메뉴 건너뛰기




Volumn 1338, Issue 1, 2015, Pages 16-37

Therapeutic strategies in Parkinson's disease: What we have learned from animal models

Author keywords

Animal models; Mitochondria; Parkinson's disease; Synaptic transmission; Therapeutic strategies

Indexed keywords

1,2,3,6 TETRAHYDRO 1 METHYL 4 PHENYLPYRIDINE; ALPHA SYNUCLEIN; DJ 1 PROTEIN; DOPAMINE RECEPTOR STIMULATING AGENT; GLUCOSYLCERAMIDASE; LEUCINE RICH REPEAT KINASE 2; LEVODOPA; MONOAMINE OXIDASE INHIBITOR; PARKIN; SERINE PROTEINASE OMI; SYNAPTOJANIN; UBIQUITIN THIOLESTERASE;

EID: 84925012167     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.12577     Document Type: Article
Times cited : (28)

References (210)
  • 1
    • 33846572874 scopus 로고    scopus 로고
    • Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030
    • Dorsey, E.R., R. Constantinescu, J.P., Thompson, et al. 2007. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68: 384-386.
    • (2007) Neurology , vol.68 , pp. 384-386
    • Dorsey, E.R.1    Constantinescu, R.2    Thompson, J.P.3
  • 3
    • 77957262214 scopus 로고    scopus 로고
    • Clinical review of treatment options for select nonmotor symptoms of Parkinson's disease
    • Wood, L.D., J.J. Neumiller, S.M. Setter, et al. 2010. Clinical review of treatment options for select nonmotor symptoms of Parkinson's disease. Am. J. Geriatr. Pharmacother. 8: 294-315.
    • (2010) Am. J. Geriatr. Pharmacother. , vol.8 , pp. 294-315
    • Wood, L.D.1    Neumiller, J.J.2    Setter, S.M.3
  • 4
    • 84876501668 scopus 로고    scopus 로고
    • Parkinson's disease: from genetics to treatments
    • Fan, H., S. Chen, H. Harn, et al. 2013. Parkinson's disease: from genetics to treatments. Cell Transplant. 22: 639-652.
    • (2013) Cell Transplant , vol.22 , pp. 639-652
    • Fan, H.1    Chen, S.2    Harn, H.3
  • 5
    • 44949138796 scopus 로고    scopus 로고
    • A review of Parkinson's disease
    • Davie, C.A. 2008. A review of Parkinson's disease. Br. Med. Bull. 86: 109-127.
    • (2008) Br. Med. Bull. , vol.86 , pp. 109-127
    • Davie, C.A.1
  • 6
    • 33745919520 scopus 로고    scopus 로고
    • Epidemiology of Parkinson's disease
    • De Lau, L.M. & M.M. Breteler . 2006. Epidemiology of Parkinson's disease. Lancet Neurol. 5: 525-535.
    • (2006) Lancet Neurol. , vol.5 , pp. 525-535
    • De Lau, L.M.1    Breteler, M.M.2
  • 8
    • 80054787664 scopus 로고    scopus 로고
    • What genetics tells us about the causes and mechanisms of Parkinson's disease
    • Corti, O., S. Lesage & A. Brice . 2011. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 91: 1161-1218.
    • (2011) Physiol. Rev. , vol.91 , pp. 1161-1218
    • Corti, O.1    Lesage, S.2    Brice, A.3
  • 9
    • 84863237380 scopus 로고    scopus 로고
    • α-Synuclein, LRRK2 and their interplay in Parkinson's disease
    • Liu, G., L. Aliaga & H. Cai . 2012. α-Synuclein, LRRK2 and their interplay in Parkinson's disease. Future Neurol 7: 145-153.
    • (2012) Future Neurol , vol.7 , pp. 145-153
    • Liu, G.1    Aliaga, L.2    Cai, H.3
  • 10
    • 0018608356 scopus 로고
    • Chronic Parkinsonism secondary to intravenous injection of meperidine analogues
    • Davis, G.C., A.C. Williams, S.P. Markey, et al. 1979. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1: 249-254.
    • (1979) Psychiatry Res. , vol.1 , pp. 249-254
    • Davis, G.C.1    Williams, A.C.2    Markey, S.P.3
  • 11
    • 63149090431 scopus 로고    scopus 로고
    • Parkinson's disease: from monogenic forms to genetic susceptibility factors
    • Lesage, S. & A. Brice . 2009. Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18: R48-R59.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. R48-R59
    • Lesage, S.1    Brice, A.2
  • 12
    • 0023740954 scopus 로고
    • Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease
    • Hirsch, E., A.M. Graybiel & Y.A. Agid . 1988. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334: 345-348.
    • (1988) Nature , vol.334 , pp. 345-348
    • Hirsch, E.1    Graybiel, A.M.2    Agid, Y.A.3
  • 13
    • 0018976162 scopus 로고
    • Pars compacta of the Substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake
    • Hodge, G. & L. Butcher . 1980. Pars compacta of the Substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake. Naunyn Schmiedebergs Arch Pharmacol 313: 51-67.
    • (1980) Naunyn Schmiedebergs Arch Pharmacol , vol.313 , pp. 51-67
    • Hodge, G.1    Butcher, L.2
  • 14
    • 0037109727 scopus 로고    scopus 로고
    • Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein
    • Cabin, D.E., K. Shimazu, D. Murphy, et al. 2002. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J. Neurosci. 22: 8797-8807.
    • (2002) J. Neurosci. , vol.22 , pp. 8797-8807
    • Cabin, D.E.1    Shimazu, K.2    Murphy, D.3
  • 15
    • 80555155665 scopus 로고    scopus 로고
    • The role of α-synuclein in neurotransmission and synaptic plasticity
    • Cheng, F., G. Vivacqua & S. Yu . 2011. The role of α-synuclein in neurotransmission and synaptic plasticity. J. Chem. Neuroanat. 42: 242-248.
    • (2011) J. Chem. Neuroanat. , vol.42 , pp. 242-248
    • Cheng, F.1    Vivacqua, G.2    Yu, S.3
  • 16
    • 0032102455 scopus 로고    scopus 로고
    • The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease
    • Clayton, D.F. & J.M. George . 1998. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21: 249-254.
    • (1998) Trends Neurosci , vol.21 , pp. 249-254
    • Clayton, D.F.1    George, J.M.2
  • 17
    • 52949083619 scopus 로고    scopus 로고
    • A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans
    • Kuwahara, T., A. Koyama, S. Koyama, et al. 2008. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans. Hum. Mol. Genet. 17: 2997-3009.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 2997-3009
    • Kuwahara, T.1    Koyama, A.2    Koyama, S.3
  • 18
    • 73549085595 scopus 로고    scopus 로고
    • Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis
    • Nemani, V.M., W. Lu, V. Berge, et al. 2010. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65: 66-79.
    • (2010) Neuron , vol.65 , pp. 66-79
    • Nemani, V.M.1    Lu, W.2    Berge, V.3
  • 19
    • 34250624810 scopus 로고    scopus 로고
    • A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases
    • Mandemakers, W., V.A. Morais & B. De Strooper . 2007. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J. Cell Sci. 120: 1707-1716.
    • (2007) J. Cell Sci. , vol.120 , pp. 1707-1716
    • Mandemakers, W.1    Morais, V.A.2    De Strooper, B.3
  • 20
    • 84866510734 scopus 로고    scopus 로고
    • LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis
    • Matta, S., K. Van Kolen, R., da Cunha, et al. 2012. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 75: 1008-1021.
    • (2012) Neuron , vol.75 , pp. 1008-1021
    • Matta, S.1    Van Kolen, K.2    da Cunha, R.3
  • 21
    • 84883034462 scopus 로고    scopus 로고
    • LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25
    • Yun, H.J., J. Park, D.H. Ho, et al. 2013. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp. Mol. Med. 45: e36.
    • (2013) Exp. Mol. Med. , vol.45 , pp. e36
    • Yun, H.J.1    Park, J.2    Ho, D.H.3
  • 22
    • 84901320074 scopus 로고    scopus 로고
    • LRRK2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain
    • Piccoli, G., F. Onofri, M.D. Cirnaru, et al. 2014. LRRK2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain. Mol. Cell. Biol. 34: 2147-2161.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 2147-2161
    • Piccoli, G.1    Onofri, F.2    Cirnaru, M.D.3
  • 23
    • 79951534656 scopus 로고    scopus 로고
    • LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool
    • Piccoli, G., S.B. Condliffe, M. Bauer, et al. 2011. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J. Neurosci. 31: 2225-2237.
    • (2011) J. Neurosci. , vol.31 , pp. 2225-2237
    • Piccoli, G.1    Condliffe, S.B.2    Bauer, M.3
  • 24
    • 84858121110 scopus 로고    scopus 로고
    • M. R. Kreutz & C. Sala, Eds.: -. Vienna: Springer.
    • Picconi, B., G. Piccoli & P. Calabresi . 2012. Synaptic Plast. Vol. 970. M. R. Kreutz & C. Sala, Eds.: 553-572. Vienna: Springer.
    • (2012) Synaptic Plast , vol.970 , pp. 553-572
    • Picconi, B.1    Piccoli, G.2    Calabresi, P.3
  • 25
    • 0034681471 scopus 로고    scopus 로고
    • Dopaminergic loss and inclusion body formation in synuclein mice: implications for neurodegenerative disorders
    • Masliah, E. 2000. Dopaminergic loss and inclusion body formation in synuclein mice: implications for neurodegenerative disorders. Science 287: 1265-1269.
    • (2000) Science , vol.287 , pp. 1265-1269
    • Masliah, E.1
  • 26
    • 84866646876 scopus 로고    scopus 로고
    • The synaptic function of LRRK2
    • Lee, S., Y. Imai, S. Gehrke, et al. 2012. The synaptic function of LRRK2. Biochem. Soc. Trans. 40: 1047-1051.
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 1047-1051
    • Lee, S.1    Imai, Y.2    Gehrke, S.3
  • 27
    • 72149087091 scopus 로고    scopus 로고
    • Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein
    • Lin, X., L. Parisiadou, X.-L., Gu, et al. 2009. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein. Neuron 64: 807-827.
    • (2009) Neuron , vol.64 , pp. 807-827
    • Lin, X.1    Parisiadou, L.2    Gu, X.-L.3
  • 28
    • 0030744876 scopus 로고    scopus 로고
    • Mutation in the α-synuclein gene identified in families with Parkinson's disease
    • Polymeropoulos, M.H., C. Lavedan, E. Leroy, et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276: 2045-2047.
    • (1997) Science , vol.276 , pp. 2045-2047
    • Polymeropoulos, M.H.1    Lavedan, C.2    Leroy, E.3
  • 29
    • 84864870837 scopus 로고    scopus 로고
    • α-Synuclein: from secretion to dysfunction and death
    • Marques, O & T.F. Outeiro . 2012. α-Synuclein: from secretion to dysfunction and death. Cell Death Dis. 3: e350.
    • (2012) Cell Death Dis. , vol.3 , pp. e350
    • Marques, O.1    Outeiro, T.F.2
  • 32
    • 0031990490 scopus 로고    scopus 로고
    • Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease
    • Krüger, R., W. Kuhn, T. Müller, et al. 1998. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 18: 106-108.
    • (1998) Nat. Genet. , vol.18 , pp. 106-108
    • Krüger, R.1    Kuhn, W.2    Müller, T.3
  • 33
    • 10744230149 scopus 로고    scopus 로고
    • The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia
    • Zarranz, J.J., J. Alegre, J.C. Gómez-Esteban, et al. 2004. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55: 164-173.
    • (2004) Ann. Neurol. , vol.55 , pp. 164-173
    • Zarranz, J.J.1    Alegre, J.2    Gómez-Esteban, J.C.3
  • 34
    • 4644290985 scopus 로고    scopus 로고
    • α-Synuclein locus duplication as a cause of familial Parkinson's disease
    • Chartier-Harlin, M.C., J. Kachergus, C. Roumier, et al. 2004. α-Synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364: 1167-1169.
    • (2004) Lancet , vol.364 , pp. 1167-1169
    • Chartier-Harlin, M.C.1    Kachergus, J.2    Roumier, C.3
  • 35
    • 0034602296 scopus 로고    scopus 로고
    • α-Synuclein membrane interactions and lipid specificity
    • Jo, E., J. McLaurin, C.M., Yip, et al. 2000. α-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275: 34328-34334.
    • (2000) J. Biol. Chem. , vol.275 , pp. 34328-34334
    • Jo, E.1    McLaurin, J.2    Yip, C.M.3
  • 36
    • 28044461467 scopus 로고    scopus 로고
    • Neural activity controls the synaptic accumulation of α-synuclein
    • Fortin, D.L., V.M. Nemani, S.M. Voglmaier, et al. 2005. Neural activity controls the synaptic accumulation of α-synuclein. J. Neurosci. 25: 10913-10921.
    • (2005) J. Neurosci. , vol.25 , pp. 10913-10921
    • Fortin, D.L.1    Nemani, V.M.2    Voglmaier, S.M.3
  • 37
    • 33646912812 scopus 로고    scopus 로고
    • Binding of α-synuclein affects the lipid packing in bilayers of small vesicles
    • Kamp, F. & K. Beyer . 2006. Binding of α-synuclein affects the lipid packing in bilayers of small vesicles. J. Biol. Chem. 281: 9251-9259.
    • (2006) J. Biol. Chem. , vol.281 , pp. 9251-9259
    • Kamp, F.1    Beyer, K.2
  • 38
    • 84879033702 scopus 로고    scopus 로고
    • Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2
    • Diao, J., J. Burré, S. Vivona, et al. 2013. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2: e00592.
    • (2013) Elife , vol.2 , pp. e00592
    • Diao, J.1    Burré, J.2    Vivona, S.3
  • 39
    • 77957347060 scopus 로고    scopus 로고
    • α-synuclein promotes SNARE-complex assembly in vivo and in vitro
    • Burré, J., M. Sharma, T. Tsetsenis, et al. 2010. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329: 1663-1667.
    • (2010) Science , vol.329 , pp. 1663-1667
    • Burré, J.1    Sharma, M.2    Tsetsenis, T.3
  • 40
    • 84867787595 scopus 로고    scopus 로고
    • Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities
    • Burré, J., M. Sharma & T.C. Südhof . 2012. Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J. Neurosci. 32: 15227-152242.
    • (2012) J. Neurosci. , vol.32 , pp. 15227-152242
    • Burré, J.1    Sharma, M.2    Südhof, T.C.3
  • 41
    • 77954379317 scopus 로고    scopus 로고
    • SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease
    • Garcia-Reitböck, P., O. Anichtchik, A. Bellucci, et al. 2010. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease. Brain 133: 2032-2044.
    • (2010) Brain , vol.133 , pp. 2032-2044
    • Garcia-Reitböck, P.1    Anichtchik, O.2    Bellucci, A.3
  • 42
    • 0037046163 scopus 로고    scopus 로고
    • Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism
    • Volles, M.J. & P.T. Lansbury . 2002. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41: 4595-4602.
    • (2002) Biochemistry , vol.41 , pp. 4595-4602
    • Volles, M.J.1    Lansbury, P.T.2
  • 43
    • 0034193399 scopus 로고    scopus 로고
    • Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons
    • Murphy, D.D., S.M. Rueter, J.Q. Trojanowski, et al. 2000. Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20: 3214-3220.
    • (2000) J. Neurosci. , vol.20 , pp. 3214-3220
    • Murphy, D.D.1    Rueter, S.M.2    Trojanowski, J.Q.3
  • 44
    • 0345189364 scopus 로고    scopus 로고
    • Yeast cells provide insight into α-synuclein biology and pathobiology
    • Outeiro, T.F. & S. Lindquist . 2003. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302: 1772-1775.
    • (2003) Science , vol.302 , pp. 1772-1775
    • Outeiro, T.F.1    Lindquist, S.2
  • 45
    • 84897437047 scopus 로고    scopus 로고
    • Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease
    • Overk, C.R. & E. Masliah . 2014. Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochem. Pharmacol. 88: 508-516.
    • (2014) Biochem. Pharmacol. , vol.88 , pp. 508-516
    • Overk, C.R.1    Masliah, E.2
  • 46
    • 84859712842 scopus 로고    scopus 로고
    • A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice
    • Chesselet, M.-F., F. Richter, C. Zhu, et al. 2012. A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice. Neurotherapeutics 9: 297-314.
    • (2012) Neurotherapeutics , vol.9 , pp. 297-314
    • Chesselet, M.-F.1    Richter, F.2    Zhu, C.3
  • 47
    • 30644471051 scopus 로고    scopus 로고
    • Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death
    • Martin, L.J., Y. Pan, A.C. Price, et al. 2006. Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26: 41-50.
    • (2006) J. Neurosci. , vol.26 , pp. 41-50
    • Martin, L.J.1    Pan, Y.2    Price, A.C.3
  • 48
    • 0036605566 scopus 로고    scopus 로고
    • Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters
    • Rockenstein, E., M. Mallory, M. Hashimoto, et al. 2002. Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res. 68: 568-578.
    • (2002) J. Neurosci. Res. , vol.68 , pp. 568-578
    • Rockenstein, E.1    Mallory, M.2    Hashimoto, M.3
  • 49
    • 62749151089 scopus 로고    scopus 로고
    • Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies-is the juice worth the squeeze?
    • Buchman, V.L. & N. Ninkina . 2008. Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies-is the juice worth the squeeze? Neurotox. Res. 14: 329-341.
    • (2008) Neurotox. Res. , vol.14 , pp. 329-341
    • Buchman, V.L.1    Ninkina, N.2
  • 50
    • 0036468432 scopus 로고    scopus 로고
    • Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease
    • Auluck, P.K., H.Y.E. Chan, J.Q. Trojanowski, et al. 2002. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295: 865-868.
    • (2002) Science , vol.295 , pp. 865-868
    • Auluck, P.K.1    Chan, H.Y.E.2    Trojanowski, J.Q.3
  • 51
    • 0034704752 scopus 로고    scopus 로고
    • A Drosophila model of Parkinson's disease
    • Feany, M.B. & W.W. Bender . 2000. A Drosophila model of Parkinson's disease. Nature 404: 394-398.
    • (2000) Nature , vol.404 , pp. 394-398
    • Feany, M.B.1    Bender, W.W.2
  • 52
    • 33749583553 scopus 로고    scopus 로고
    • α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity
    • Kontopoulos, E., J.D. Parvin & MB. Feany . 2006. α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. 15: 3012-3023.
    • (2006) Hum. Mol. Genet. , vol.15 , pp. 3012-3023
    • Kontopoulos, E.1    Parvin, J.D.2    Feany, M.B.3
  • 53
    • 80052711922 scopus 로고    scopus 로고
    • Effects of human α-synuclein A53T-A30P mutations on SVZ and local olfactory bulb cell proliferation in a transgenic rat model of Parkinson disease
    • Lelan, F., C. Boyer, R. Thinard, et al. 2011. Effects of human α-synuclein A53T-A30P mutations on SVZ and local olfactory bulb cell proliferation in a transgenic rat model of Parkinson disease. Parkinsons. Dis. 2011: 987084.
    • (2011) Parkinsons. Dis. , vol.2011 , pp. 987084
    • Lelan, F.1    Boyer, C.2    Thinard, R.3
  • 54
    • 0034979314 scopus 로고    scopus 로고
    • Lack of nigral pathology in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter
    • Matsuoka, Y., M. Vila, S. Lincoln, et al. 2001. Lack of nigral pathology in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol. Dis. 8: 535-539.
    • (2001) Neurobiol. Dis. , vol.8 , pp. 535-539
    • Matsuoka, Y.1    Vila, M.2    Lincoln, S.3
  • 55
    • 0038116620 scopus 로고    scopus 로고
    • Role of α-synuclein carboxy-terminus on fibril formation in vitro
    • Murray, IV.J., B.I. Giasson, S.M. Quinn, et al. 2003. Role of α-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry 42: 8530-8540.
    • (2003) Biochemistry , vol.42 , pp. 8530-8540
    • Murray, I.V.J.1    Giasson, B.I.2    Quinn, S.M.3
  • 56
    • 84873476695 scopus 로고    scopus 로고
    • Animal models of Parkinson's disease: limits and relevance to neuroprotection studies
    • Bezard, E., Z. Yue, D. Kirik, et al. 2013. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. Mov. Disord. 28: 61-70.
    • (2013) Mov. Disord. , vol.28 , pp. 61-70
    • Bezard, E.1    Yue, Z.2    Kirik, D.3
  • 57
    • 34548341065 scopus 로고    scopus 로고
    • The effect of truncated human α-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease
    • Michell, A.W., G.K. Tofaris, H. Gossage, et al. 2007. The effect of truncated human α-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease. Cell Transplant. 16: 461-474.
    • (2007) Cell Transplant. , vol.16 , pp. 461-474
    • Michell, A.W.1    Tofaris, G.K.2    Gossage, H.3
  • 58
    • 21344456506 scopus 로고    scopus 로고
    • Intravesicular localization and exocytosis of α-synuclein and its aggregates
    • Lee, H., S Patel & S. Lee . 2005. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25: 6016-6024.
    • (2005) J. Neurosci. , vol.25 , pp. 6016-6024
    • Lee, H.1    Patel, S.2    Lee, S.3
  • 59
    • 84865202477 scopus 로고    scopus 로고
    • Extracellular α-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation
    • Diógenes, M.J., R.B. Dias, D.M. Rombo, et al. 2012. Extracellular α-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J. Neurosci. 32: 11750-11762.
    • (2012) J. Neurosci. , vol.32 , pp. 11750-11762
    • Diógenes, M.J.1    Dias, R.B.2    Rombo, D.M.3
  • 60
    • 84862680670 scopus 로고    scopus 로고
    • Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo
    • Angot, E., J.A. Steiner, C.M. Tom, et al. 2012. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 7: e39465.
    • (2012) PLoS One , vol.7 , pp. e39465
    • Angot, E.1    Steiner, J.A.2    Tom, C.M.3
  • 61
    • 84896971038 scopus 로고    scopus 로고
    • In vitro aggregation assays for the characterization of α-synuclein prion-like properties
    • Narkiewicz, J., G Giachin & G. Legname . 2014. In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion 8: 1-14.
    • (2014) Prion , vol.8 , pp. 1-14
    • Narkiewicz, J.1    Giachin, G.2    Legname, G.3
  • 62
    • 84863433677 scopus 로고    scopus 로고
    • Prion-like acceleration of a synucleinopathy in a transgenic mouse model
    • Mougenot, A., S. Nicot, A. Bencsik, et al. 2012. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33: 2225-2228.
    • (2012) Neurobiol. Aging , vol.33 , pp. 2225-2228
    • Mougenot, A.1    Nicot, S.2    Bencsik, A.3
  • 63
    • 84869109864 scopus 로고    scopus 로고
    • Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice
    • Luk, K.C., V. Kehm, J. Carroll, et al. 2012. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338: 949-953.
    • (2012) Science , vol.338 , pp. 949-953
    • Luk, K.C.1    Kehm, V.2    Carroll, J.3
  • 64
    • 84865535547 scopus 로고    scopus 로고
    • Use of viral vectors to create animal models for Parkinson's disease
    • Löw, K & P. Aebischer . 2012. Use of viral vectors to create animal models for Parkinson's disease. Neurobiol. Dis. 48: 189-201.
    • (2012) Neurobiol. Dis. , vol.48 , pp. 189-201
    • Löw, K.1    Aebischer, P.2
  • 65
    • 0036679197 scopus 로고    scopus 로고
    • α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease
    • Lo Bianco, C., J.-L. Ridet, B.L., Schneider, et al. 2002. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 99: 10813-10818.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 10813-10818
    • Lo Bianco, C.1    Ridet, J.-L.2    Schneider, B.L.3
  • 66
    • 84896733921 scopus 로고    scopus 로고
    • Intranasal administration of α-synuclein aggregates: a Parkinson's disease model with behavioral and neurochemical correlates
    • Gruden, M.A., T V. Davydova, V.B. Narkevich, et al. 2014. Intranasal administration of α-synuclein aggregates: a Parkinson's disease model with behavioral and neurochemical correlates. Behav. Brain Res. 263: 158-168.
    • (2014) Behav. Brain Res. , vol.263 , pp. 158-168
    • Gruden, M.A.1    Davydova, T.V.2    Narkevich, V.B.3
  • 67
    • 83455202793 scopus 로고    scopus 로고
    • Α-synuclein misfolding and Parkinson's disease
    • Breydo, L., J.W. Wu & V.N. Uversky . 2012. Α-synuclein misfolding and Parkinson's disease. Biochim. Biophys. Acta 1822: 261-285.
    • (2012) Biochim. Biophys. Acta , vol.1822 , pp. 261-285
    • Breydo, L.1    Wu, J.W.2    Uversky, V.N.3
  • 68
    • 70449347241 scopus 로고    scopus 로고
    • Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation
    • Chen, L., M. Periquet, X. Wang, et al. 2009. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J. Clin. Invest. 119: 3257-3265.
    • (2009) J. Clin. Invest. , vol.119 , pp. 3257-3265
    • Chen, L.1    Periquet, M.2    Wang, X.3
  • 69
    • 19944431081 scopus 로고    scopus 로고
    • A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease
    • Di Fonzo, A., C.F. Rohe, J. Ferreira, et al. 2005. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 365: 412-415.
    • (2005) Lancet , vol.365 , pp. 412-415
    • Di Fonzo, A.1    Rohe, C.F.2    Ferreira, J.3
  • 70
    • 34548770783 scopus 로고    scopus 로고
    • LRRK2 low-penetrance mutations (Gly2019Ser) and risk alleles (Gly2385Arg)-linking familial and sporadic Parkinson's disease
    • Bonifati, V. 2007. LRRK2 low-penetrance mutations (Gly2019Ser) and risk alleles (Gly2385Arg)-linking familial and sporadic Parkinson's disease. Neurochem. Res. 32: 1700-1708.
    • (2007) Neurochem. Res. , vol.32 , pp. 1700-1708
    • Bonifati, V.1
  • 71
    • 0033538576 scopus 로고    scopus 로고
    • The structural era of endocytosis
    • Marsh, M & H.T. McMahon . 1999. The structural era of endocytosis. Science 285: 215-220.
    • (1999) Science , vol.285 , pp. 215-220
    • Marsh, M.1    McMahon, H.T.2
  • 72
    • 84924967985 scopus 로고    scopus 로고
    • Identification of novel genes involved in synaptic communication
    • Fernandes, A.C., J., Slabbaert, S. Kuenen, et al. 2010. Identification of novel genes involved in synaptic communication. J. Neurogenet. 24: 42.
    • (2010) J. Neurogenet. , vol.24 , pp. 42
    • Fernandes, A.C.1    Slabbaert, J.2    Kuenen, S.3
  • 73
    • 24644474856 scopus 로고    scopus 로고
    • The dardarin G 2019 S mutation is a common cause of Parkinson's disease but not other neurodegenerative diseases
    • Hernandez, D., C. Paisan Ruiz, A. Crawley, et al. 2005. The dardarin G 2019 S mutation is a common cause of Parkinson's disease but not other neurodegenerative diseases. Neurosci. Lett. 389: 137-139.
    • (2005) Neurosci. Lett. , vol.389 , pp. 137-139
    • Hernandez, D.1    Paisan Ruiz, C.2    Crawley, A.3
  • 74
    • 32044432395 scopus 로고    scopus 로고
    • Biochemical and pathological characterization of Lrrk2
    • Giasson, B.I., J.P. Covy, N.M. Bonini, et al. 2006. Biochemical and pathological characterization of Lrrk2. Ann. Neurol. 59: 315-322.
    • (2006) Ann. Neurol. , vol.59 , pp. 315-322
    • Giasson, B.I.1    Covy, J.P.2    Bonini, N.M.3
  • 75
    • 32044466285 scopus 로고    scopus 로고
    • Lrrk2 and Lewy body disease
    • Ross, O.A., M. Toft, A.J. Whittle, et al. 2006. Lrrk2 and Lewy body disease. Ann. Neurol. 59: 388-393.
    • (2006) Ann. Neurol. , vol.59 , pp. 388-393
    • Ross, O.A.1    Toft, M.2    Whittle, A.J.3
  • 76
    • 67649813448 scopus 로고    scopus 로고
    • Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease
    • Li, Y., W. Liu, T.F. Oo, et al. 2009. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12: 826-828.
    • (2009) Nat. Neurosci. , vol.12 , pp. 826-828
    • Li, Y.1    Liu, W.2    Oo, T.F.3
  • 77
    • 76149134717 scopus 로고    scopus 로고
    • Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S
    • Li, X., J.C. Patel, J. Wang, et al. 2010. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci. 30: 1788-1797.
    • (2010) J. Neurosci. , vol.30 , pp. 1788-1797
    • Li, X.1    Patel, J.C.2    Wang, J.3
  • 78
    • 79953758383 scopus 로고    scopus 로고
    • Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2
    • Ramonet, D., J.P.L. Daher, B.M. Lin, et al. 2011. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6: e18568.
    • (2011) PLoS One , vol.6 , pp. e18568
    • Ramonet, D.1    Daher, J.P.L.2    Lin, B.M.3
  • 79
    • 34248574535 scopus 로고    scopus 로고
    • Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila
    • Lee, S.B., W., Kim, S. Lee, et al. 2007. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 358: 534-539.
    • (2007) Biochem. Biophys. Res. Commun. , vol.358 , pp. 534-539
    • Lee, S.B.1    Kim, W.2    Lee, S.3
  • 80
    • 84880877882 scopus 로고    scopus 로고
    • Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease
    • Hindle, S.J. & C.J.H. Elliott . 2013. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease. Autophagy 9: 936-968.
    • (2013) Autophagy , vol.9 , pp. 936-968
    • Hindle, S.J.1    Elliott, C.J.H.2
  • 81
    • 0035889088 scopus 로고    scopus 로고
    • Generation of high curvature membranes mediated by direct endophilin bilayer interactions
    • Farsad, K., N. Ringstad, K. Takei, et al. 2001. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155: 193-200.
    • (2001) J. Cell Biol. , vol.155 , pp. 193-200
    • Farsad, K.1    Ringstad, N.2    Takei, K.3
  • 82
    • 84900520403 scopus 로고    scopus 로고
    • Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation
    • Ambroso, M.R., B.G. Hegde & R. Langen . 2014. Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 111: 6982-7.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 6982-6987
    • Ambroso, M.R.1    Hegde, B.G.2    Langen, R.3
  • 83
    • 84898622052 scopus 로고    scopus 로고
    • Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease
    • Martin, I., J.W. Kim, B.D. Lee, et al. 2014. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157: 472-485.
    • (2014) Cell , vol.157 , pp. 472-485
    • Martin, I.1    Kim, J.W.2    Lee, B.D.3
  • 84
    • 77955152366 scopus 로고    scopus 로고
    • Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression
    • Gehrke, S., Y. Imai, N. Sokol, et al. 2010. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466: 637-641.
    • (2010) Nature , vol.466 , pp. 637-641
    • Gehrke, S.1    Imai, Y.2    Sokol, N.3
  • 85
    • 84899138668 scopus 로고    scopus 로고
    • LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?
    • Russo, I., L Bubacco & E. Greggio . 2014. LRRK2 and neuroinflammation: partners in crime in Parkinson's disease? J. Neuroinflammation 11: 52.
    • (2014) J. Neuroinflammation , vol.11 , pp. 52
    • Russo, I.1    Bubacco, L.2    Greggio, E.3
  • 86
    • 84875640261 scopus 로고    scopus 로고
    • Interplay of LRRK2 with chaperone-mediated autophagy
    • Orenstein, S.J., S.-H., Kuo, I. Tasset, et al. 2013. Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16: 394-406.
    • (2013) Nat. Neurosci. , vol.16 , pp. 394-406
    • Orenstein, S.J.1    Kuo, S.-H.2    Tasset, I.3
  • 87
    • 70349991886 scopus 로고    scopus 로고
    • LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model
    • Alegre-Abarrategui, J., H., Christian, MM.P., Lufino, et al. 2009. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18: 4022-4034.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 4022-4034
    • Alegre-Abarrategui, J.1    Christian, H.2    Lufino, M.M.P.3
  • 88
    • 0034077041 scopus 로고    scopus 로고
    • Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system
    • Abeliovich, A., Y. Schmitz, I. Fariñas, et al. 2000. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25: 239-252.
    • (2000) Neuron , vol.25 , pp. 239-252
    • Abeliovich, A.1    Schmitz, Y.2    Fariñas, I.3
  • 89
    • 0035430788 scopus 로고    scopus 로고
    • Failure of the ubiquitin-proteasome system in Parkinson's disease
    • McNaught, K.S., C.W., Olanow, B. Halliwell, et al. 2001. Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat. Rev. Neurosci. 2: 589-594.
    • (2001) Nat. Rev. Neurosci. , vol.2 , pp. 589-594
    • McNaught, K.S.1    Olanow, C.W.2    Halliwell, B.3
  • 90
    • 84891741302 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: roles in disease and aging
    • Cuervo, A.M. & E. Wong . 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24: 92-104.
    • (2014) Cell Res. , vol.24 , pp. 92-104
    • Cuervo, A.M.1    Wong, E.2
  • 91
    • 84880756245 scopus 로고    scopus 로고
    • Defective autophagy in Parkinson's disease: role of oxidative stress
    • Janda, E., C. Isidoro, C. Carresi, et al. 2012. Defective autophagy in Parkinson's disease: role of oxidative stress. Mol. Neurobiol. 46: 639-661.
    • (2012) Mol. Neurobiol. , vol.46 , pp. 639-661
    • Janda, E.1    Isidoro, C.2    Carresi, C.3
  • 92
    • 70350550208 scopus 로고    scopus 로고
    • Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases
    • Spencer, B., R. Potkar, M. Trejo, et al. 2009. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29: 13578-13588.
    • (2009) J. Neurosci. , vol.29 , pp. 13578-13588
    • Spencer, B.1    Potkar, R.2    Trejo, M.3
  • 93
    • 35848965721 scopus 로고    scopus 로고
    • Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages
    • 3-6
    • Floto, R.A., S., Sarkar, S.L., Schreiber, et al. 2007. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages. Autophagy 3-6: 620-622.
    • (2007) Autophagy , pp. 620-622
    • Floto, R.A.1    Sarkar, S.2    Schreiber, S.L.3
  • 94
    • 84866679781 scopus 로고    scopus 로고
    • Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission
    • Bae, E.-J., H.-J., Lee, E. Rockenstein, et al. 2012. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32: 13454-13469.
    • (2012) J. Neurosci. , vol.32 , pp. 13454-13469
    • Bae, E.-J.1    Lee, H.-J.2    Rockenstein, E.3
  • 95
    • 79955757052 scopus 로고    scopus 로고
    • Passive immunization reduces behavioral and neuropathological deficits in an α-synuclein transgenic model of Lewy body disease
    • Masliah, E., E. Rockenstein, M. Mante, et al. 2011. Passive immunization reduces behavioral and neuropathological deficits in an α-synuclein transgenic model of Lewy body disease. PLoS One 6: e19338.
    • (2011) PLoS One , vol.6 , pp. e19338
    • Masliah, E.1    Rockenstein, E.2    Mante, M.3
  • 96
    • 84877580799 scopus 로고    scopus 로고
    • Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies
    • Valera, E & E. Masliah . 2013. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol. Ther. 138: 311-322.
    • (2013) Pharmacol. Ther. , vol.138 , pp. 311-322
    • Valera, E.1    Masliah, E.2
  • 97
    • 84903441419 scopus 로고    scopus 로고
    • Α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration
    • Tran, H.T., C.H.-Y. Chung, M. Iba, et al. 2014. Α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 7: 2054-2065.
    • (2014) Cell Rep. , vol.7 , pp. 2054-2065
    • Tran, H.T.1    Chung, C.-Y.2    Iba, M.3
  • 98
    • 0011310086 scopus 로고    scopus 로고
    • Parkinson's Disease: Diagnosis and Clinical Management
    • Levodopa: 30 years in progress." In . S. Factor & W. Weiner, Eds. New York: Demos Medical Publishing.
    • Simuni, T & H. Hurtig . 2002. "Levodopa: 30 years in progress." In Parkinson's Disease: Diagnosis and Clinical Management. S. Factor & W. Weiner, Eds. New York: Demos Medical Publishing.
    • (2002)
    • Simuni, T.1    Hurtig, H.2
  • 99
    • 84879390427 scopus 로고    scopus 로고
    • The role of mitochondrial function and cellular bioenergetics in ageing and disease
    • Brand, M.D., A.L. Orr, I.V. Perevoshchikova, et al. 2013. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br. J. Dermatol. 169: 1-8.
    • (2013) Br. J. Dermatol. , vol.169 , pp. 1-8
    • Brand, M.D.1    Orr, A.L.2    Perevoshchikova, I.V.3
  • 100
  • 101
    • 23044506102 scopus 로고    scopus 로고
    • Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions
    • Verstreken, P., C.V. Ly, K.J.T. Venken, et al. 2005. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47: 365-378.
    • (2005) Neuron , vol.47 , pp. 365-378
    • Verstreken, P.1    Ly, C.V.2    Venken, K.J.T.3
  • 102
    • 83455181308 scopus 로고    scopus 로고
    • Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease
    • Vos, M., E. Lauwers & P. Verstreken . 2010. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front. Synaptic Neurosci. 2: 139.
    • (2010) Front. Synaptic Neurosci. , vol.2 , pp. 139
    • Vos, M.1    Lauwers, E.2    Verstreken, P.3
  • 103
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada, T., S. Asakawa, N. Hattori, et al. 1998. Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608.
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1    Asakawa, S.2    Hattori, N.3
  • 104
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson's disease caused by mutations in PINK1
    • Valente, E.M., P.M. Abou-Sleiman, V. Caputo, et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158-1160.
    • (2004) Science , vol.304 , pp. 1158-1160
    • Valente, E.M.1    Abou-Sleiman, P.M.2    Caputo, V.3
  • 105
    • 0037428241 scopus 로고    scopus 로고
    • Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism
    • Bonifati, V., P. Rizzu, M.J. van Baren, et al. 2003. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256-259.
    • (2003) Science , vol.299 , pp. 256-259
    • Bonifati, V.1    Rizzu, P.2    van Baren, M.J.3
  • 106
    • 0023950806 scopus 로고
    • The formation of reactive intermediates in the MAO-catalyzed oxidation of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
    • Trevor, A.J., N Castagnoli & TP. Singer . 1988. The formation of reactive intermediates in the MAO-catalyzed oxidation of the nigrostriatal toxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Toxicology 49: 513-519.
    • (1988) Toxicology , vol.49 , pp. 513-519
    • Trevor, A.J.1    Castagnoli, N.2    Singer, T.P.3
  • 107
    • 0021893796 scopus 로고
    • IV. Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects
    • Johannessen, J.N., C.C. Chiueh, R.S. Burns, et al. 1985. IV. Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects. Life Sci. 36: 219-224.
    • (1985) Life Sci. , vol.36 , pp. 219-224
    • Johannessen, J.N.1    Chiueh, C.C.2    Burns, R.S.3
  • 108
    • 0023932211 scopus 로고
    • Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice
    • Sonsalla, P.K. & R.E. Heikkila . 1988. Neurotoxic effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 12: 345-354.
    • (1988) Prog. Neuropsychopharmacol. Biol. Psychiatry , vol.12 , pp. 345-354
    • Sonsalla, P.K.1    Heikkila, R.E.2
  • 109
    • 0023074510 scopus 로고
    • Motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse
    • Donnan, G.A., G.L. Willis, S.J. Kaczmarczyk, et al. 1987. Motor function in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mouse. J. Neurol. Sci. 77: 185-191.
    • (1987) J. Neurol. Sci. , vol.77 , pp. 185-191
    • Donnan, G.A.1    Willis, G.L.2    Kaczmarczyk, S.J.3
  • 110
    • 0037159608 scopus 로고    scopus 로고
    • Lysosomal malfunction accompanies α-synuclein aggregation in a progressive mouse model of Parkinson's disease
    • Meredith, G.E., S. Totterdell, E. Petroske, et al. 2002. Lysosomal malfunction accompanies α-synuclein aggregation in a progressive mouse model of Parkinson's disease. Brain Res. 956: 156-165.
    • (2002) Brain Res. , vol.956 , pp. 156-165
    • Meredith, G.E.1    Totterdell, S.2    Petroske, E.3
  • 111
    • 20044385568 scopus 로고    scopus 로고
    • Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and α-synuclein
    • Fornai, F., O.M. Schlüter, P. Lenzi, et al. 2005. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and α-synuclein. Proc. Natl. Acad. Sci. U. S. A. 102: 3413-3418.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 3413-3418
    • Fornai, F.1    Schlüter, O.M.2    Lenzi, P.3
  • 112
    • 15544366886 scopus 로고    scopus 로고
    • Absence of inclusion body formation in the MPTP mouse model of Parkinson's disease
    • Shimoji, M., L. Zhang, A.S. Mandir, et al. 2005. Absence of inclusion body formation in the MPTP mouse model of Parkinson's disease. Brain Res. Mol. Brain Res. 134: 103-108.
    • (2005) Brain Res. Mol. Brain Res. , vol.134 , pp. 103-108
    • Shimoji, M.1    Zhang, L.2    Mandir, A.S.3
  • 113
    • 34347259269 scopus 로고    scopus 로고
    • Protocol for the MPTP mouse model of Parkinson's disease
    • Jackson-Lewis, V & S. Przedborski . 2007. Protocol for the MPTP mouse model of Parkinson's disease. Nat. Protoc. 2: 141-151.
    • (2007) Nat. Protoc. , vol.2 , pp. 141-151
    • Jackson-Lewis, V.1    Przedborski, S.2
  • 114
    • 47049106015 scopus 로고    scopus 로고
    • Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson's disease
    • Sonsalla, P.K., G.D. Zeevalk & D.C. German . 2008. Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson's disease. Parkinsonism Relat. Disord. 14(Suppl 2): S116-S118.
    • (2008) Parkinsonism Relat. Disord. , vol.14 , pp. S116-S118
    • Sonsalla, P.K.1    Zeevalk, G.D.2    German, D.C.3
  • 115
    • 84886692989 scopus 로고    scopus 로고
    • Modeling Parkinson's disease in primates: the MPTP model
    • Porras, G., Q. Li & E. Bezard . 2012. Modeling Parkinson's disease in primates: the MPTP model. Cold Spring Harb. Perspect. Med. 2: a009308.
    • (2012) Cold Spring Harb. Perspect. Med. , vol.2 , pp. a009308
    • Porras, G.1    Li, Q.2    Bezard, E.3
  • 116
    • 0023187166 scopus 로고
    • Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP
    • Schneider, J.S., A. Yuwiler & C.H. Markham . 1987. Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res. 411: 144-150.
    • (1987) Brain Res. , vol.411 , pp. 144-150
    • Schneider, J.S.1    Yuwiler, A.2    Markham, C.H.3
  • 117
    • 0001496694 scopus 로고
    • A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the Substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
    • Burns, R.S., C.C. Chiueh, S.P. Markey, et al. 1983. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the Substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc. Natl. Acad. Sci. U. S. A. 80: 4546-4550.
    • (1983) Proc. Natl. Acad. Sci. U. S. A. , vol.80 , pp. 4546-4550
    • Burns, R.S.1    Chiueh, C.C.2    Markey, S.P.3
  • 118
    • 84863666597 scopus 로고    scopus 로고
    • Mitochondrial complex, I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models
    • Xiong, N., X. Long, J. Xiong, et al. 2012. Mitochondrial complex, I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Crit. Rev. Toxicol. 42: 613-632.
    • (2012) Crit. Rev. Toxicol. , vol.42 , pp. 613-632
    • Xiong, N.1    Long, X.2    Xiong, J.3
  • 119
    • 0037126181 scopus 로고    scopus 로고
    • Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats
    • Alam, M & W.J. Schmidt . 2002. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav. Brain Res. 136: 317-324.
    • (2002) Behav. Brain Res. , vol.136 , pp. 317-324
    • Alam, M.1    Schmidt, W.J.2
  • 120
    • 0033681149 scopus 로고    scopus 로고
    • Chronic systemic pesticide exposure reproduces features of Parkinson's disease
    • Betarbet, R., T.B. Sherer, G. MacKenzie, et al. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3: 1301-1306.
    • (2000) Nat. Neurosci. , vol.3 , pp. 1301-1306
    • Betarbet, R.1    Sherer, T.B.2    MacKenzie, G.3
  • 121
    • 10044292870 scopus 로고    scopus 로고
    • Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster
    • Coulom, H & S. Birman . 2004. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J. Neurosci. 24: 10993-10998.
    • (2004) J. Neurosci. , vol.24 , pp. 10993-10998
    • Coulom, H.1    Birman, S.2
  • 122
    • 0037229425 scopus 로고    scopus 로고
    • Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation
    • Sherer, T.B., J.H. Kim, R. Betarbet, et al. 2003. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 179: 9-16.
    • (2003) Exp. Neurol. , vol.179 , pp. 9-16
    • Sherer, T.B.1    Kim, J.H.2    Betarbet, R.3
  • 123
    • 78951472329 scopus 로고    scopus 로고
    • Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice
    • Inden, M., Y. Kitamura, M. Abe, et al. 2011. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol. Pharm. Bull. 34: 92-96.
    • (2011) Biol. Pharm. Bull. , vol.34 , pp. 92-96
    • Inden, M.1    Kitamura, Y.2    Abe, M.3
  • 124
    • 15544365143 scopus 로고    scopus 로고
    • Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic Substantia nigra cultures
    • Testa, C.M., T.B. Sherer & J.T. Greenamyre . 2005. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic Substantia nigra cultures. Brain Res. Mol. Brain Res. 134: 109-118.
    • (2005) Brain Res. Mol. Brain Res. , vol.134 , pp. 109-118
    • Testa, C.M.1    Sherer, T.B.2    Greenamyre, J.T.3
  • 125
    • 33746326513 scopus 로고    scopus 로고
    • Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration
    • Radad, K., W.-D. Rausch & G. Gille . 2006. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49: 379-386.
    • (2006) Neurochem. Int. , vol.49 , pp. 379-386
    • Radad, K.1    Rausch, W.-D.2    Gille, G.3
  • 126
    • 79961128735 scopus 로고    scopus 로고
    • Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina
    • Esteve-Rudd, J., L. Fernández-Sánchez, P. Lax, et al. 2011. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiol. Dis. 44: 102-115.
    • (2011) Neurobiol. Dis. , vol.44 , pp. 102-115
    • Esteve-Rudd, J.1    Fernández-Sánchez, L.2    Lax, P.3
  • 127
    • 0025831821 scopus 로고
    • Respiratory chain abnormalities in skeletal muscle from patients with Parkinson' s disease
    • Bindoff, L.A., M.A. Birch-Machin, N.E.F. Cartlidge, et al. 1991. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson' s disease. J. Neurol. Sci. 104: 203-208.
    • (1991) J. Neurol. Sci. , vol.104 , pp. 203-208
    • Bindoff, L.A.1    Birch-Machin, M.A.2    Cartlidge, N.E.F.3
  • 128
    • 0029050583 scopus 로고
    • Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease
    • Haas, R.H., F. Nasirian, K. Nakano, et al. 1995. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann. Neurol. 37: 714-722.
    • (1995) Ann. Neurol. , vol.37 , pp. 714-722
    • Haas, R.H.1    Nasirian, F.2    Nakano, K.3
  • 130
  • 131
    • 84901471156 scopus 로고    scopus 로고
    • Parkin and mitochondrial quality control: toward assembling the puzzle
    • Winklhofer, KF. 2014. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24: 332-341.
    • (2014) Trends Cell Biol. , vol.24 , pp. 332-341
    • Winklhofer, K.F.1
  • 132
    • 0033933048 scopus 로고    scopus 로고
    • Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase
    • Shimura, H., N. Hattori, S. Kubo, et al. 2000. Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase. Nat. Genet. 25: 302-305.
    • (2000) Nat. Genet. , vol.25 , pp. 302-305
    • Shimura, H.1    Hattori, N.2    Kubo, S.3
  • 133
    • 30744443484 scopus 로고    scopus 로고
    • Dopamine covalently modifies and functionally inactivates Parkin
    • LaVoie, M.J., B.L. Ostaszewski, A. Weihofen, et al. 2005. Dopamine covalently modifies and functionally inactivates Parkin. Nat. Med. 11: 1214-1221.
    • (2005) Nat. Med. , vol.11 , pp. 1214-1221
    • LaVoie, M.J.1    Ostaszewski, B.L.2    Weihofen, A.3
  • 134
    • 0141891953 scopus 로고    scopus 로고
    • Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons
    • Goldberg, M.S., S.M. Fleming, J.J. Palacino, et al. 2003. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278: 43628-43635.
    • (2003) J. Biol. Chem. , vol.278 , pp. 43628-43635
    • Goldberg, M.S.1    Fleming, S.M.2    Palacino, J.J.3
  • 135
    • 13844313915 scopus 로고    scopus 로고
    • Parkin-deficient mice are not a robust model of parkinsonism
    • Perez, F.A. & R.D. Palmiter . 2005. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl. Acad. Sci. U. S. A. 102: 2174-2179.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 2174-2179
    • Perez, F.A.1    Palmiter, R.D.2
  • 136
    • 3242677684 scopus 로고    scopus 로고
    • Loss of locus coeruleus neurons and reduced startle in Parkin null mice
    • Von Coelln, R., B. Thomas, J.M. Savitt, et al. 2004. Loss of locus coeruleus neurons and reduced startle in Parkin null mice. Proc. Natl. Acad. Sci. 101: 10744-10749.
    • (2004) Proc. Natl. Acad. Sci. , vol.101 , pp. 10744-10749
    • Von Coelln, R.1    Thomas, B.2    Savitt, J.M.3
  • 137
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease
    • Shin, J.-H., H.S. Ko, H. Kang, et al. 2011. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 144: 689-702.
    • (2011) Cell , vol.144 , pp. 689-702
    • Shin, J.-H.1    Ko, H.S.2    Kang, H.3
  • 138
    • 60849106352 scopus 로고    scopus 로고
    • Bacterial artificial chromosome transgenic mice expressing a truncated mutant Parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant α-synuclein
    • Lu, X.-H., S.M. Fleming, B. Meurers, et al. 2009. Bacterial artificial chromosome transgenic mice expressing a truncated mutant Parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant α-synuclein. J. Neurosci. 29: 1962-1976.
    • (2009) J. Neurosci. , vol.29 , pp. 1962-1976
    • Lu, X.-H.1    Fleming, S.M.2    Meurers, B.3
  • 139
    • 22544458436 scopus 로고    scopus 로고
    • Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila
    • Cha, G.-H., S. Kim, J. Park, et al. 2005. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 102: 10345-10350.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 10345-10350
    • Cha, G.-H.1    Kim, S.2    Park, J.3
  • 140
    • 0037386532 scopus 로고    scopus 로고
    • Mitochondrial pathology and apoptotic muscle degeneration in Drosophila Parkin mutants
    • Greene, J.C., A.J. Whitworth, I. Kuo, et al. 2003. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila Parkin mutants. Proc. Natl. Acad. Sci. U. S. A. 100: 4078-4083.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 4078-4083
    • Greene, J.C.1    Whitworth, A.J.2    Kuo, I.3
  • 141
    • 20344369560 scopus 로고    scopus 로고
    • Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease
    • Whitworth, A.J., D.A. Theodore, J.C. Greene, et al. 2005. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 102: 8024-8029.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 8024-8029
    • Whitworth, A.J.1    Theodore, D.A.2    Greene, J.C.3
  • 142
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin
    • Clark, I.E., M.W. Dodson, C. Jiang, et al. 2006. Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin. Nature 441: 1162-1166.
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1    Dodson, M.W.2    Jiang, C.3
  • 143
    • 33745602748 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin
    • Park, J., S.B. Lee, S. Lee, et al. 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin. Nature 441: 1157-1161.
    • (2006) Nature , vol.441 , pp. 1157-1161
    • Park, J.1    Lee, S.B.2    Lee, S.3
  • 144
    • 84857462488 scopus 로고    scopus 로고
    • The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants
    • Vilain, S., G. Esposito, D. Haddad, et al. 2012. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants. PLoS Genet. 8: e1002456.
    • (2012) PLoS Genet. , vol.8 , pp. e1002456
    • Vilain, S.1    Esposito, G.2    Haddad, D.3
  • 145
    • 84861983560 scopus 로고    scopus 로고
    • Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency
    • Vos, M., G. Esposito, J.N. Edirisinghe, et al. 2012. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336: 1306-1310.
    • (2012) Science , vol.336 , pp. 1306-1310
    • Vos, M.1    Esposito, G.2    Edirisinghe, J.N.3
  • 146
    • 2442481789 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice
    • Palacino, J.J., D. Sagi, M.S. Goldberg, et al. 2004. Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice. J. Biol. Chem. 279: 18614-18622.
    • (2004) J. Biol. Chem. , vol.279 , pp. 18614-18622
    • Palacino, J.J.1    Sagi, D.2    Goldberg, M.S.3
  • 147
    • 84859233375 scopus 로고    scopus 로고
    • Parkin-induced defects in neurophysiology and locomotion are generated by metabolic dysfunction and not oxidative stress
    • Vincent, A., L. Briggs, G.F.J. Chatwin, et al. 2012. Parkin-induced defects in neurophysiology and locomotion are generated by metabolic dysfunction and not oxidative stress. Hum. Mol. Genet. 21: 1760-1769.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 1760-1769
    • Vincent, A.1    Briggs, L.2    Chatwin, G.F.J.3
  • 148
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra, D., A. Tanaka, D.-F. Suen, et al. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803.
    • (2008) J. Cell Biol. , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.-F.3
  • 149
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan, N.C., A.M. Salazar, A.H. Pham, et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20: 1726-1737.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1726-1737
    • Chan, N.C.1    Salazar, A.M.2    Pham, A.H.3
  • 150
    • 77955844260 scopus 로고    scopus 로고
    • The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway
    • Poole, A.C., R.E. Thomas, S. Yu, et al. 2010. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway. PLoS One 5: e10054.
    • (2010) PLoS One , vol.5 , pp. e10054
    • Poole, A.C.1    Thomas, R.E.2    Yu, S.3
  • 151
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • Yoshii, S.R., C. Kishi, N. Ishihara, et al. 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286: 19630-19640.
    • (2011) J. Biol. Chem. , vol.286 , pp. 19630-19640
    • Yoshii, S.R.1    Kishi, C.2    Ishihara, N.3
  • 152
    • 77950384477 scopus 로고    scopus 로고
    • Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
    • Ziviani, E., R.N. Tao & A.J. Whitworth . 2010. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U. S. A. 107: 5018-5023.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 5018-5023
    • Ziviani, E.1    Tao, R.N.2    Whitworth, A.J.3
  • 153
    • 84880807019 scopus 로고    scopus 로고
    • Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair Parkin-dependent mitophagy
    • Haddad, D.M., S. Vilain, M. Vos, et al. 2013. Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair Parkin-dependent mitophagy. Mol. Cell 50: 831-843.
    • (2013) Mol. Cell , vol.50 , pp. 831-843
    • Haddad, D.M.1    Vilain, S.2    Vos, M.3
  • 154
    • 84920095272 scopus 로고    scopus 로고
    • The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
    • Cornelissen, T., D. Haddad, F. Wauters, et al. 2014. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23: 5227-5242.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 5227-5242
    • Cornelissen, T.1    Haddad, D.2    Wauters, F.3
  • 155
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy
    • Bingol, B., J.S., Tea, L. Phu, et al. 2014. The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature 509: 370-375.
    • (2014) Nature , vol.509 , pp. 370-375
    • Bingol, B.1    Tea, J.S.2    Phu, L.3
  • 156
    • 10744220754 scopus 로고    scopus 로고
    • The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration
    • Corti, O., C. Hampe, H. Koutnikova, et al. 2003. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum. Mol. Genet. 12: 1427-1437.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 1427-1437
    • Corti, O.1    Hampe, C.2    Koutnikova, H.3
  • 157
    • 84884902975 scopus 로고    scopus 로고
    • Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss
    • Lee, Y., S.S., Karuppagounder, J.-H., Shin, et al. 2013. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16: 1392-1400.
    • (2013) Nat. Neurosci. , vol.16 , pp. 1392-1400
    • Lee, Y.1    Karuppagounder, S.S.2    Shin, J.-H.3
  • 158
    • 34547489872 scopus 로고    scopus 로고
    • Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice
    • Kitada, T., A., Pisani, D.R., Porter, et al. 2007. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc. Natl. Acad. Sci. 104: 11441-11446.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 11441-11446
    • Kitada, T.1    Pisani, A.2    Porter, D.R.3
  • 159
    • 77953666757 scopus 로고    scopus 로고
    • Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
    • Morais, V.A., P., Verstreken, A. Roethig, et al. 2009. Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 1: 99-111.
    • (2009) EMBO Mol. Med. , vol.1 , pp. 99-111
    • Morais, V.A.1    Verstreken, P.2    Roethig, A.3
  • 160
    • 49649097747 scopus 로고    scopus 로고
    • Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress
    • Gautier, C.A., T. Kitada & J. Shen . 2008. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 105: 11364-11369.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 11364-11369
    • Gautier, C.A.1    Kitada, T.2    Shen, J.3
  • 161
    • 84876841576 scopus 로고    scopus 로고
    • Aconitase causes iron toxicity in Drosophila pink1 mutants
    • Esposito, G., M. Vos, S. Vilain, et al. 2013. Aconitase causes iron toxicity in Drosophila pink1 mutants. PLoS Genet. 9: e1003478.
    • (2013) PLoS Genet. , vol.9 , pp. e1003478
    • Esposito, G.1    Vos, M.2    Vilain, S.3
  • 162
    • 33746080412 scopus 로고    scopus 로고
    • Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
    • Yang, Y., S. Gehrke, Y. Imai, et al. 2006. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. U. S. A. 103: 10793-10798.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 10793-10798
    • Yang, Y.1    Gehrke, S.2    Imai, Y.3
  • 163
    • 79961233786 scopus 로고    scopus 로고
    • Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
    • Liu, W., Acín-R. Peréz, K.D. Geghman, et al. 2011. Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc. Natl. Acad. Sci. U. S. A. 108: 12920-12924.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 12920-12924
    • Liu, W.1    Peréz, A.-R.2    Geghman, K.D.3
  • 164
    • 84897895717 scopus 로고    scopus 로고
    • Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants
    • Klein, P., Müller-A.K. Rischart, E. Motori, et al. 2014. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J. 33: 341-355.
    • (2014) EMBO J. , vol.33 , pp. 341-355
    • Klein, P.1    Rischart, M.-A.2    Motori, E.3
  • 165
    • 84898023373 scopus 로고    scopus 로고
    • PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling
    • Morais, V.A., D. Haddad, K. Craessaerts, et al. 2014. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344: 203-207.
    • (2014) Science , vol.344 , pp. 203-207
    • Morais, V.A.1    Haddad, D.2    Craessaerts, K.3
  • 166
    • 84892941561 scopus 로고    scopus 로고
    • Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model
    • Vos, M., B. Lovisa, A. Geens, et al. 2013. Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model. PLoS One 8: e78562.
    • (2013) PLoS One , vol.8 , pp. e78562
    • Vos, M.1    Lovisa, B.2    Geens, A.3
  • 168
    • 33747611218 scopus 로고    scopus 로고
    • Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging
    • Meulener, M.C., K. Xu, L. Thomson, et al. 2006. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc. Natl. Acad. Sci. 103: 12517-12522.
    • (2006) Proc. Natl. Acad. Sci. , vol.103 , pp. 12517-12522
    • Meulener, M.C.1    Xu, K.2    Thomson, L.3
  • 169
    • 12344251678 scopus 로고    scopus 로고
    • Association of DJ-1 and Parkin mediated by pathogenic DJ-1 mutations and oxidative stress
    • Moore, D.J., L. Zhang, J. Troncoso, et al. 2005. Association of DJ-1 and Parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum. Mol. Genet. 14: 71-84.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 71-84
    • Moore, D.J.1    Zhang, L.2    Troncoso, J.3
  • 170
    • 1542349213 scopus 로고    scopus 로고
    • Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function
    • Olzmann, J.A., K. Brown, K.D. Wilkinson, et al. 2004. Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function. J. Biol. Chem. 279: 8506-8515.
    • (2004) J. Biol. Chem. , vol.279 , pp. 8506-8515
    • Olzmann, J.A.1    Brown, K.2    Wilkinson, K.D.3
  • 171
    • 84866850019 scopus 로고    scopus 로고
    • Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease
    • Rousseaux M.W.C., P.C. Marcogliese, D. Qu, et al. 2012. Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc. Natl. Acad. Sci. 109: 15918-15923.
    • (2012) Proc. Natl. Acad. Sci. , vol.109 , pp. 15918-15923
    • Rousseaux, M.W.C.1    Marcogliese, P.C.2    Qu, D.3
  • 172
    • 77953084081 scopus 로고    scopus 로고
    • DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function
    • Hao, L., B.I. Giasson & N.M. Bonini . 2010. DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc. Natl. Acad. Sci. U. S. A. 107: 9747-9752.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 9747-9752
    • Hao, L.1    Giasson, B.I.2    Bonini, N.M.3
  • 173
    • 0028834063 scopus 로고
    • Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo
    • Tomac, A., E. Lindqvist, L.F. Lin, et al. 1995. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335-339.
    • (1995) Nature , vol.373 , pp. 335-339
    • Tomac, A.1    Lindqvist, E.2    Lin, L.F.3
  • 174
    • 13344277993 scopus 로고    scopus 로고
    • Functional recovery in parkinsonian monkeys treated with GDNF
    • Gash, D.M., Z. Zhang, A. Ovadia, et al. 1996. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252-255.
    • (1996) Nature , vol.380 , pp. 252-255
    • Gash, D.M.1    Zhang, Z.2    Ovadia, A.3
  • 175
    • 78049275348 scopus 로고    scopus 로고
    • Phosphorylation by the c-Abl protein tyrosine kinase inhibits Parkin's ubiquitination and protective function
    • Ko, H.S., Y. Lee, J.-H., Shin, et al. 2010. Phosphorylation by the c-Abl protein tyrosine kinase inhibits Parkin's ubiquitination and protective function. Proc. Natl. Acad. Sci. U. S. A. 107: 16691-16696.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 16691-16696
    • Ko, H.S.1    Lee, Y.2    Shin, J.-H.3
  • 176
    • 84899892500 scopus 로고    scopus 로고
    • The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease
    • Karuppagounder, S.S., S. Brahmachari, Y. Lee, et al. 2014. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. Sci. Rep. 4: 4874.
    • (2014) Sci. Rep. , vol.4 , pp. 4874
    • Karuppagounder, S.S.1    Brahmachari, S.2    Lee, Y.3
  • 177
    • 78650881155 scopus 로고    scopus 로고
    • Novel regulation of Parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease
    • Imam, S.Z., Q. Zhou, A. Yamamoto, et al. 2011. Novel regulation of Parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J. Neurosci. 31: 157-163.
    • (2011) J. Neurosci. , vol.31 , pp. 157-163
    • Imam, S.Z.1    Zhou, Q.2    Yamamoto, A.3
  • 178
    • 0032502276 scopus 로고    scopus 로고
    • Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases
    • Larsen, C.N., B. a. Krantz & KD. Wilkinson . 1998. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37: 3358-3368.
    • (1998) Biochemistry , vol.37 , pp. 3358-3368
    • Larsen, C.N.1    Krantz, B.a.2    Wilkinson, K.D.3
  • 179
    • 0037131567 scopus 로고    scopus 로고
    • The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility
    • Liu, Y., L. Fallon, H.A. Lashuel, et al. 2002. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell 111: 209-218.
    • (2002) Cell , vol.111 , pp. 209-218
    • Liu, Y.1    Fallon, L.2    Lashuel, H.A.3
  • 180
    • 0024461942 scopus 로고
    • The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase
    • Wilkinson, K.D., K. Lee, S. Deshpande, et al. 1989. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246: 670-673.
    • (1989) Science , vol.246 , pp. 670-673
    • Wilkinson, K.D.1    Lee, K.2    Deshpande, S.3
  • 181
    • 0032190090 scopus 로고    scopus 로고
    • The ubiquitin pathway in Parkinson's disease
    • Leroy, E., R. Boyer, G. Auburger, et al. 1998. The ubiquitin pathway in Parkinson's disease. Nature 395: 451-452.
    • (1998) Nature , vol.395 , pp. 451-452
    • Leroy, E.1    Boyer, R.2    Auburger, G.3
  • 182
    • 0035444169 scopus 로고    scopus 로고
    • Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia
    • Kurihara, L.J., T. Kikuchi, K. Wada, et al. 2001. Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum. Mol. Genet. 10: 1963-1970.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 1963-1970
    • Kurihara, L.J.1    Kikuchi, T.2    Wada, K.3
  • 183
    • 76549084350 scopus 로고    scopus 로고
    • Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction
    • Chen, F., Y. Sugiura, K.G., Myers, et al. 2010. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 107: 1636-1641.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 1636-1641
    • Chen, F.1    Sugiura, Y.2    Myers, K.G.3
  • 184
    • 53049101345 scopus 로고    scopus 로고
    • Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy
    • Kabuta, T., A. Furuta, S. Aoki, et al. 2008. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J. Biol. Chem. 283: 23731-23738.
    • (2008) J. Biol. Chem. , vol.283 , pp. 23731-23738
    • Kabuta, T.1    Furuta, A.2    Aoki, S.3
  • 185
    • 58549119203 scopus 로고    scopus 로고
    • Effects of UCH-L1 on α-synuclein over-expression mouse model of Parkinson's disease
    • Yasuda, T., T. Nihira, Y.-R. Ren, et al. 2009. Effects of UCH-L1 on α-synuclein over-expression mouse model of Parkinson's disease. J. Neurochem. 108: 932-944.
    • (2009) J. Neurochem. , vol.108 , pp. 932-944
    • Yasuda, T.1    Nihira, T.2    Ren, Y.-R.3
  • 186
    • 84859776138 scopus 로고    scopus 로고
    • Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1
    • Shimshek, D.R., T. Schweizer, P. Schmid, et al. 2012. Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1. Sci. Rep. 2: 262.
    • (2012) Sci. Rep. , vol.2 , pp. 262
    • Shimshek, D.R.1    Schweizer, T.2    Schmid, P.3
  • 187
    • 4644291645 scopus 로고    scopus 로고
    • Analysis of α-synuclein-associated proteins by quantitative proteomics
    • Zhou, Y., G. Gu, D.R. Goodlett, et al. 2004. Analysis of α-synuclein-associated proteins by quantitative proteomics. J. Biol. Chem. 279: 39155-39164.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39155-39164
    • Zhou, Y.1    Gu, G.2    Goodlett, D.R.3
  • 188
    • 84862189804 scopus 로고    scopus 로고
    • Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration
    • Dehay, B., A. Ramirez, M. Martinez-Vicente, et al. 2012. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 109: 9611-9616.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 9611-9616
    • Dehay, B.1    Ramirez, A.2    Martinez-Vicente, M.3
  • 189
    • 84877010484 scopus 로고    scopus 로고
    • Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits
    • Schultheis, P.J., S.M. Fleming, A.K. Clippinger, et al. 2013. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Hum. Mol. Genet. 22: 2067-2082.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 2067-2082
    • Schultheis, P.J.1    Fleming, S.M.2    Clippinger, A.K.3
  • 190
    • 33749133430 scopus 로고    scopus 로고
    • Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase
    • Ramirez, A., A. Heimbach, J. Gründemann, et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38: 1184-1191.
    • (2006) Nat. Genet. , vol.38 , pp. 1184-1191
    • Ramirez, A.1    Heimbach, A.2    Gründemann, J.3
  • 191
    • 61349147706 scopus 로고    scopus 로고
    • α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity
    • Gitler, A.D., A. Chesi, M.L. Geddie, et al. 2009. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41: 308-315.
    • (2009) Nat. Genet. , vol.41 , pp. 308-315
    • Gitler, A.D.1    Chesi, A.2    Geddie, M.L.3
  • 192
  • 193
    • 25444498785 scopus 로고    scopus 로고
    • Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease
    • Strauss, K.M., L.M. Martins, H. Plun-Favreau, et al. 2005. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum. Mol. Genet. 14: 2099-2111.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 2099-2111
    • Strauss, K.M.1    Martins, L.M.2    Plun-Favreau, H.3
  • 194
    • 35748935851 scopus 로고    scopus 로고
    • The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1
    • Plun-Favreau, H., K. Klupsch, N. Moisoi, et al. 2007. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9: 1243-1252.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1243-1252
    • Plun-Favreau, H.1    Klupsch, K.2    Moisoi, N.3
  • 195
    • 7644230386 scopus 로고    scopus 로고
    • Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice
    • Martins, L.M., A. Morrison, K. Klupsch, et al. 2004. Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell. Biol. 24: 9848-9862.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 9848-9862
    • Martins, L.M.1    Morrison, A.2    Klupsch, K.3
  • 196
    • 60849097548 scopus 로고    scopus 로고
    • Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response
    • Moisoi, N., K. Klupsch, V. Fedele, et al. 2009. Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ. 16: 449-464.
    • (2009) Cell Death Differ. , vol.16 , pp. 449-464
    • Moisoi, N.1    Klupsch, K.2    Fedele, V.3
  • 197
    • 67650718212 scopus 로고    scopus 로고
    • Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin
    • Tain, L.S., R.B. Chowdhury, R.N. Tao, et al. 2009. Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ. 16: 1118-1125.
    • (2009) Cell Death Differ. , vol.16 , pp. 1118-1125
    • Tain, L.S.1    Chowdhury, R.B.2    Tao, R.N.3
  • 198
    • 84881610810 scopus 로고    scopus 로고
    • The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures
    • Krebs, C.E., S. Karkheiran, J.C. Powell, et al. 2013. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum. Mutat. 34: 1200-1207.
    • (2013) Hum. Mutat. , vol.34 , pp. 1200-1207
    • Krebs, C.E.1    Karkheiran, S.2    Powell, J.C.3
  • 199
    • 84881612311 scopus 로고    scopus 로고
    • Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism
    • Quadri, M., M. Fang, M. Picillo, et al. 2013. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum. Mutat. 34: 1208-1215.
    • (2013) Hum. Mutat. , vol.34 , pp. 1208-1215
    • Quadri, M.1    Fang, M.2    Picillo, M.3
  • 200
    • 0032736675 scopus 로고    scopus 로고
    • Essential role of phosphoinositide metabolism in synaptic vesicle recycling
    • Cremona, O., G. Di Paolo, M.R. Wenk, et al. 1999. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99: 179-188.
    • (1999) Cell , vol.99 , pp. 179-188
    • Cremona, O.1    Di Paolo, G.2    Wenk, M.R.3
  • 201
    • 0034617998 scopus 로고    scopus 로고
    • Mutations in synaptojanin disrupt synaptic vesicle recycling
    • Harris, T.W., E. Hartwieg, H.R. Horvitz, et al. 2000. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150: 589-600.
    • (2000) J. Cell Biol. , vol.150 , pp. 589-600
    • Harris, T.W.1    Hartwieg, E.2    Horvitz, H.R.3
  • 202
    • 10744226845 scopus 로고    scopus 로고
    • Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating
    • Verstreken, P., T.W. Koh, K.L. Schulze, et al. 2003. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40: 733-748.
    • (2003) Neuron , vol.40 , pp. 733-748
    • Verstreken, P.1    Koh, T.W.2    Schulze, K.L.3
  • 203
    • 67650087652 scopus 로고    scopus 로고
    • Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease
    • Neumann, J., J. Bras, E. Deas, et al. 2009. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132: 1783-1794.
    • (2009) Brain , vol.132 , pp. 1783-1794
    • Neumann, J.1    Bras, J.2    Deas, E.3
  • 204
    • 0028535831 scopus 로고
    • Glucocerebrosidase mutations in Gaucher disease
    • Beutler, E., a. Demina & T. Gelbart . 1994. Glucocerebrosidase mutations in Gaucher disease. Mol. Med. 1: 82-92.
    • (1994) Mol. Med. , vol.1 , pp. 82-92
    • Beutler, E.1    Demina, a2    Gelbart, T.3
  • 205
    • 33845994703 scopus 로고    scopus 로고
    • Dopaminergic neuronal dysfunction associated with parkinsonism in both a Gaucher disease patient and a carrier
    • Kono, S., K. Shirakawa, Y. Ouchi, et al. 2007. Dopaminergic neuronal dysfunction associated with parkinsonism in both a Gaucher disease patient and a carrier. J. Neurol. Sci. 252: 181-184.
    • (2007) J. Neurol. Sci. , vol.252 , pp. 181-184
    • Kono, S.1    Shirakawa, K.2    Ouchi, Y.3
  • 206
    • 71049138581 scopus 로고    scopus 로고
    • α-Synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism
    • Manning-Boğ, A.B., B. Schüle & J.W. Langston . 2009. α-Synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology 30: 1127-1132.
    • (2009) Neurotoxicology , vol.30 , pp. 1127-1132
    • Manning-Boğ, A.B.1    Schüle, B.2    Langston, J.W.3
  • 207
    • 84900820438 scopus 로고    scopus 로고
    • Modeling dyskinesia in animal models of Parkinson disease
    • Morin, N., V. a. Jourdain & T. Di Paolo . 2014. Modeling dyskinesia in animal models of Parkinson disease. Exp. Neurol. 256: 105-116.
    • (2014) Exp. Neurol. , vol.256 , pp. 105-116
    • Morin, N.1    Jourdain, V.a.2    Di Paolo, T.3
  • 208
    • 80052533576 scopus 로고    scopus 로고
    • Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease
    • Duty, S. & P. Jenner . 2011. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 164: 1357-1391.
    • (2011) Br. J. Pharmacol. , vol.164 , pp. 1357-1391
    • Duty, S.1    Jenner, P.2
  • 209
    • 77955792985 scopus 로고    scopus 로고
    • A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease
    • Snow, B.J., F.L. Rolfe, M.M. Lockhart, et al. 2010. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25: 1670-1674.
    • (2010) Mov. Disord. , vol.25 , pp. 1670-1674
    • Snow, B.J.1    Rolfe, F.L.2    Lockhart, M.M.3
  • 210
    • 84933279966 scopus 로고    scopus 로고
    • Improving response inhibition in Parkinson's disease with atomoxetine
    • Ye, Z., E. Altena, C. Nombela, et al. 2014. Improving response inhibition in Parkinson's disease with atomoxetine. Biol. Psychiatry 1-8. doi:10.1016/j.biopsych.2014.01.024
    • (2014) Biol. Psychiatry , pp. 1-8
    • Ye, Z.1    Altena, E.2    Nombela, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.