메뉴 건너뛰기




Volumn 24, Issue 6, 2014, Pages 332-341

Parkin and mitochondrial quality control: Toward assembling the puzzle

Author keywords

E3 ligases; Mitochondria; Mitophagy; Parkin; PINK1; Ubiquitin

Indexed keywords

PARKIN; PINK1 PROTEIN; PROTEASOME; PROTEIN; RING FINGER PROTEIN; UBIQUITIN; UNCLASSIFIED DRUG; UBIQUITIN PROTEIN LIGASE;

EID: 84901471156     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.01.001     Document Type: Review
Times cited : (125)

References (116)
  • 1
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605-608.
    • (1998) Nature , vol.392 , pp. 605-608
    • Kitada, T.1
  • 2
    • 77954104112 scopus 로고    scopus 로고
    • Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update
    • Nuytemans K., et al. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 2010, 31:763-780.
    • (2010) Hum. Mutat. , vol.31 , pp. 763-780
    • Nuytemans, K.1
  • 3
    • 84865176138 scopus 로고    scopus 로고
    • Locus-specific mutation databases for neurodegenerative brain diseases
    • Cruts M., et al. Locus-specific mutation databases for neurodegenerative brain diseases. Hum. Mutat. 2012, 33:1340-1344.
    • (2012) Hum. Mutat. , vol.33 , pp. 1340-1344
    • Cruts, M.1
  • 4
    • 77953424577 scopus 로고    scopus 로고
    • The role of parkin in familial and sporadic Parkinson's disease
    • Dawson T.M., Dawson V.L. The role of parkin in familial and sporadic Parkinson's disease. Mov. Disord. 2010, 25(Suppl. 1):S32-S39.
    • (2010) Mov. Disord. , vol.25 , Issue.SUPPL. 1
    • Dawson, T.M.1    Dawson, V.L.2
  • 5
    • 84864150600 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
    • Exner N., et al. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012, 31:3038-3062.
    • (2012) EMBO J. , vol.31 , pp. 3038-3062
    • Exner, N.1
  • 6
    • 84878775802 scopus 로고    scopus 로고
    • Structure and function of parkin, PINK1, and DJ-1, the Three Musketeers of neuroprotection
    • Trempe J.F., Fon E.A. Structure and function of parkin, PINK1, and DJ-1, the Three Musketeers of neuroprotection. Front. Neurol. 2013, 4:38.
    • (2013) Front. Neurol. , vol.4 , pp. 38
    • Trempe, J.F.1    Fon, E.A.2
  • 7
    • 80054787664 scopus 로고    scopus 로고
    • What genetics tells us about the causes and mechanisms of Parkinson's disease
    • Corti O., et al. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 2011, 91:1161-1218.
    • (2011) Physiol. Rev. , vol.91 , pp. 1161-1218
    • Corti, O.1
  • 8
    • 84879251778 scopus 로고    scopus 로고
    • Structure of parkin reveals mechanisms for ubiquitin ligase activation
    • Trempe J.F., et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013, 340:1451-1455.
    • (2013) Science , vol.340 , pp. 1451-1455
    • Trempe, J.F.1
  • 9
    • 84879674444 scopus 로고    scopus 로고
    • Structure and function of parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
    • Riley B.E., et al. Structure and function of parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 2013, 4:1982.
    • (2013) Nat. Commun. , vol.4 , pp. 1982
    • Riley, B.E.1
  • 10
    • 84881477223 scopus 로고    scopus 로고
    • Structure of the human parkin ligase domain in an autoinhibited state
    • Wauer T., Komander D. Structure of the human parkin ligase domain in an autoinhibited state. EMBO J. 2013, 32:2099-2112.
    • (2013) EMBO J. , vol.32 , pp. 2099-2112
    • Wauer, T.1    Komander, D.2
  • 11
    • 84879980089 scopus 로고    scopus 로고
    • A molecular explanation for the recessive nature of parkin-linked Parkinson's disease
    • Spratt D.E., et al. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat. Commun. 2013, 4:1983.
    • (2013) Nat. Commun. , vol.4 , pp. 1983
    • Spratt, D.E.1
  • 12
    • 84858135252 scopus 로고    scopus 로고
    • Following Ariadne's thread: a new perspective on RBR ubiquitin ligases
    • Wenzel D.M., Klevit R.E. Following Ariadne's thread: a new perspective on RBR ubiquitin ligases. BMC Biol. 2012, 10:24.
    • (2012) BMC Biol. , vol.10 , pp. 24
    • Wenzel, D.M.1    Klevit, R.E.2
  • 13
    • 84882608308 scopus 로고    scopus 로고
    • Structural biology: parkin's serpentine shape revealed in the Year of the Snake
    • Dove K.K., Klevit R.E. Structural biology: parkin's serpentine shape revealed in the Year of the Snake. Curr. Biol. 2013, 23:R691-R693.
    • (2013) Curr. Biol. , vol.23
    • Dove, K.K.1    Klevit, R.E.2
  • 14
    • 79960649509 scopus 로고    scopus 로고
    • Autoregulation of parkin activity through its ubiquitin-like domain
    • Chaugule V.K., et al. Autoregulation of parkin activity through its ubiquitin-like domain. EMBO J. 2011, 30:2853-2867.
    • (2011) EMBO J. , vol.30 , pp. 2853-2867
    • Chaugule, V.K.1
  • 15
    • 79957517961 scopus 로고    scopus 로고
    • Parkin mediates apparent e2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination
    • Chew K.C., et al. Parkin mediates apparent e2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination. PLoS ONE 2011, 6:e19720.
    • (2011) PLoS ONE , vol.6
    • Chew, K.C.1
  • 16
    • 67649383293 scopus 로고    scopus 로고
    • 2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin
    • 2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J. Biol. Chem. 2009, 284:14978-14986.
    • (2009) J. Biol. Chem. , vol.284 , pp. 14978-14986
    • Hristova, V.A.1
  • 17
    • 84878840303 scopus 로고    scopus 로고
    • Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism
    • Duda D.M., et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 2013, 21:1030-1041.
    • (2013) Structure , vol.21 , pp. 1030-1041
    • Duda, D.M.1
  • 18
    • 84867096523 scopus 로고    scopus 로고
    • The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension
    • Smit J.J., et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 2012, 31:3833-3844.
    • (2012) EMBO J. , vol.31 , pp. 3833-3844
    • Smit, J.J.1
  • 19
    • 84865709638 scopus 로고    scopus 로고
    • LUBAC synthesizes linear ubiquitin chains via a thioester intermediate
    • Stieglitz B., et al. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 2012, 13:840-846.
    • (2012) EMBO Rep. , vol.13 , pp. 840-846
    • Stieglitz, B.1
  • 20
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf S.A., et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013, 496:372-376.
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1
  • 21
    • 84876886863 scopus 로고    scopus 로고
    • The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
    • Muller-Rischart A.K., et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 2013, 49:908-921.
    • (2013) Mol. Cell , vol.49 , pp. 908-921
    • Muller-Rischart, A.K.1
  • 22
    • 80052389174 scopus 로고    scopus 로고
    • Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells
    • Kim K.Y., et al. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J. Clin. Invest. 2011, 121:3701-3712.
    • (2011) J. Clin. Invest. , vol.121 , pp. 3701-3712
    • Kim, K.Y.1
  • 23
    • 22544458436 scopus 로고    scopus 로고
    • Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila
    • Cha G.H., et al. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:10345-10350.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 10345-10350
    • Cha, G.H.1
  • 24
    • 0037338634 scopus 로고    scopus 로고
    • Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death
    • Darios F., et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum. Mol. Genet. 2003, 12:517-526.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 517-526
    • Darios, F.1
  • 25
    • 0033933048 scopus 로고    scopus 로고
    • Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase
    • Shimura H., et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000, 25:302-305.
    • (2000) Nat. Genet. , vol.25 , pp. 302-305
    • Shimura, H.1
  • 26
    • 84859371301 scopus 로고    scopus 로고
    • Small, N-terminal tags activate parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation
    • Burchell L., et al. Small, N-terminal tags activate parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation. PLoS ONE 2012, 7:e34748.
    • (2012) PLoS ONE , vol.7
    • Burchell, L.1
  • 27
    • 33748753935 scopus 로고    scopus 로고
    • Induction of parkin expression in the presence of oxidative stress
    • Yang Y.X., et al. Induction of parkin expression in the presence of oxidative stress. Eur. J. Neurosci. 2006, 24:1366-1372.
    • (2006) Eur. J. Neurosci. , vol.24 , pp. 1366-1372
    • Yang, Y.X.1
  • 28
    • 84873287971 scopus 로고    scopus 로고
    • ATF4 protects against neuronal death in cellular Parkinson's disease models by maintaining levels of parkin
    • Sun X., et al. ATF4 protects against neuronal death in cellular Parkinson's disease models by maintaining levels of parkin. J. Neurosci. 2013, 33:2398-2407.
    • (2013) J. Neurosci. , vol.33 , pp. 2398-2407
    • Sun, X.1
  • 29
    • 84860747905 scopus 로고    scopus 로고
    • Restriction of trophic factors and nutrients induces PARKIN expression
    • Klinkenberg M., et al. Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 2012, 13:9-21.
    • (2012) Neurogenetics , vol.13 , pp. 9-21
    • Klinkenberg, M.1
  • 30
    • 79954417075 scopus 로고    scopus 로고
    • Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress
    • Bouman L., et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2011, 18:769-782.
    • (2011) Cell Death Differ. , vol.18 , pp. 769-782
    • Bouman, L.1
  • 31
    • 80053635472 scopus 로고    scopus 로고
    • Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect
    • Zhang C., et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16259-16264.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16259-16264
    • Zhang, C.1
  • 32
    • 33847191686 scopus 로고    scopus 로고
    • Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling
    • Henn I.H., et al. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J. Neurosci. 2007, 27:1868-1878.
    • (2007) J. Neurosci. , vol.27 , pp. 1868-1878
    • Henn, I.H.1
  • 33
    • 3042656791 scopus 로고    scopus 로고
    • Parkin attenuates manganese-induced dopaminergic cell death
    • Higashi Y., et al. Parkin attenuates manganese-induced dopaminergic cell death. J. Neurochem. 2004, 89:1490-1497.
    • (2004) J. Neurochem. , vol.89 , pp. 1490-1497
    • Higashi, Y.1
  • 34
    • 0034680913 scopus 로고    scopus 로고
    • Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity
    • Imai Y., et al. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 2000, 275:35661-35664.
    • (2000) J. Biol. Chem. , vol.275 , pp. 35661-35664
    • Imai, Y.1
  • 35
    • 30744474461 scopus 로고    scopus 로고
    • Impaired transcriptional upregulation of parkin promoter variant under oxidative stress and proteasomal inhibition: clinical association
    • Tan E.K., et al. Impaired transcriptional upregulation of parkin promoter variant under oxidative stress and proteasomal inhibition: clinical association. Hum. Genet. 2005, 118:484-488.
    • (2005) Hum. Genet. , vol.118 , pp. 484-488
    • Tan, E.K.1
  • 36
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
    • Clark I.E., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441:1162-1166.
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1
  • 37
    • 0037386532 scopus 로고    scopus 로고
    • Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
    • Greene J.C., et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4078-4083.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 4078-4083
    • Greene, J.C.1
  • 38
    • 33745602748 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
    • Park J., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441:1157-1161.
    • (2006) Nature , vol.441 , pp. 1157-1161
    • Park, J.1
  • 39
    • 33746080412 scopus 로고    scopus 로고
    • Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by parkin
    • Yang Y., et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by parkin. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10793-10798.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10793-10798
    • Yang, Y.1
  • 40
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183:795-803.
    • (2008) J. Cell Biol. , vol.183 , pp. 795-803
    • Narendra, D.1
  • 41
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate parkin
    • Narendra D.P., et al. PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 2010, 8:e1000298.
    • (2010) PLoS Biol. , vol.8
    • Narendra, D.P.1
  • 42
    • 77952062668 scopus 로고    scopus 로고
    • PINK1/parkin direct mitochondria to autophagy
    • Vives-Bauza C., et al. PINK1/parkin direct mitochondria to autophagy. Autophagy 2010, 6:315-316.
    • (2010) Autophagy , vol.6 , pp. 315-316
    • Vives-Bauza, C.1
  • 43
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler S., et al. PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 119-131
    • Geisler, S.1
  • 44
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy
    • Matsuda N., et al. PINK1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy. J. Cell Biol. 2010, 189:211-221.
    • (2010) J. Cell Biol. , vol.189 , pp. 211-221
    • Matsuda, N.1
  • 45
    • 45249112594 scopus 로고    scopus 로고
    • Characterization of PINK1 processing, stability, and subcellular localization
    • Lin W., Kang U.J. Characterization of PINK1 processing, stability, and subcellular localization. J. Neurochem. 2008, 106:464-474.
    • (2008) J. Neurochem. , vol.106 , pp. 464-474
    • Lin, W.1    Kang, U.J.2
  • 46
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin S.M., et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191:933-942.
    • (2010) J. Cell Biol. , vol.191 , pp. 933-942
    • Jin, S.M.1
  • 47
    • 79955667485 scopus 로고    scopus 로고
    • The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
    • Meissner C., et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117:856-867.
    • (2011) J. Neurochem. , vol.117 , pp. 856-867
    • Meissner, C.1
  • 48
    • 84859428688 scopus 로고    scopus 로고
    • Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment
    • Greene A.W., et al. Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment. EMBO Rep. 2012, 13:378-385.
    • (2012) EMBO Rep. , vol.13 , pp. 378-385
    • Greene, A.W.1
  • 49
    • 58149397651 scopus 로고    scopus 로고
    • Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and parkin
    • discussion 173
    • Whitworth A.J., et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and parkin. Dis. Model Mech. 2008, 1:168-174. discussion 173.
    • (2008) Dis. Model Mech. , vol.1 , pp. 168-174
    • Whitworth, A.J.1
  • 50
    • 79551574736 scopus 로고    scopus 로고
    • PINK1 cleavage at position A103 by the mitochondrial protease PARL
    • Deas E., et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 2011, 20:867-879.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 867-879
    • Deas, E.1
  • 51
    • 79955410000 scopus 로고    scopus 로고
    • Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease
    • Shi G., et al. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet. 2011, 20:1966-1974.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1966-1974
    • Shi, G.1
  • 52
    • 84887453820 scopus 로고    scopus 로고
    • PINK1 is degraded through the N-end rule pathway
    • Yamano K., Youle R.J. PINK1 is degraded through the N-end rule pathway. Autophagy 2013, 9:1758-1769.
    • (2013) Autophagy , vol.9 , pp. 1758-1769
    • Yamano, K.1    Youle, R.J.2
  • 53
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin
    • Lazarou M., et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin. Dev. Cell 2012, 22:320-333.
    • (2012) Dev. Cell , vol.22 , pp. 320-333
    • Lazarou, M.1
  • 54
    • 84863308390 scopus 로고    scopus 로고
    • Pink1 kinase and its membrane potential (deltapsi)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode
    • Becker D., et al. Pink1 kinase and its membrane potential (deltapsi)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode. J. Biol. Chem. 2012, 287:22969-22987.
    • (2012) J. Biol. Chem. , vol.287 , pp. 22969-22987
    • Becker, D.1
  • 55
    • 84887561435 scopus 로고    scopus 로고
    • Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression
    • Gomez-Sanchez R., et al. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol. Dis. 2014, 62:426-440.
    • (2014) Neurobiol. Dis. , vol.62 , pp. 426-440
    • Gomez-Sanchez, R.1
  • 56
    • 84873045973 scopus 로고    scopus 로고
    • PINK1 drives parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
    • Lazarou M., et al. PINK1 drives parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 2013, 200:163-172.
    • (2013) J. Cell Biol. , vol.200 , pp. 163-172
    • Lazarou, M.1
  • 57
    • 84890429468 scopus 로고    scopus 로고
    • High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
    • Hasson S.A., et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 2013, 504:291-295.
    • (2013) Nature , vol.504 , pp. 291-295
    • Hasson, S.A.1
  • 58
    • 84890339047 scopus 로고    scopus 로고
    • Hexokinase activity is required for recruitment of parkin to depolarized mitochondria
    • McCoy M.K., et al. Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum. Mol. Genet. 2014, 23:145-156.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 145-156
    • McCoy, M.K.1
  • 59
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by parkin
    • Tanaka A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by parkin. J. Cell Biol. 2010, 191:1367-1380.
    • (2010) J. Cell Biol. , vol.191 , pp. 1367-1380
    • Tanaka, A.1
  • 60
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang X., et al. PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893-906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1
  • 61
    • 84859237566 scopus 로고    scopus 로고
    • Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
    • Liu S., et al. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 2012, 8:e1002537.
    • (2012) PLoS Genet. , vol.8
    • Liu, S.1
  • 62
    • 78649463381 scopus 로고    scopus 로고
    • Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
    • Gegg M.E., et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19:4861-4870.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 4861-4870
    • Gegg, M.E.1
  • 63
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by parkin is critical for mitophagy
    • Chan N.C., et al. Broad activation of the ubiquitin-proteasome system by parkin is critical for mitophagy. Hum. Mol. Genet. 2011, 20:1726-1737.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1726-1737
    • Chan, N.C.1
  • 64
    • 77950384477 scopus 로고    scopus 로고
    • Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
    • Ziviani E., et al. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:5018-5023.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 5018-5023
    • Ziviani, E.1
  • 65
    • 77955844260 scopus 로고    scopus 로고
    • The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
    • Poole A.C., et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE 2010, 5:e10054.
    • (2010) PLoS ONE , vol.5
    • Poole, A.C.1
  • 66
    • 79952369437 scopus 로고    scopus 로고
    • Mutations in PINK1 and parkin impair ubiquitination of mitofusins in human fibroblasts
    • Rakovic A., et al. Mutations in PINK1 and parkin impair ubiquitination of mitofusins in human fibroblasts. PLoS ONE 2011, 6:e16746.
    • (2011) PLoS ONE , vol.6
    • Rakovic, A.1
  • 67
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • Yoshii S.R., et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 2011, 286:19630-19640.
    • (2011) J. Biol. Chem. , vol.286 , pp. 19630-19640
    • Yoshii, S.R.1
  • 68
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating serine 65
    • Kondapalli C., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2012, 2:120080.
    • (2012) Open Biol. , vol.2 , pp. 120080
    • Kondapalli, C.1
  • 69
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the parkin ubiquitin-like domain primes mitochondrial translocation of parkin and regulates mitophagy
    • Shiba-Fukushima K., et al. PINK1-mediated phosphorylation of the parkin ubiquitin-like domain primes mitochondrial translocation of parkin and regulates mitophagy. Sci. Rep. 2012, 2:1002.
    • (2012) Sci. Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1
  • 70
    • 84881260124 scopus 로고    scopus 로고
    • Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
    • Iguchi M., et al. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 2013, 288:22019-22032.
    • (2013) J. Biol. Chem. , vol.288 , pp. 22019-22032
    • Iguchi, M.1
  • 71
    • 79956323688 scopus 로고    scopus 로고
    • DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy
    • Thomas K.J., et al. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet. 2011, 20:40-50.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 40-50
    • Thomas, K.J.1
  • 72
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of parkin to mitochondria in mitophagy
    • Vives-Bauza C., et al. PINK1-dependent recruitment of parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:378-383.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 378-383
    • Vives-Bauza, C.1
  • 73
    • 84866072587 scopus 로고    scopus 로고
    • PINK1 autophosphorylation upon membrane potential dissipation is essential for parkin recruitment to damaged mitochondria
    • Okatsu K., et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for parkin recruitment to damaged mitochondria. Nat. Commun. 2012, 3:1016.
    • (2012) Nat. Commun. , vol.3 , pp. 1016
    • Okatsu, K.1
  • 74
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria
    • Chen Y., Dorn G.W. PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science 2013, 340:471-475.
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 75
    • 84883462430 scopus 로고    scopus 로고
    • The Parkinson's disease-linked proteins Fbxo7 and parkin interact to mediate mitophagy
    • Burchell V.S., et al. The Parkinson's disease-linked proteins Fbxo7 and parkin interact to mediate mitophagy. Nat. Neurosci. 2013, 16:1257-1265.
    • (2013) Nat. Neurosci. , vol.16 , pp. 1257-1265
    • Burchell, V.S.1
  • 76
    • 84876070458 scopus 로고    scopus 로고
    • VCP is essential for mitochondrial quality control by PINK1/parkin and this function is impaired by VCP mutations
    • Kim N.C., et al. VCP is essential for mitochondrial quality control by PINK1/parkin and this function is impaired by VCP mutations. Neuron 2013, 78:65-80.
    • (2013) Neuron , vol.78 , pp. 65-80
    • Kim, N.C.1
  • 77
    • 84878529485 scopus 로고    scopus 로고
    • TRAP1 rescues PINK1 loss-of-function phenotypes
    • Zhang L., et al. TRAP1 rescues PINK1 loss-of-function phenotypes. Hum. Mol. Genet. 2013, 22:2829-2841.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 2829-2841
    • Zhang, L.1
  • 78
    • 84878533362 scopus 로고    scopus 로고
    • Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease
    • Costa A.C., et al. Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease. Cell Death Dis. 2013, 4:e467.
    • (2013) Cell Death Dis. , vol.4
    • Costa, A.C.1
  • 79
    • 84897895717 scopus 로고    scopus 로고
    • Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants
    • Klein P., et al. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J. 2014, 10.1002/embj.201284290.
    • (2014) EMBO J.
    • Klein, P.1
  • 80
    • 84875993938 scopus 로고    scopus 로고
    • Hepatitis C virus induces the mitochondrial translocation of parkin and subsequent mitophagy
    • Kim S.J., et al. Hepatitis C virus induces the mitochondrial translocation of parkin and subsequent mitophagy. PLoS Pathog. 2013, 9:e1003285.
    • (2013) PLoS Pathog. , vol.9
    • Kim, S.J.1
  • 81
    • 84887486172 scopus 로고    scopus 로고
    • The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/parkin-mediated mitophagy of polarized mitochondria
    • Jin S.M., Youle R.J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013, 9:1750-1757.
    • (2013) Autophagy , vol.9 , pp. 1750-1757
    • Jin, S.M.1    Youle, R.J.2
  • 82
    • 77955398958 scopus 로고    scopus 로고
    • Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
    • Suen D.F., et al. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11835-11840.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 11835-11840
    • Suen, D.F.1
  • 83
    • 84884313897 scopus 로고    scopus 로고
    • Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model
    • Hamalainen R.H., et al. Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E3622-E3630.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • Hamalainen, R.H.1
  • 84
    • 84856951239 scopus 로고    scopus 로고
    • Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
    • Gilkerson R.W., et al. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum. Mol. Genet. 2012, 21:978-990.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 978-990
    • Gilkerson, R.W.1
  • 85
    • 84876213313 scopus 로고    scopus 로고
    • The PINK1-parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo
    • Vincow E.S., et al. The PINK1-parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:6400-6405.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 6400-6405
    • Vincow, E.S.1
  • 86
    • 84856221632 scopus 로고    scopus 로고
    • A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
    • Soubannier V., et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 2012, 22:135-141.
    • (2012) Curr. Biol. , vol.22 , pp. 135-141
    • Soubannier, V.1
  • 87
    • 79961239061 scopus 로고    scopus 로고
    • Impaired mitochondrial transport and parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
    • Sterky F.H., et al. Impaired mitochondrial transport and parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12937-12942.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 12937-12942
    • Sterky, F.H.1
  • 88
    • 84884902975 scopus 로고    scopus 로고
    • Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss
    • Lee Y., et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 2013, 16:1392-1400.
    • (2013) Nat. Neurosci. , vol.16 , pp. 1392-1400
    • Lee, Y.1
  • 89
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
    • Shin J.H., et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 2011, 144:689-702.
    • (2011) Cell , vol.144 , pp. 689-702
    • Shin, J.H.1
  • 90
    • 84883521293 scopus 로고    scopus 로고
    • Parkin-dependent degradation of the F-box protein Fbw7beta promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1
    • Ekholm-Reed S., et al. Parkin-dependent degradation of the F-box protein Fbw7beta promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol. Cell. Biol. 2013, 33:3627-3643.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 3627-3643
    • Ekholm-Reed, S.1
  • 91
    • 77949478474 scopus 로고    scopus 로고
    • Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling
    • Sha D., et al. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum. Mol. Genet. 2010, 19:352-363.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 352-363
    • Sha, D.1
  • 92
    • 0033634663 scopus 로고    scopus 로고
    • Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti
    • Makris C., et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 2000, 5:969-979.
    • (2000) Mol. Cell , vol.5 , pp. 969-979
    • Makris, C.1
  • 93
    • 0033638970 scopus 로고    scopus 로고
    • NEMO/IKK gamma-deficient mice model incontinentia pigmenti
    • Schmidt-Supprian M., et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol. Cell 2000, 5:981-992.
    • (2000) Mol. Cell , vol.5 , pp. 981-992
    • Schmidt-Supprian, M.1
  • 94
    • 84872820481 scopus 로고    scopus 로고
    • Linear ubiquitination: a newly discovered regulator of cell signalling
    • Rieser E., et al. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem. Sci. 2013, 38:94-102.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 94-102
    • Rieser, E.1
  • 95
    • 84857031377 scopus 로고    scopus 로고
    • Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease
    • Pilsl A., Winklhofer K.F. Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathol. 2012, 123:173-188.
    • (2012) Acta Neuropathol. , vol.123 , pp. 173-188
    • Pilsl, A.1    Winklhofer, K.F.2
  • 96
    • 69249096578 scopus 로고    scopus 로고
    • Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation
    • Lutz A.K., et al. Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 2009, 284:22938-22951.
    • (2009) J. Biol. Chem. , vol.284 , pp. 22938-22951
    • Lutz, A.K.1
  • 97
    • 70350689923 scopus 로고    scopus 로고
    • Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release
    • Berger A.K., et al. Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum. Mol. Genet. 2009, 18:4317-4328.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 4317-4328
    • Berger, A.K.1
  • 98
    • 84871739055 scopus 로고    scopus 로고
    • The dynamin GTPase OPA1: more than mitochondria?
    • Belenguer P., Pellegrini L. The dynamin GTPase OPA1: more than mitochondria?. Biochim. Biophys. Acta 2013, 1833:176-183.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 176-183
    • Belenguer, P.1    Pellegrini, L.2
  • 99
    • 79960230433 scopus 로고    scopus 로고
    • Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics
    • Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 2011, 21:92-101.
    • (2011) Dev. Cell , vol.21 , pp. 92-101
    • Martinou, J.C.1    Youle, R.J.2
  • 100
    • 84871016609 scopus 로고    scopus 로고
    • Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency
    • Ramonet D., et al. Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death Differ. 2013, 20:77-85.
    • (2013) Cell Death Differ. , vol.20 , pp. 77-85
    • Ramonet, D.1
  • 101
    • 4444327827 scopus 로고    scopus 로고
    • Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis
    • Jiang H., et al. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum. Mol. Genet. 2004, 13:1745-1754.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 1745-1754
    • Jiang, H.1
  • 102
    • 63649093151 scopus 로고    scopus 로고
    • Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation
    • Ren Y., et al. Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J. Biol. Chem. 2009, 284:4009-4017.
    • (2009) J. Biol. Chem. , vol.284 , pp. 4009-4017
    • Ren, Y.1
  • 103
    • 77955058151 scopus 로고    scopus 로고
    • Parkin suppresses c-Jun N-terminal kinase-induced cell death via transcriptional regulation in Drosophila
    • Hwang S., et al. Parkin suppresses c-Jun N-terminal kinase-induced cell death via transcriptional regulation in Drosophila. Mol. Cells 2010, 29:575-580.
    • (2010) Mol. Cells , vol.29 , pp. 575-580
    • Hwang, S.1
  • 104
    • 84878646405 scopus 로고    scopus 로고
    • ER-stress-associated functional link between parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1
    • Duplan E., et al. ER-stress-associated functional link between parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J. Cell Sci. 2013, 126:2124-2133.
    • (2013) J. Cell Sci. , vol.126 , pp. 2124-2133
    • Duplan, E.1
  • 105
    • 70449519412 scopus 로고    scopus 로고
    • Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease
    • da Costa C.A., et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat. Cell Biol. 2009, 11:1370-1375.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1370-1375
    • da Costa, C.A.1
  • 106
    • 84859962717 scopus 로고    scopus 로고
    • The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax
    • Johnson B.N., et al. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6283-6288.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6283-6288
    • Johnson, B.N.1
  • 107
    • 10744220764 scopus 로고    scopus 로고
    • Susceptibility to leprosy is associated with PARK2 and PACRG
    • Mira M.T., et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004, 427:636-640.
    • (2004) Nature , vol.427 , pp. 636-640
    • Mira, M.T.1
  • 108
    • 33744471365 scopus 로고    scopus 로고
    • PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever
    • Ali S., et al. PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever. Clin. Exp. Immunol. 2006, 144:425-431.
    • (2006) Clin. Exp. Immunol. , vol.144 , pp. 425-431
    • Ali, S.1
  • 109
    • 84880788145 scopus 로고    scopus 로고
    • Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated Indian population groups
    • Chopra R., et al. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated Indian population groups. PLoS Genet. 2013, 9:e1003578.
    • (2013) PLoS Genet. , vol.9
    • Chopra, R.1
  • 110
    • 84885576570 scopus 로고    scopus 로고
    • The ubiquitin ligase parkin mediates resistance to intracellular pathogens
    • Manzanillo P.S., et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013, 501:512-516.
    • (2013) Nature , vol.501 , pp. 512-516
    • Manzanillo, P.S.1
  • 111
    • 84873488329 scopus 로고    scopus 로고
    • PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages
    • de Leseleuc L., et al. PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl. Trop. Dis. 2013, 7:e2015.
    • (2013) PLoS Negl. Trop. Dis. , vol.7
    • de Leseleuc, L.1
  • 112
    • 10744221310 scopus 로고    scopus 로고
    • Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse
    • Itier J.M., et al. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet. 2003, 12:2277-2291.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 2277-2291
    • Itier, J.M.1
  • 113
    • 0141891953 scopus 로고    scopus 로고
    • Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons
    • Goldberg M.S., et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 2003, 278:43628-43635.
    • (2003) J. Biol. Chem. , vol.278 , pp. 43628-43635
    • Goldberg, M.S.1
  • 114
    • 5444236802 scopus 로고    scopus 로고
    • Parkin-associated Parkinson's disease
    • von Coelln R., et al. Parkin-associated Parkinson's disease. Cell Tissue Res. 2004, 318:175-184.
    • (2004) Cell Tissue Res. , vol.318 , pp. 175-184
    • von Coelln, R.1
  • 115
    • 84897113087 scopus 로고    scopus 로고
    • Mitochondrial contagion induced by parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin
    • Bhandari P., et al. Mitochondrial contagion induced by parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ. Res. 2013, 10.1161/CIRCRESAHA.114.302734.
    • (2013) Circ. Res.
    • Bhandari, P.1
  • 116
    • 79957949190 scopus 로고    scopus 로고
    • UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
    • Wenzel D.M., et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011, 474:105-108.
    • (2011) Nature , vol.474 , pp. 105-108
    • Wenzel, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.