M.2
-
7
-
-
79955557808
-
Rotenone, paraquat, and Parkinson's disease
-
Tanner, C.M., F. Kamel, G.W., Ross, et al. 2011. Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119: 866-872.
-
(2011)
Environ. Health Perspect.
, vol.119
, pp. 866-872
-
-
Tanner, C.M.1
Kamel, F.2
Ross, G.W.3
-
8
-
-
80054787664
-
What genetics tells us about the causes and mechanisms of Parkinson's disease
-
Corti, O., S. Lesage & A. Brice . 2011. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 91: 1161-1218.
-
(2011)
Physiol. Rev.
, vol.91
, pp. 1161-1218
-
-
Corti, O.1
Lesage, S.2
Brice, A.3
-
9
-
-
84863237380
-
α-Synuclein, LRRK2 and their interplay in Parkinson's disease
-
Liu, G., L. Aliaga & H. Cai . 2012. α-Synuclein, LRRK2 and their interplay in Parkinson's disease. Future Neurol 7: 145-153.
-
(2012)
Future Neurol
, vol.7
, pp. 145-153
-
-
Liu, G.1
Aliaga, L.2
Cai, H.3
-
10
-
-
0018608356
-
Chronic Parkinsonism secondary to intravenous injection of meperidine analogues
-
Davis, G.C., A.C. Williams, S.P. Markey, et al. 1979. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1: 249-254.
-
(1979)
Psychiatry Res.
, vol.1
, pp. 249-254
-
-
Davis, G.C.1
Williams, A.C.2
Markey, S.P.3
-
11
-
-
63149090431
-
Parkinson's disease: from monogenic forms to genetic susceptibility factors
-
Lesage, S. & A. Brice . 2009. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18: R48-R59.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. R48-R59
-
-
Lesage, S.1
Brice, A.2
-
12
-
-
0023740954
-
Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease
-
Hirsch, E., A.M. Graybiel & Y.A. Agid . 1988. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334: 345-348.
-
(1988)
Nature
, vol.334
, pp. 345-348
-
-
Hirsch, E.1
Graybiel, A.M.2
Agid, Y.A.3
-
13
-
-
0018976162
-
Pars compacta of the Substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake
-
Hodge, G. & L. Butcher . 1980. Pars compacta of the Substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake. Naunyn Schmiedebergs Arch Pharmacol 313: 51-67.
-
(1980)
Naunyn Schmiedebergs Arch Pharmacol
, vol.313
, pp. 51-67
-
-
Hodge, G.1
Butcher, L.2
-
14
-
-
0037109727
-
Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein
-
Cabin, D.E., K. Shimazu, D. Murphy, et al. 2002. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J. Neurosci. 22: 8797-8807.
-
(2002)
J. Neurosci.
, vol.22
, pp. 8797-8807
-
-
Cabin, D.E.1
Shimazu, K.2
Murphy, D.3
-
15
-
-
80555155665
-
The role of α-synuclein in neurotransmission and synaptic plasticity
-
Cheng, F., G. Vivacqua & S. Yu . 2011. The role of α-synuclein in neurotransmission and synaptic plasticity. J. Chem. Neuroanat. 42: 242-248.
-
(2011)
J. Chem. Neuroanat.
, vol.42
, pp. 242-248
-
-
Cheng, F.1
Vivacqua, G.2
Yu, S.3
-
16
-
-
0032102455
-
The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease
-
Clayton, D.F. & J.M. George . 1998. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21: 249-254.
-
(1998)
Trends Neurosci
, vol.21
, pp. 249-254
-
-
Clayton, D.F.1
George, J.M.2
-
17
-
-
52949083619
-
A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans
-
Kuwahara, T., A. Koyama, S. Koyama, et al. 2008. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans. Hum. Mol. Genet. 17: 2997-3009.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 2997-3009
-
-
Kuwahara, T.1
Koyama, A.2
Koyama, S.3
-
18
-
-
73549085595
-
Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis
-
Nemani, V.M., W. Lu, V. Berge, et al. 2010. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65: 66-79.
-
(2010)
Neuron
, vol.65
, pp. 66-79
-
-
Nemani, V.M.1
Lu, W.2
Berge, V.3
-
19
-
-
34250624810
-
A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases
-
Mandemakers, W., V.A. Morais & B. De Strooper . 2007. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J. Cell Sci. 120: 1707-1716.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 1707-1716
-
-
Mandemakers, W.1
Morais, V.A.2
De Strooper, B.3
-
20
-
-
84866510734
-
LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis
-
Matta, S., K. Van Kolen, R., da Cunha, et al. 2012. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 75: 1008-1021.
-
(2012)
Neuron
, vol.75
, pp. 1008-1021
-
-
Matta, S.1
Van Kolen, K.2
da Cunha, R.3
-
21
-
-
84883034462
-
LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25
-
Yun, H.J., J. Park, D.H. Ho, et al. 2013. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp. Mol. Med. 45: e36.
-
(2013)
Exp. Mol. Med.
, vol.45
, pp. e36
-
-
Yun, H.J.1
Park, J.2
Ho, D.H.3
-
22
-
-
84901320074
-
LRRK2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain
-
Piccoli, G., F. Onofri, M.D. Cirnaru, et al. 2014. LRRK2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain. Mol. Cell. Biol. 34: 2147-2161.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 2147-2161
-
-
Piccoli, G.1
Onofri, F.2
Cirnaru, M.D.3
-
23
-
-
79951534656
-
LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool
-
Piccoli, G., S.B. Condliffe, M. Bauer, et al. 2011. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J. Neurosci. 31: 2225-2237.
-
(2011)
J. Neurosci.
, vol.31
, pp. 2225-2237
-
-
Piccoli, G.1
Condliffe, S.B.2
Bauer, M.3
-
24
-
-
84858121110
-
-
M. R. Kreutz & C. Sala, Eds.: -. Vienna: Springer.
-
Picconi, B., G. Piccoli & P. Calabresi . 2012. Synaptic Plast. Vol. 970. M. R. Kreutz & C. Sala, Eds.: 553-572. Vienna: Springer.
-
(2012)
Synaptic Plast
, vol.970
, pp. 553-572
-
-
Picconi, B.1
Piccoli, G.2
Calabresi, P.3
-
25
-
-
0034681471
-
Dopaminergic loss and inclusion body formation in synuclein mice: implications for neurodegenerative disorders
-
Masliah, E. 2000. Dopaminergic loss and inclusion body formation in synuclein mice: implications for neurodegenerative disorders. Science 287: 1265-1269.
-
(2000)
Science
, vol.287
, pp. 1265-1269
-
-
Masliah, E.1
-
27
-
-
72149087091
-
Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein
-
Lin, X., L. Parisiadou, X.-L., Gu, et al. 2009. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein. Neuron 64: 807-827.
-
(2009)
Neuron
, vol.64
, pp. 807-827
-
-
Lin, X.1
Parisiadou, L.2
Gu, X.-L.3
-
28
-
-
0030744876
-
Mutation in the α-synuclein gene identified in families with Parkinson's disease
-
Polymeropoulos, M.H., C. Lavedan, E. Leroy, et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276: 2045-2047.
-
(1997)
Science
, vol.276
, pp. 2045-2047
-
-
Polymeropoulos, M.H.1
Lavedan, C.2
Leroy, E.3
-
29
-
-
84864870837
-
α-Synuclein: from secretion to dysfunction and death
-
Marques, O & T.F. Outeiro . 2012. α-Synuclein: from secretion to dysfunction and death. Cell Death Dis. 3: e350.
-
(2012)
Cell Death Dis.
, vol.3
, pp. e350
-
-
Marques, O.1
Outeiro, T.F.2
-
32
-
-
0031990490
-
Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease
-
Krüger, R., W. Kuhn, T. Müller, et al. 1998. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 18: 106-108.
-
(1998)
Nat. Genet.
, vol.18
, pp. 106-108
-
-
Krüger, R.1
Kuhn, W.2
Müller, T.3
-
33
-
-
10744230149
-
The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia
-
Zarranz, J.J., J. Alegre, J.C. Gómez-Esteban, et al. 2004. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55: 164-173.
-
(2004)
Ann. Neurol.
, vol.55
, pp. 164-173
-
-
Zarranz, J.J.1
Alegre, J.2
Gómez-Esteban, J.C.3
-
34
-
-
4644290985
-
α-Synuclein locus duplication as a cause of familial Parkinson's disease
-
Chartier-Harlin, M.C., J. Kachergus, C. Roumier, et al. 2004. α-Synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364: 1167-1169.
-
(2004)
Lancet
, vol.364
, pp. 1167-1169
-
-
Chartier-Harlin, M.C.1
Kachergus, J.2
Roumier, C.3
-
35
-
-
0034602296
-
α-Synuclein membrane interactions and lipid specificity
-
Jo, E., J. McLaurin, C.M., Yip, et al. 2000. α-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275: 34328-34334.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 34328-34334
-
-
Jo, E.1
McLaurin, J.2
Yip, C.M.3
-
36
-
-
28044461467
-
Neural activity controls the synaptic accumulation of α-synuclein
-
Fortin, D.L., V.M. Nemani, S.M. Voglmaier, et al. 2005. Neural activity controls the synaptic accumulation of α-synuclein. J. Neurosci. 25: 10913-10921.
-
(2005)
J. Neurosci.
, vol.25
, pp. 10913-10921
-
-
Fortin, D.L.1
Nemani, V.M.2
Voglmaier, S.M.3
-
37
-
-
33646912812
-
Binding of α-synuclein affects the lipid packing in bilayers of small vesicles
-
Kamp, F. & K. Beyer . 2006. Binding of α-synuclein affects the lipid packing in bilayers of small vesicles. J. Biol. Chem. 281: 9251-9259.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 9251-9259
-
-
Kamp, F.1
Beyer, K.2
-
38
-
-
84879033702
-
Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2
-
Diao, J., J. Burré, S. Vivona, et al. 2013. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2: e00592.
-
(2013)
Elife
, vol.2
, pp. e00592
-
-
Diao, J.1
Burré, J.2
Vivona, S.3
-
39
-
-
77957347060
-
α-synuclein promotes SNARE-complex assembly in vivo and in vitro
-
Burré, J., M. Sharma, T. Tsetsenis, et al. 2010. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329: 1663-1667.
-
(2010)
Science
, vol.329
, pp. 1663-1667
-
-
Burré, J.1
Sharma, M.2
Tsetsenis, T.3
-
40
-
-
84867787595
-
Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities
-
Burré, J., M. Sharma & T.C. Südhof . 2012. Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J. Neurosci. 32: 15227-152242.
-
(2012)
J. Neurosci.
, vol.32
, pp. 15227-152242
-
-
Burré, J.1
Sharma, M.2
Südhof, T.C.3
-
41
-
-
77954379317
-
SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease
-
Garcia-Reitböck, P., O. Anichtchik, A. Bellucci, et al. 2010. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease. Brain 133: 2032-2044.
-
(2010)
Brain
, vol.133
, pp. 2032-2044
-
-
Garcia-Reitböck, P.1
Anichtchik, O.2
Bellucci, A.3
-
42
-
-
0037046163
-
Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism
-
Volles, M.J. & P.T. Lansbury . 2002. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41: 4595-4602.
-
(2002)
Biochemistry
, vol.41
, pp. 4595-4602
-
-
Volles, M.J.1
Lansbury, P.T.2
-
43
-
-
0034193399
-
Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons
-
Murphy, D.D., S.M. Rueter, J.Q. Trojanowski, et al. 2000. Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20: 3214-3220.
-
(2000)
J. Neurosci.
, vol.20
, pp. 3214-3220
-
-
Murphy, D.D.1
Rueter, S.M.2
Trojanowski, J.Q.3
-
44
-
-
0345189364
-
Yeast cells provide insight into α-synuclein biology and pathobiology
-
Outeiro, T.F. & S. Lindquist . 2003. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302: 1772-1775.
-
(2003)
Science
, vol.302
, pp. 1772-1775
-
-
Outeiro, T.F.1
Lindquist, S.2
-
45
-
-
84897437047
-
Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease
-
Overk, C.R. & E. Masliah . 2014. Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochem. Pharmacol. 88: 508-516.
-
(2014)
Biochem. Pharmacol.
, vol.88
, pp. 508-516
-
-
Overk, C.R.1
Masliah, E.2
-
46
-
-
84859712842
-
A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice
-
Chesselet, M.-F., F. Richter, C. Zhu, et al. 2012. A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice. Neurotherapeutics 9: 297-314.
-
(2012)
Neurotherapeutics
, vol.9
, pp. 297-314
-
-
Chesselet, M.-F.1
Richter, F.2
Zhu, C.3
-
47
-
-
30644471051
-
Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death
-
Martin, L.J., Y. Pan, A.C. Price, et al. 2006. Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26: 41-50.
-
(2006)
J. Neurosci.
, vol.26
, pp. 41-50
-
-
Martin, L.J.1
Pan, Y.2
Price, A.C.3
-
48
-
-
0036605566
-
Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters
-
Rockenstein, E., M. Mallory, M. Hashimoto, et al. 2002. Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res. 68: 568-578.
-
(2002)
J. Neurosci. Res.
, vol.68
, pp. 568-578
-
-
Rockenstein, E.1
Mallory, M.2
Hashimoto, M.3
-
49
-
-
62749151089
-
Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies-is the juice worth the squeeze?
-
Buchman, V.L. & N. Ninkina . 2008. Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies-is the juice worth the squeeze? Neurotox. Res. 14: 329-341.
-
(2008)
Neurotox. Res.
, vol.14
, pp. 329-341
-
-
Buchman, V.L.1
Ninkina, N.2
-
50
-
-
0036468432
-
Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease
-
Auluck, P.K., H.Y.E. Chan, J.Q. Trojanowski, et al. 2002. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295: 865-868.
-
(2002)
Science
, vol.295
, pp. 865-868
-
-
Auluck, P.K.1
Chan, H.Y.E.2
Trojanowski, J.Q.3
-
51
-
-
0034704752
-
A Drosophila model of Parkinson's disease
-
Feany, M.B. & W.W. Bender . 2000. A Drosophila model of Parkinson's disease. Nature 404: 394-398.
-
(2000)
Nature
, vol.404
, pp. 394-398
-
-
Feany, M.B.1
Bender, W.W.2
-
52
-
-
33749583553
-
α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity
-
Kontopoulos, E., J.D. Parvin & MB. Feany . 2006. α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. 15: 3012-3023.
-
(2006)
Hum. Mol. Genet.
, vol.15
, pp. 3012-3023
-
-
Kontopoulos, E.1
Parvin, J.D.2
Feany, M.B.3
-
53
-
-
80052711922
-
Effects of human α-synuclein A53T-A30P mutations on SVZ and local olfactory bulb cell proliferation in a transgenic rat model of Parkinson disease
-
Lelan, F., C. Boyer, R. Thinard, et al. 2011. Effects of human α-synuclein A53T-A30P mutations on SVZ and local olfactory bulb cell proliferation in a transgenic rat model of Parkinson disease. Parkinsons. Dis. 2011: 987084.
-
(2011)
Parkinsons. Dis.
, vol.2011
, pp. 987084
-
-
Lelan, F.1
Boyer, C.2
Thinard, R.3
-
54
-
-
0034979314
-
Lack of nigral pathology in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter
-
Matsuoka, Y., M. Vila, S. Lincoln, et al. 2001. Lack of nigral pathology in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol. Dis. 8: 535-539.
-
(2001)
Neurobiol. Dis.
, vol.8
, pp. 535-539
-
-
Matsuoka, Y.1
Vila, M.2
Lincoln, S.3
-
55
-
-
0038116620
-
Role of α-synuclein carboxy-terminus on fibril formation in vitro
-
Murray, IV.J., B.I. Giasson, S.M. Quinn, et al. 2003. Role of α-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry 42: 8530-8540.
-
(2003)
Biochemistry
, vol.42
, pp. 8530-8540
-
-
Murray, I.V.J.1
Giasson, B.I.2
Quinn, S.M.3
-
56
-
-
84873476695
-
Animal models of Parkinson's disease: limits and relevance to neuroprotection studies
-
Bezard, E., Z. Yue, D. Kirik, et al. 2013. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. Mov. Disord. 28: 61-70.
-
(2013)
Mov. Disord.
, vol.28
, pp. 61-70
-
-
Bezard, E.1
Yue, Z.2
Kirik, D.3
-
57
-
-
34548341065
-
The effect of truncated human α-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease
-
Michell, A.W., G.K. Tofaris, H. Gossage, et al. 2007. The effect of truncated human α-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease. Cell Transplant. 16: 461-474.
-
(2007)
Cell Transplant.
, vol.16
, pp. 461-474
-
-
Michell, A.W.1
Tofaris, G.K.2
Gossage, H.3
-
58
-
-
21344456506
-
Intravesicular localization and exocytosis of α-synuclein and its aggregates
-
Lee, H., S Patel & S. Lee . 2005. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25: 6016-6024.
-
(2005)
J. Neurosci.
, vol.25
, pp. 6016-6024
-
-
Lee, H.1
Patel, S.2
Lee, S.3
-
59
-
-
84865202477
-
Extracellular α-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation
-
Diógenes, M.J., R.B. Dias, D.M. Rombo, et al. 2012. Extracellular α-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J. Neurosci. 32: 11750-11762.
-
(2012)
J. Neurosci.
, vol.32
, pp. 11750-11762
-
-
Diógenes, M.J.1
Dias, R.B.2
Rombo, D.M.3
-
60
-
-
84862680670
-
Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo
-
Angot, E., J.A. Steiner, C.M. Tom, et al. 2012. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 7: e39465.
-
(2012)
PLoS One
, vol.7
, pp. e39465
-
-
Angot, E.1
Steiner, J.A.2
Tom, C.M.3
-
61
-
-
84896971038
-
In vitro aggregation assays for the characterization of α-synuclein prion-like properties
-
Narkiewicz, J., G Giachin & G. Legname . 2014. In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion 8: 1-14.
-
(2014)
Prion
, vol.8
, pp. 1-14
-
-
Narkiewicz, J.1
Giachin, G.2
Legname, G.3
-
62
-
-
84863433677
-
Prion-like acceleration of a synucleinopathy in a transgenic mouse model
-
Mougenot, A., S. Nicot, A. Bencsik, et al. 2012. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33: 2225-2228.
-
(2012)
Neurobiol. Aging
, vol.33
, pp. 2225-2228
-
-
Mougenot, A.1
Nicot, S.2
Bencsik, A.3
-
63
-
-
84869109864
-
Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice
-
Luk, K.C., V. Kehm, J. Carroll, et al. 2012. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338: 949-953.
-
(2012)
Science
, vol.338
, pp. 949-953
-
-
Luk, K.C.1
Kehm, V.2
Carroll, J.3
-
64
-
-
84865535547
-
Use of viral vectors to create animal models for Parkinson's disease
-
Löw, K & P. Aebischer . 2012. Use of viral vectors to create animal models for Parkinson's disease. Neurobiol. Dis. 48: 189-201.
-
(2012)
Neurobiol. Dis.
, vol.48
, pp. 189-201
-
-
Löw, K.1
Aebischer, P.2
-
65
-
-
0036679197
-
α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease
-
Lo Bianco, C., J.-L. Ridet, B.L., Schneider, et al. 2002. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 99: 10813-10818.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 10813-10818
-
-
Lo Bianco, C.1
Ridet, J.-L.2
Schneider, B.L.3
-
66
-
-
84896733921
-
Intranasal administration of α-synuclein aggregates: a Parkinson's disease model with behavioral and neurochemical correlates
-
Gruden, M.A., T V. Davydova, V.B. Narkevich, et al. 2014. Intranasal administration of α-synuclein aggregates: a Parkinson's disease model with behavioral and neurochemical correlates. Behav. Brain Res. 263: 158-168.
-
(2014)
Behav. Brain Res.
, vol.263
, pp. 158-168
-
-
Gruden, M.A.1
Davydova, T.V.2
Narkevich, V.B.3
-
68
-
-
70449347241
-
Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation
-
Chen, L., M. Periquet, X. Wang, et al. 2009. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J. Clin. Invest. 119: 3257-3265.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3257-3265
-
-
Chen, L.1
Periquet, M.2
Wang, X.3
-
69
-
-
19944431081
-
A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease
-
Di Fonzo, A., C.F. Rohe, J. Ferreira, et al. 2005. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 365: 412-415.
-
(2005)
Lancet
, vol.365
, pp. 412-415
-
-
Di Fonzo, A.1
Rohe, C.F.2
Ferreira, J.3
-
70
-
-
34548770783
-
LRRK2 low-penetrance mutations (Gly2019Ser) and risk alleles (Gly2385Arg)-linking familial and sporadic Parkinson's disease
-
Bonifati, V. 2007. LRRK2 low-penetrance mutations (Gly2019Ser) and risk alleles (Gly2385Arg)-linking familial and sporadic Parkinson's disease. Neurochem. Res. 32: 1700-1708.
-
(2007)
Neurochem. Res.
, vol.32
, pp. 1700-1708
-
-
Bonifati, V.1
-
71
-
-
0033538576
-
The structural era of endocytosis
-
Marsh, M & H.T. McMahon . 1999. The structural era of endocytosis. Science 285: 215-220.
-
(1999)
Science
, vol.285
, pp. 215-220
-
-
Marsh, M.1
McMahon, H.T.2
-
72
-
-
84924967985
-
Identification of novel genes involved in synaptic communication
-
Fernandes, A.C., J., Slabbaert, S. Kuenen, et al. 2010. Identification of novel genes involved in synaptic communication. J. Neurogenet. 24: 42.
-
(2010)
J. Neurogenet.
, vol.24
, pp. 42
-
-
Fernandes, A.C.1
Slabbaert, J.2
Kuenen, S.3
-
73
-
-
24644474856
-
The dardarin G 2019 S mutation is a common cause of Parkinson's disease but not other neurodegenerative diseases
-
Hernandez, D., C. Paisan Ruiz, A. Crawley, et al. 2005. The dardarin G 2019 S mutation is a common cause of Parkinson's disease but not other neurodegenerative diseases. Neurosci. Lett. 389: 137-139.
-
(2005)
Neurosci. Lett.
, vol.389
, pp. 137-139
-
-
Hernandez, D.1
Paisan Ruiz, C.2
Crawley, A.3
-
74
-
-
32044432395
-
Biochemical and pathological characterization of Lrrk2
-
Giasson, B.I., J.P. Covy, N.M. Bonini, et al. 2006. Biochemical and pathological characterization of Lrrk2. Ann. Neurol. 59: 315-322.
-
(2006)
Ann. Neurol.
, vol.59
, pp. 315-322
-
-
Giasson, B.I.1
Covy, J.P.2
Bonini, N.M.3
-
76
-
-
67649813448
-
Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease
-
Li, Y., W. Liu, T.F. Oo, et al. 2009. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12: 826-828.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 826-828
-
-
Li, Y.1
Liu, W.2
Oo, T.F.3
-
77
-
-
76149134717
-
Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S
-
Li, X., J.C. Patel, J. Wang, et al. 2010. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci. 30: 1788-1797.
-
(2010)
J. Neurosci.
, vol.30
, pp. 1788-1797
-
-
Li, X.1
Patel, J.C.2
Wang, J.3
-
78
-
-
79953758383
-
Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2
-
Ramonet, D., J.P.L. Daher, B.M. Lin, et al. 2011. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6: e18568.
-
(2011)
PLoS One
, vol.6
, pp. e18568
-
-
Ramonet, D.1
Daher, J.P.L.2
Lin, B.M.3
-
79
-
-
34248574535
-
Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila
-
Lee, S.B., W., Kim, S. Lee, et al. 2007. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 358: 534-539.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.358
, pp. 534-539
-
-
Lee, S.B.1
Kim, W.2
Lee, S.3
-
80
-
-
84880877882
-
Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease
-
Hindle, S.J. & C.J.H. Elliott . 2013. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease. Autophagy 9: 936-968.
-
(2013)
Autophagy
, vol.9
, pp. 936-968
-
-
Hindle, S.J.1
Elliott, C.J.H.2
-
81
-
-
0035889088
-
Generation of high curvature membranes mediated by direct endophilin bilayer interactions
-
Farsad, K., N. Ringstad, K. Takei, et al. 2001. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155: 193-200.
-
(2001)
J. Cell Biol.
, vol.155
, pp. 193-200
-
-
Farsad, K.1
Ringstad, N.2
Takei, K.3
-
82
-
-
84900520403
-
Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation
-
Ambroso, M.R., B.G. Hegde & R. Langen . 2014. Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 111: 6982-7.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 6982-6987
-
-
Ambroso, M.R.1
Hegde, B.G.2
Langen, R.3
-
83
-
-
84898622052
-
Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease
-
Martin, I., J.W. Kim, B.D. Lee, et al. 2014. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157: 472-485.
-
(2014)
Cell
, vol.157
, pp. 472-485
-
-
Martin, I.1
Kim, J.W.2
Lee, B.D.3
-
84
-
-
77955152366
-
Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression
-
Gehrke, S., Y. Imai, N. Sokol, et al. 2010. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466: 637-641.
-
(2010)
Nature
, vol.466
, pp. 637-641
-
-
Gehrke, S.1
Imai, Y.2
Sokol, N.3
-
85
-
-
84899138668
-
LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?
-
Russo, I., L Bubacco & E. Greggio . 2014. LRRK2 and neuroinflammation: partners in crime in Parkinson's disease? J. Neuroinflammation 11: 52.
-
(2014)
J. Neuroinflammation
, vol.11
, pp. 52
-
-
Russo, I.1
Bubacco, L.2
Greggio, E.3
-
86
-
-
84875640261
-
Interplay of LRRK2 with chaperone-mediated autophagy
-
Orenstein, S.J., S.-H., Kuo, I. Tasset, et al. 2013. Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16: 394-406.
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 394-406
-
-
Orenstein, S.J.1
Kuo, S.-H.2
Tasset, I.3
-
87
-
-
70349991886
-
LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model
-
Alegre-Abarrategui, J., H., Christian, MM.P., Lufino, et al. 2009. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18: 4022-4034.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 4022-4034
-
-
Alegre-Abarrategui, J.1
Christian, H.2
Lufino, M.M.P.3
-
88
-
-
0034077041
-
Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system
-
Abeliovich, A., Y. Schmitz, I. Fariñas, et al. 2000. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25: 239-252.
-
(2000)
Neuron
, vol.25
, pp. 239-252
-
-
Abeliovich, A.1
Schmitz, Y.2
Fariñas, I.3
-
89
-
-
0035430788
-
Failure of the ubiquitin-proteasome system in Parkinson's disease
-
McNaught, K.S., C.W., Olanow, B. Halliwell, et al. 2001. Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat. Rev. Neurosci. 2: 589-594.
-
(2001)
Nat. Rev. Neurosci.
, vol.2
, pp. 589-594
-
-
McNaught, K.S.1
Olanow, C.W.2
Halliwell, B.3
-
90
-
-
84891741302
-
Chaperone-mediated autophagy: roles in disease and aging
-
Cuervo, A.M. & E. Wong . 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24: 92-104.
-
(2014)
Cell Res.
, vol.24
, pp. 92-104
-
-
Cuervo, A.M.1
Wong, E.2
-
91
-
-
84880756245
-
Defective autophagy in Parkinson's disease: role of oxidative stress
-
Janda, E., C. Isidoro, C. Carresi, et al. 2012. Defective autophagy in Parkinson's disease: role of oxidative stress. Mol. Neurobiol. 46: 639-661.
-
(2012)
Mol. Neurobiol.
, vol.46
, pp. 639-661
-
-
Janda, E.1
Isidoro, C.2
Carresi, C.3
-
92
-
-
70350550208
-
Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases
-
Spencer, B., R. Potkar, M. Trejo, et al. 2009. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29: 13578-13588.
-
(2009)
J. Neurosci.
, vol.29
, pp. 13578-13588
-
-
Spencer, B.1
Potkar, R.2
Trejo, M.3
-
93
-
-
35848965721
-
Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages
-
3-6
-
Floto, R.A., S., Sarkar, S.L., Schreiber, et al. 2007. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages. Autophagy 3-6: 620-622.
-
(2007)
Autophagy
, pp. 620-622
-
-
Floto, R.A.1
Sarkar, S.2
Schreiber, S.L.3
-
94
-
-
84866679781
-
Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission
-
Bae, E.-J., H.-J., Lee, E. Rockenstein, et al. 2012. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32: 13454-13469.
-
(2012)
J. Neurosci.
, vol.32
, pp. 13454-13469
-
-
Bae, E.-J.1
Lee, H.-J.2
Rockenstein, E.3
-
95
-
-
79955757052
-
Passive immunization reduces behavioral and neuropathological deficits in an α-synuclein transgenic model of Lewy body disease
-
Masliah, E., E. Rockenstein, M. Mante, et al. 2011. Passive immunization reduces behavioral and neuropathological deficits in an α-synuclein transgenic model of Lewy body disease. PLoS One 6: e19338.
-
(2011)
PLoS One
, vol.6
, pp. e19338
-
-
Masliah, E.1
Rockenstein, E.2
Mante, M.3
-
96
-
-
84877580799
-
Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies
-
Valera, E & E. Masliah . 2013. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol. Ther. 138: 311-322.
-
(2013)
Pharmacol. Ther.
, vol.138
, pp. 311-322
-
-
Valera, E.1
Masliah, E.2
-
97
-
-
84903441419
-
Α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration
-
Tran, H.T., C.H.-Y. Chung, M. Iba, et al. 2014. Α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 7: 2054-2065.
-
(2014)
Cell Rep.
, vol.7
, pp. 2054-2065
-
-
Tran, H.T.1
Chung, C.-Y.2
Iba, M.3
-
98
-
-
0011310086
-
Parkinson's Disease: Diagnosis and Clinical Management
-
Levodopa: 30 years in progress." In . S. Factor & W. Weiner, Eds. New York: Demos Medical Publishing.
-
Simuni, T & H. Hurtig . 2002. "Levodopa: 30 years in progress." In Parkinson's Disease: Diagnosis and Clinical Management. S. Factor & W. Weiner, Eds. New York: Demos Medical Publishing.
-
(2002)
-
-
Simuni, T.1
Hurtig, H.2
-
99
-
-
84879390427
-
The role of mitochondrial function and cellular bioenergetics in ageing and disease
-
Brand, M.D., A.L. Orr, I.V. Perevoshchikova, et al. 2013. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br. J. Dermatol. 169: 1-8.
-
(2013)
Br. J. Dermatol.
, vol.169
, pp. 1-8
-
-
Brand, M.D.1
Orr, A.L.2
Perevoshchikova, I.V.3
-
101
-
-
23044506102
-
Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
-
Verstreken, P., C.V. Ly, K.J.T. Venken, et al. 2005. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47: 365-378.
-
(2005)
Neuron
, vol.47
, pp. 365-378
-
-
Verstreken, P.1
Ly, C.V.2
Venken, K.J.T.3
-
102
-
-
83455181308
-
Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease
-
Vos, M., E. Lauwers & P. Verstreken . 2010. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front. Synaptic Neurosci. 2: 139.
-
(2010)
Front. Synaptic Neurosci.
, vol.2
, pp. 139
-
-
Vos, M.1
Lauwers, E.2
Verstreken, P.3
-
103
-
-
0032499264
-
Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada, T., S. Asakawa, N. Hattori, et al. 1998. Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
-
104
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente, E.M., P.M. Abou-Sleiman, V. Caputo, et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158-1160.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
-
105
-
-
0037428241
-
Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism
-
Bonifati, V., P. Rizzu, M.J. van Baren, et al. 2003. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256-259.
-
(2003)
Science
, vol.299
, pp. 256-259
-
-
Bonifati, V.1
Rizzu, P.2
van Baren, M.J.3
-
106
-
-
0023950806
-
The formation of reactive intermediates in the MAO-catalyzed oxidation of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
-
Trevor, A.J., N Castagnoli & TP. Singer . 1988. The formation of reactive intermediates in the MAO-catalyzed oxidation of the nigrostriatal toxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Toxicology 49: 513-519.
-
(1988)
Toxicology
, vol.49
, pp. 513-519
-
-
Trevor, A.J.1
Castagnoli, N.2
Singer, T.P.3
-
107
-
-
0021893796
-
IV. Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects
-
Johannessen, J.N., C.C. Chiueh, R.S. Burns, et al. 1985. IV. Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects. Life Sci. 36: 219-224.
-
(1985)
Life Sci.
, vol.36
, pp. 219-224
-
-
Johannessen, J.N.1
Chiueh, C.C.2
Burns, R.S.3
-
108
-
-
0023932211
-
Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice
-
Sonsalla, P.K. & R.E. Heikkila . 1988. Neurotoxic effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 12: 345-354.
-
(1988)
Prog. Neuropsychopharmacol. Biol. Psychiatry
, vol.12
, pp. 345-354
-
-
Sonsalla, P.K.1
Heikkila, R.E.2
-
109
-
-
0023074510
-
Motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse
-
Donnan, G.A., G.L. Willis, S.J. Kaczmarczyk, et al. 1987. Motor function in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mouse. J. Neurol. Sci. 77: 185-191.
-
(1987)
J. Neurol. Sci.
, vol.77
, pp. 185-191
-
-
Donnan, G.A.1
Willis, G.L.2
Kaczmarczyk, S.J.3
-
110
-
-
0037159608
-
Lysosomal malfunction accompanies α-synuclein aggregation in a progressive mouse model of Parkinson's disease
-
Meredith, G.E., S. Totterdell, E. Petroske, et al. 2002. Lysosomal malfunction accompanies α-synuclein aggregation in a progressive mouse model of Parkinson's disease. Brain Res. 956: 156-165.
-
(2002)
Brain Res.
, vol.956
, pp. 156-165
-
-
Meredith, G.E.1
Totterdell, S.2
Petroske, E.3
-
111
-
-
20044385568
-
Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and α-synuclein
-
Fornai, F., O.M. Schlüter, P. Lenzi, et al. 2005. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and α-synuclein. Proc. Natl. Acad. Sci. U. S. A. 102: 3413-3418.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 3413-3418
-
-
Fornai, F.1
Schlüter, O.M.2
Lenzi, P.3
-
112
-
-
15544366886
-
Absence of inclusion body formation in the MPTP mouse model of Parkinson's disease
-
Shimoji, M., L. Zhang, A.S. Mandir, et al. 2005. Absence of inclusion body formation in the MPTP mouse model of Parkinson's disease. Brain Res. Mol. Brain Res. 134: 103-108.
-
(2005)
Brain Res. Mol. Brain Res.
, vol.134
, pp. 103-108
-
-
Shimoji, M.1
Zhang, L.2
Mandir, A.S.3
-
113
-
-
34347259269
-
Protocol for the MPTP mouse model of Parkinson's disease
-
Jackson-Lewis, V & S. Przedborski . 2007. Protocol for the MPTP mouse model of Parkinson's disease. Nat. Protoc. 2: 141-151.
-
(2007)
Nat. Protoc.
, vol.2
, pp. 141-151
-
-
Jackson-Lewis, V.1
Przedborski, S.2
-
114
-
-
47049106015
-
Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson's disease
-
Sonsalla, P.K., G.D. Zeevalk & D.C. German . 2008. Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson's disease. Parkinsonism Relat. Disord. 14(Suppl 2): S116-S118.
-
(2008)
Parkinsonism Relat. Disord.
, vol.14
, pp. S116-S118
-
-
Sonsalla, P.K.1
Zeevalk, G.D.2
German, D.C.3
-
116
-
-
0023187166
-
Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP
-
Schneider, J.S., A. Yuwiler & C.H. Markham . 1987. Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res. 411: 144-150.
-
(1987)
Brain Res.
, vol.411
, pp. 144-150
-
-
Schneider, J.S.1
Yuwiler, A.2
Markham, C.H.3
-
117
-
-
0001496694
-
A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the Substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
-
Burns, R.S., C.C. Chiueh, S.P. Markey, et al. 1983. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the Substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc. Natl. Acad. Sci. U. S. A. 80: 4546-4550.
-
(1983)
Proc. Natl. Acad. Sci. U. S. A.
, vol.80
, pp. 4546-4550
-
-
Burns, R.S.1
Chiueh, C.C.2
Markey, S.P.3
-
118
-
-
84863666597
-
Mitochondrial complex, I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models
-
Xiong, N., X. Long, J. Xiong, et al. 2012. Mitochondrial complex, I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Crit. Rev. Toxicol. 42: 613-632.
-
(2012)
Crit. Rev. Toxicol.
, vol.42
, pp. 613-632
-
-
Xiong, N.1
Long, X.2
Xiong, J.3
-
119
-
-
0037126181
-
Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats
-
Alam, M & W.J. Schmidt . 2002. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav. Brain Res. 136: 317-324.
-
(2002)
Behav. Brain Res.
, vol.136
, pp. 317-324
-
-
Alam, M.1
Schmidt, W.J.2
-
120
-
-
0033681149
-
Chronic systemic pesticide exposure reproduces features of Parkinson's disease
-
Betarbet, R., T.B. Sherer, G. MacKenzie, et al. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3: 1301-1306.
-
(2000)
Nat. Neurosci.
, vol.3
, pp. 1301-1306
-
-
Betarbet, R.1
Sherer, T.B.2
MacKenzie, G.3
-
121
-
-
10044292870
-
Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster
-
Coulom, H & S. Birman . 2004. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J. Neurosci. 24: 10993-10998.
-
(2004)
J. Neurosci.
, vol.24
, pp. 10993-10998
-
-
Coulom, H.1
Birman, S.2
-
122
-
-
0037229425
-
Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation
-
Sherer, T.B., J.H. Kim, R. Betarbet, et al. 2003. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 179: 9-16.
-
(2003)
Exp. Neurol.
, vol.179
, pp. 9-16
-
-
Sherer, T.B.1
Kim, J.H.2
Betarbet, R.3
-
123
-
-
78951472329
-
Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice
-
Inden, M., Y. Kitamura, M. Abe, et al. 2011. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol. Pharm. Bull. 34: 92-96.
-
(2011)
Biol. Pharm. Bull.
, vol.34
, pp. 92-96
-
-
Inden, M.1
Kitamura, Y.2
Abe, M.3
-
124
-
-
15544365143
-
Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic Substantia nigra cultures
-
Testa, C.M., T.B. Sherer & J.T. Greenamyre . 2005. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic Substantia nigra cultures. Brain Res. Mol. Brain Res. 134: 109-118.
-
(2005)
Brain Res. Mol. Brain Res.
, vol.134
, pp. 109-118
-
-
Testa, C.M.1
Sherer, T.B.2
Greenamyre, J.T.3
-
125
-
-
33746326513
-
Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration
-
Radad, K., W.-D. Rausch & G. Gille . 2006. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49: 379-386.
-
(2006)
Neurochem. Int.
, vol.49
, pp. 379-386
-
-
Radad, K.1
Rausch, W.-D.2
Gille, G.3
-
126
-
-
79961128735
-
Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina
-
Esteve-Rudd, J., L. Fernández-Sánchez, P. Lax, et al. 2011. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiol. Dis. 44: 102-115.
-
(2011)
Neurobiol. Dis.
, vol.44
, pp. 102-115
-
-
Esteve-Rudd, J.1
Fernández-Sánchez, L.2
Lax, P.3
-
127
-
-
0025831821
-
Respiratory chain abnormalities in skeletal muscle from patients with Parkinson' s disease
-
Bindoff, L.A., M.A. Birch-Machin, N.E.F. Cartlidge, et al. 1991. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson' s disease. J. Neurol. Sci. 104: 203-208.
-
(1991)
J. Neurol. Sci.
, vol.104
, pp. 203-208
-
-
Bindoff, L.A.1
Birch-Machin, M.A.2
Cartlidge, N.E.F.3
-
128
-
-
0029050583
-
Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease
-
Haas, R.H., F. Nasirian, K. Nakano, et al. 1995. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann. Neurol. 37: 714-722.
-
(1995)
Ann. Neurol.
, vol.37
, pp. 714-722
-
-
Haas, R.H.1
Nasirian, F.2
Nakano, K.3
-
131
-
-
84901471156
-
Parkin and mitochondrial quality control: toward assembling the puzzle
-
Winklhofer, KF. 2014. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24: 332-341.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 332-341
-
-
Winklhofer, K.F.1
-
132
-
-
0033933048
-
Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase
-
Shimura, H., N. Hattori, S. Kubo, et al. 2000. Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase. Nat. Genet. 25: 302-305.
-
(2000)
Nat. Genet.
, vol.25
, pp. 302-305
-
-
Shimura, H.1
Hattori, N.2
Kubo, S.3
-
133
-
-
30744443484
-
Dopamine covalently modifies and functionally inactivates Parkin
-
LaVoie, M.J., B.L. Ostaszewski, A. Weihofen, et al. 2005. Dopamine covalently modifies and functionally inactivates Parkin. Nat. Med. 11: 1214-1221.
-
(2005)
Nat. Med.
, vol.11
, pp. 1214-1221
-
-
LaVoie, M.J.1
Ostaszewski, B.L.2
Weihofen, A.3
-
134
-
-
0141891953
-
Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons
-
Goldberg, M.S., S.M. Fleming, J.J. Palacino, et al. 2003. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278: 43628-43635.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 43628-43635
-
-
Goldberg, M.S.1
Fleming, S.M.2
Palacino, J.J.3
-
135
-
-
13844313915
-
Parkin-deficient mice are not a robust model of parkinsonism
-
Perez, F.A. & R.D. Palmiter . 2005. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl. Acad. Sci. U. S. A. 102: 2174-2179.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 2174-2179
-
-
Perez, F.A.1
Palmiter, R.D.2
-
136
-
-
3242677684
-
Loss of locus coeruleus neurons and reduced startle in Parkin null mice
-
Von Coelln, R., B. Thomas, J.M. Savitt, et al. 2004. Loss of locus coeruleus neurons and reduced startle in Parkin null mice. Proc. Natl. Acad. Sci. 101: 10744-10749.
-
(2004)
Proc. Natl. Acad. Sci.
, vol.101
, pp. 10744-10749
-
-
Von Coelln, R.1
Thomas, B.2
Savitt, J.M.3
-
137
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease
-
Shin, J.-H., H.S. Ko, H. Kang, et al. 2011. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 144: 689-702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.-H.1
Ko, H.S.2
Kang, H.3
-
138
-
-
60849106352
-
Bacterial artificial chromosome transgenic mice expressing a truncated mutant Parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant α-synuclein
-
Lu, X.-H., S.M. Fleming, B. Meurers, et al. 2009. Bacterial artificial chromosome transgenic mice expressing a truncated mutant Parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant α-synuclein. J. Neurosci. 29: 1962-1976.
-
(2009)
J. Neurosci.
, vol.29
, pp. 1962-1976
-
-
Lu, X.-H.1
Fleming, S.M.2
Meurers, B.3
-
139
-
-
22544458436
-
Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila
-
Cha, G.-H., S. Kim, J. Park, et al. 2005. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 102: 10345-10350.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 10345-10350
-
-
Cha, G.-H.1
Kim, S.2
Park, J.3
-
140
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila Parkin mutants
-
Greene, J.C., A.J. Whitworth, I. Kuo, et al. 2003. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila Parkin mutants. Proc. Natl. Acad. Sci. U. S. A. 100: 4078-4083.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
Whitworth, A.J.2
Kuo, I.3
-
141
-
-
20344369560
-
Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease
-
Whitworth, A.J., D.A. Theodore, J.C. Greene, et al. 2005. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 102: 8024-8029.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 8024-8029
-
-
Whitworth, A.J.1
Theodore, D.A.2
Greene, J.C.3
-
142
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin
-
Clark, I.E., M.W. Dodson, C. Jiang, et al. 2006. Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin. Nature 441: 1162-1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
-
143
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin
-
Park, J., S.B. Lee, S. Lee, et al. 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin. Nature 441: 1157-1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
-
144
-
-
84857462488
-
The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants
-
Vilain, S., G. Esposito, D. Haddad, et al. 2012. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants. PLoS Genet. 8: e1002456.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002456
-
-
Vilain, S.1
Esposito, G.2
Haddad, D.3
-
145
-
-
84861983560
-
Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency
-
Vos, M., G. Esposito, J.N. Edirisinghe, et al. 2012. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336: 1306-1310.
-
(2012)
Science
, vol.336
, pp. 1306-1310
-
-
Vos, M.1
Esposito, G.2
Edirisinghe, J.N.3
-
146
-
-
2442481789
-
Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice
-
Palacino, J.J., D. Sagi, M.S. Goldberg, et al. 2004. Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice. J. Biol. Chem. 279: 18614-18622.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 18614-18622
-
-
Palacino, J.J.1
Sagi, D.2
Goldberg, M.S.3
-
147
-
-
84859233375
-
Parkin-induced defects in neurophysiology and locomotion are generated by metabolic dysfunction and not oxidative stress
-
Vincent, A., L. Briggs, G.F.J. Chatwin, et al. 2012. Parkin-induced defects in neurophysiology and locomotion are generated by metabolic dysfunction and not oxidative stress. Hum. Mol. Genet. 21: 1760-1769.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 1760-1769
-
-
Vincent, A.1
Briggs, L.2
Chatwin, G.F.J.3
-
148
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., A. Tanaka, D.-F. Suen, et al. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.-F.3
-
149
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan, N.C., A.M. Salazar, A.H. Pham, et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20: 1726-1737.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
-
150
-
-
77955844260
-
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway
-
Poole, A.C., R.E. Thomas, S. Yu, et al. 2010. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway. PLoS One 5: e10054.
-
(2010)
PLoS One
, vol.5
, pp. e10054
-
-
Poole, A.C.1
Thomas, R.E.2
Yu, S.3
-
151
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii, S.R., C. Kishi, N. Ishihara, et al. 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286: 19630-19640.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
-
152
-
-
77950384477
-
Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
Ziviani, E., R.N. Tao & A.J. Whitworth . 2010. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U. S. A. 107: 5018-5023.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
Tao, R.N.2
Whitworth, A.J.3
-
153
-
-
84880807019
-
Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair Parkin-dependent mitophagy
-
Haddad, D.M., S. Vilain, M. Vos, et al. 2013. Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair Parkin-dependent mitophagy. Mol. Cell 50: 831-843.
-
(2013)
Mol. Cell
, vol.50
, pp. 831-843
-
-
Haddad, D.M.1
Vilain, S.2
Vos, M.3
-
154
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
Cornelissen, T., D. Haddad, F. Wauters, et al. 2014. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23: 5227-5242.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 5227-5242
-
-
Cornelissen, T.1
Haddad, D.2
Wauters, F.3
-
155
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy
-
Bingol, B., J.S., Tea, L. Phu, et al. 2014. The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature 509: 370-375.
-
(2014)
Nature
, vol.509
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
-
156
-
-
10744220754
-
The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration
-
Corti, O., C. Hampe, H. Koutnikova, et al. 2003. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum. Mol. Genet. 12: 1427-1437.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 1427-1437
-
-
Corti, O.1
Hampe, C.2
Koutnikova, H.3
-
157
-
-
84884902975
-
Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss
-
Lee, Y., S.S., Karuppagounder, J.-H., Shin, et al. 2013. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16: 1392-1400.
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 1392-1400
-
-
Lee, Y.1
Karuppagounder, S.S.2
Shin, J.-H.3
-
158
-
-
34547489872
-
Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice
-
Kitada, T., A., Pisani, D.R., Porter, et al. 2007. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc. Natl. Acad. Sci. 104: 11441-11446.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, pp. 11441-11446
-
-
Kitada, T.1
Pisani, A.2
Porter, D.R.3
-
159
-
-
77953666757
-
Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
-
Morais, V.A., P., Verstreken, A. Roethig, et al. 2009. Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 1: 99-111.
-
(2009)
EMBO Mol. Med.
, vol.1
, pp. 99-111
-
-
Morais, V.A.1
Verstreken, P.2
Roethig, A.3
-
160
-
-
49649097747
-
Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress
-
Gautier, C.A., T. Kitada & J. Shen . 2008. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 105: 11364-11369.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 11364-11369
-
-
Gautier, C.A.1
Kitada, T.2
Shen, J.3
-
161
-
-
84876841576
-
Aconitase causes iron toxicity in Drosophila pink1 mutants
-
Esposito, G., M. Vos, S. Vilain, et al. 2013. Aconitase causes iron toxicity in Drosophila pink1 mutants. PLoS Genet. 9: e1003478.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003478
-
-
Esposito, G.1
Vos, M.2
Vilain, S.3
-
162
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
-
Yang, Y., S. Gehrke, Y. Imai, et al. 2006. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. U. S. A. 103: 10793-10798.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
Gehrke, S.2
Imai, Y.3
-
163
-
-
79961233786
-
Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
-
Liu, W., Acín-R. Peréz, K.D. Geghman, et al. 2011. Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc. Natl. Acad. Sci. U. S. A. 108: 12920-12924.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 12920-12924
-
-
Liu, W.1
Peréz, A.-R.2
Geghman, K.D.3
-
164
-
-
84897895717
-
Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants
-
Klein, P., Müller-A.K. Rischart, E. Motori, et al. 2014. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J. 33: 341-355.
-
(2014)
EMBO J.
, vol.33
, pp. 341-355
-
-
Klein, P.1
Rischart, M.-A.2
Motori, E.3
-
165
-
-
84898023373
-
PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling
-
Morais, V.A., D. Haddad, K. Craessaerts, et al. 2014. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344: 203-207.
-
(2014)
Science
, vol.344
, pp. 203-207
-
-
Morais, V.A.1
Haddad, D.2
Craessaerts, K.3
-
166
-
-
84892941561
-
Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model
-
Vos, M., B. Lovisa, A. Geens, et al. 2013. Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model. PLoS One 8: e78562.
-
(2013)
PLoS One
, vol.8
, pp. e78562
-
-
Vos, M.1
Lovisa, B.2
Geens, A.3
-
168
-
-
33747611218
-
Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging
-
Meulener, M.C., K. Xu, L. Thomson, et al. 2006. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc. Natl. Acad. Sci. 103: 12517-12522.
-
(2006)
Proc. Natl. Acad. Sci.
, vol.103
, pp. 12517-12522
-
-
Meulener, M.C.1
Xu, K.2
Thomson, L.3
-
169
-
-
12344251678
-
Association of DJ-1 and Parkin mediated by pathogenic DJ-1 mutations and oxidative stress
-
Moore, D.J., L. Zhang, J. Troncoso, et al. 2005. Association of DJ-1 and Parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum. Mol. Genet. 14: 71-84.
-
(2005)
Hum. Mol. Genet.
, vol.14
, pp. 71-84
-
-
Moore, D.J.1
Zhang, L.2
Troncoso, J.3
-
170
-
-
1542349213
-
Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function
-
Olzmann, J.A., K. Brown, K.D. Wilkinson, et al. 2004. Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function. J. Biol. Chem. 279: 8506-8515.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 8506-8515
-
-
Olzmann, J.A.1
Brown, K.2
Wilkinson, K.D.3
-
171
-
-
84866850019
-
Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease
-
Rousseaux M.W.C., P.C. Marcogliese, D. Qu, et al. 2012. Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc. Natl. Acad. Sci. 109: 15918-15923.
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, pp. 15918-15923
-
-
Rousseaux, M.W.C.1
Marcogliese, P.C.2
Qu, D.3
-
172
-
-
77953084081
-
DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function
-
Hao, L., B.I. Giasson & N.M. Bonini . 2010. DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc. Natl. Acad. Sci. U. S. A. 107: 9747-9752.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 9747-9752
-
-
Hao, L.1
Giasson, B.I.2
Bonini, N.M.3
-
173
-
-
0028834063
-
Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo
-
Tomac, A., E. Lindqvist, L.F. Lin, et al. 1995. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335-339.
-
(1995)
Nature
, vol.373
, pp. 335-339
-
-
Tomac, A.1
Lindqvist, E.2
Lin, L.F.3
-
174
-
-
13344277993
-
Functional recovery in parkinsonian monkeys treated with GDNF
-
Gash, D.M., Z. Zhang, A. Ovadia, et al. 1996. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252-255.
-
(1996)
Nature
, vol.380
, pp. 252-255
-
-
Gash, D.M.1
Zhang, Z.2
Ovadia, A.3
-
175
-
-
78049275348
-
Phosphorylation by the c-Abl protein tyrosine kinase inhibits Parkin's ubiquitination and protective function
-
Ko, H.S., Y. Lee, J.-H., Shin, et al. 2010. Phosphorylation by the c-Abl protein tyrosine kinase inhibits Parkin's ubiquitination and protective function. Proc. Natl. Acad. Sci. U. S. A. 107: 16691-16696.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 16691-16696
-
-
Ko, H.S.1
Lee, Y.2
Shin, J.-H.3
-
176
-
-
84899892500
-
The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease
-
Karuppagounder, S.S., S. Brahmachari, Y. Lee, et al. 2014. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. Sci. Rep. 4: 4874.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4874
-
-
Karuppagounder, S.S.1
Brahmachari, S.2
Lee, Y.3
-
177
-
-
78650881155
-
Novel regulation of Parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease
-
Imam, S.Z., Q. Zhou, A. Yamamoto, et al. 2011. Novel regulation of Parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J. Neurosci. 31: 157-163.
-
(2011)
J. Neurosci.
, vol.31
, pp. 157-163
-
-
Imam, S.Z.1
Zhou, Q.2
Yamamoto, A.3
-
178
-
-
0032502276
-
Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases
-
Larsen, C.N., B. a. Krantz & KD. Wilkinson . 1998. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37: 3358-3368.
-
(1998)
Biochemistry
, vol.37
, pp. 3358-3368
-
-
Larsen, C.N.1
Krantz, B.a.2
Wilkinson, K.D.3
-
179
-
-
0037131567
-
The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility
-
Liu, Y., L. Fallon, H.A. Lashuel, et al. 2002. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell 111: 209-218.
-
(2002)
Cell
, vol.111
, pp. 209-218
-
-
Liu, Y.1
Fallon, L.2
Lashuel, H.A.3
-
180
-
-
0024461942
-
The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase
-
Wilkinson, K.D., K. Lee, S. Deshpande, et al. 1989. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246: 670-673.
-
(1989)
Science
, vol.246
, pp. 670-673
-
-
Wilkinson, K.D.1
Lee, K.2
Deshpande, S.3
-
181
-
-
0032190090
-
The ubiquitin pathway in Parkinson's disease
-
Leroy, E., R. Boyer, G. Auburger, et al. 1998. The ubiquitin pathway in Parkinson's disease. Nature 395: 451-452.
-
(1998)
Nature
, vol.395
, pp. 451-452
-
-
Leroy, E.1
Boyer, R.2
Auburger, G.3
-
182
-
-
0035444169
-
Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia
-
Kurihara, L.J., T. Kikuchi, K. Wada, et al. 2001. Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum. Mol. Genet. 10: 1963-1970.
-
(2001)
Hum. Mol. Genet.
, vol.10
, pp. 1963-1970
-
-
Kurihara, L.J.1
Kikuchi, T.2
Wada, K.3
-
183
-
-
76549084350
-
Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction
-
Chen, F., Y. Sugiura, K.G., Myers, et al. 2010. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 107: 1636-1641.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 1636-1641
-
-
Chen, F.1
Sugiura, Y.2
Myers, K.G.3
-
184
-
-
53049101345
-
Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy
-
Kabuta, T., A. Furuta, S. Aoki, et al. 2008. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J. Biol. Chem. 283: 23731-23738.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23731-23738
-
-
Kabuta, T.1
Furuta, A.2
Aoki, S.3
-
185
-
-
58549119203
-
Effects of UCH-L1 on α-synuclein over-expression mouse model of Parkinson's disease
-
Yasuda, T., T. Nihira, Y.-R. Ren, et al. 2009. Effects of UCH-L1 on α-synuclein over-expression mouse model of Parkinson's disease. J. Neurochem. 108: 932-944.
-
(2009)
J. Neurochem.
, vol.108
, pp. 932-944
-
-
Yasuda, T.1
Nihira, T.2
Ren, Y.-R.3
-
186
-
-
84859776138
-
Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1
-
Shimshek, D.R., T. Schweizer, P. Schmid, et al. 2012. Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1. Sci. Rep. 2: 262.
-
(2012)
Sci. Rep.
, vol.2
, pp. 262
-
-
Shimshek, D.R.1
Schweizer, T.2
Schmid, P.3
-
187
-
-
4644291645
-
Analysis of α-synuclein-associated proteins by quantitative proteomics
-
Zhou, Y., G. Gu, D.R. Goodlett, et al. 2004. Analysis of α-synuclein-associated proteins by quantitative proteomics. J. Biol. Chem. 279: 39155-39164.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39155-39164
-
-
Zhou, Y.1
Gu, G.2
Goodlett, D.R.3
-
188
-
-
84862189804
-
Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration
-
Dehay, B., A. Ramirez, M. Martinez-Vicente, et al. 2012. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 109: 9611-9616.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 9611-9616
-
-
Dehay, B.1
Ramirez, A.2
Martinez-Vicente, M.3
-
189
-
-
84877010484
-
Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits
-
Schultheis, P.J., S.M. Fleming, A.K. Clippinger, et al. 2013. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Hum. Mol. Genet. 22: 2067-2082.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 2067-2082
-
-
Schultheis, P.J.1
Fleming, S.M.2
Clippinger, A.K.3
-
190
-
-
33749133430
-
Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase
-
Ramirez, A., A. Heimbach, J. Gründemann, et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38: 1184-1191.
-
(2006)
Nat. Genet.
, vol.38
, pp. 1184-1191
-
-
Ramirez, A.1
Heimbach, A.2
Gründemann, J.3
-
191
-
-
61349147706
-
α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity
-
Gitler, A.D., A. Chesi, M.L. Geddie, et al. 2009. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41: 308-315.
-
(2009)
Nat. Genet.
, vol.41
, pp. 308-315
-
-
Gitler, A.D.1
Chesi, A.2
Geddie, M.L.3
-
193
-
-
25444498785
-
Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease
-
Strauss, K.M., L.M. Martins, H. Plun-Favreau, et al. 2005. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum. Mol. Genet. 14: 2099-2111.
-
(2005)
Hum. Mol. Genet.
, vol.14
, pp. 2099-2111
-
-
Strauss, K.M.1
Martins, L.M.2
Plun-Favreau, H.3
-
194
-
-
35748935851
-
The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1
-
Plun-Favreau, H., K. Klupsch, N. Moisoi, et al. 2007. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9: 1243-1252.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1243-1252
-
-
Plun-Favreau, H.1
Klupsch, K.2
Moisoi, N.3
-
195
-
-
7644230386
-
Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice
-
Martins, L.M., A. Morrison, K. Klupsch, et al. 2004. Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell. Biol. 24: 9848-9862.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9848-9862
-
-
Martins, L.M.1
Morrison, A.2
Klupsch, K.3
-
196
-
-
60849097548
-
Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response
-
Moisoi, N., K. Klupsch, V. Fedele, et al. 2009. Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ. 16: 449-464.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 449-464
-
-
Moisoi, N.1
Klupsch, K.2
Fedele, V.3
-
197
-
-
67650718212
-
Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin
-
Tain, L.S., R.B. Chowdhury, R.N. Tao, et al. 2009. Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ. 16: 1118-1125.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 1118-1125
-
-
Tain, L.S.1
Chowdhury, R.B.2
Tao, R.N.3
-
198
-
-
84881610810
-
The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures
-
Krebs, C.E., S. Karkheiran, J.C. Powell, et al. 2013. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum. Mutat. 34: 1200-1207.
-
(2013)
Hum. Mutat.
, vol.34
, pp. 1200-1207
-
-
Krebs, C.E.1
Karkheiran, S.2
Powell, J.C.3
-
199
-
-
84881612311
-
Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism
-
Quadri, M., M. Fang, M. Picillo, et al. 2013. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum. Mutat. 34: 1208-1215.
-
(2013)
Hum. Mutat.
, vol.34
, pp. 1208-1215
-
-
Quadri, M.1
Fang, M.2
Picillo, M.3
-
200
-
-
0032736675
-
Essential role of phosphoinositide metabolism in synaptic vesicle recycling
-
Cremona, O., G. Di Paolo, M.R. Wenk, et al. 1999. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99: 179-188.
-
(1999)
Cell
, vol.99
, pp. 179-188
-
-
Cremona, O.1
Di Paolo, G.2
Wenk, M.R.3
-
201
-
-
0034617998
-
Mutations in synaptojanin disrupt synaptic vesicle recycling
-
Harris, T.W., E. Hartwieg, H.R. Horvitz, et al. 2000. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150: 589-600.
-
(2000)
J. Cell Biol.
, vol.150
, pp. 589-600
-
-
Harris, T.W.1
Hartwieg, E.2
Horvitz, H.R.3
-
202
-
-
10744226845
-
Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating
-
Verstreken, P., T.W. Koh, K.L. Schulze, et al. 2003. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40: 733-748.
-
(2003)
Neuron
, vol.40
, pp. 733-748
-
-
Verstreken, P.1
Koh, T.W.2
Schulze, K.L.3
-
203
-
-
67650087652
-
Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease
-
Neumann, J., J. Bras, E. Deas, et al. 2009. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132: 1783-1794.
-
(2009)
Brain
, vol.132
, pp. 1783-1794
-
-
Neumann, J.1
Bras, J.2
Deas, E.3
-
204
-
-
0028535831
-
Glucocerebrosidase mutations in Gaucher disease
-
Beutler, E., a. Demina & T. Gelbart . 1994. Glucocerebrosidase mutations in Gaucher disease. Mol. Med. 1: 82-92.
-
(1994)
Mol. Med.
, vol.1
, pp. 82-92
-
-
Beutler, E.1
Demina, a2
Gelbart, T.3
-
205
-
-
33845994703
-
Dopaminergic neuronal dysfunction associated with parkinsonism in both a Gaucher disease patient and a carrier
-
Kono, S., K. Shirakawa, Y. Ouchi, et al. 2007. Dopaminergic neuronal dysfunction associated with parkinsonism in both a Gaucher disease patient and a carrier. J. Neurol. Sci. 252: 181-184.
-
(2007)
J. Neurol. Sci.
, vol.252
, pp. 181-184
-
-
Kono, S.1
Shirakawa, K.2
Ouchi, Y.3
-
206
-
-
71049138581
-
α-Synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism
-
Manning-Boğ, A.B., B. Schüle & J.W. Langston . 2009. α-Synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology 30: 1127-1132.
-
(2009)
Neurotoxicology
, vol.30
, pp. 1127-1132
-
-
Manning-Boğ, A.B.1
Schüle, B.2
Langston, J.W.3
-
207
-
-
84900820438
-
Modeling dyskinesia in animal models of Parkinson disease
-
Morin, N., V. a. Jourdain & T. Di Paolo . 2014. Modeling dyskinesia in animal models of Parkinson disease. Exp. Neurol. 256: 105-116.
-
(2014)
Exp. Neurol.
, vol.256
, pp. 105-116
-
-
Morin, N.1
Jourdain, V.a.2
Di Paolo, T.3
-
208
-
-
80052533576
-
Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease
-
Duty, S. & P. Jenner . 2011. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 164: 1357-1391.
-
(2011)
Br. J. Pharmacol.
, vol.164
, pp. 1357-1391
-
-
Duty, S.1
Jenner, P.2
-
209
-
-
77955792985
-
A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease
-
Snow, B.J., F.L. Rolfe, M.M. Lockhart, et al. 2010. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25: 1670-1674.
-
(2010)
Mov. Disord.
, vol.25
, pp. 1670-1674
-
-
Snow, B.J.1
Rolfe, F.L.2
Lockhart, M.M.3
-
210
-
-
84933279966
-
Improving response inhibition in Parkinson's disease with atomoxetine
-
Ye, Z., E. Altena, C. Nombela, et al. 2014. Improving response inhibition in Parkinson's disease with atomoxetine. Biol. Psychiatry 1-8. doi:10.1016/j.biopsych.2014.01.024
-
(2014)
Biol. Psychiatry
, pp. 1-8
-
-
Ye, Z.1
Altena, E.2
Nombela, C.3
|