-
1
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605-608.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
-
2
-
-
77954104112
-
Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update
-
Nuytemans K., et al. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 2010, 31:763-780.
-
(2010)
Hum. Mutat.
, vol.31
, pp. 763-780
-
-
Nuytemans, K.1
-
3
-
-
84865176138
-
Locus-specific mutation databases for neurodegenerative brain diseases
-
Cruts M., et al. Locus-specific mutation databases for neurodegenerative brain diseases. Hum. Mutat. 2012, 33:1340-1344.
-
(2012)
Hum. Mutat.
, vol.33
, pp. 1340-1344
-
-
Cruts, M.1
-
4
-
-
77953424577
-
The role of parkin in familial and sporadic Parkinson's disease
-
Dawson T.M., Dawson V.L. The role of parkin in familial and sporadic Parkinson's disease. Mov. Disord. 2010, 25(Suppl. 1):S32-S39.
-
(2010)
Mov. Disord.
, vol.25
, Issue.SUPPL. 1
-
-
Dawson, T.M.1
Dawson, V.L.2
-
5
-
-
84864150600
-
Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
-
Exner N., et al. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012, 31:3038-3062.
-
(2012)
EMBO J.
, vol.31
, pp. 3038-3062
-
-
Exner, N.1
-
6
-
-
84878775802
-
Structure and function of parkin, PINK1, and DJ-1, the Three Musketeers of neuroprotection
-
Trempe J.F., Fon E.A. Structure and function of parkin, PINK1, and DJ-1, the Three Musketeers of neuroprotection. Front. Neurol. 2013, 4:38.
-
(2013)
Front. Neurol.
, vol.4
, pp. 38
-
-
Trempe, J.F.1
Fon, E.A.2
-
7
-
-
80054787664
-
What genetics tells us about the causes and mechanisms of Parkinson's disease
-
Corti O., et al. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol. Rev. 2011, 91:1161-1218.
-
(2011)
Physiol. Rev.
, vol.91
, pp. 1161-1218
-
-
Corti, O.1
-
8
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe J.F., et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013, 340:1451-1455.
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
-
9
-
-
84879674444
-
Structure and function of parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley B.E., et al. Structure and function of parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 2013, 4:1982.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1982
-
-
Riley, B.E.1
-
10
-
-
84881477223
-
Structure of the human parkin ligase domain in an autoinhibited state
-
Wauer T., Komander D. Structure of the human parkin ligase domain in an autoinhibited state. EMBO J. 2013, 32:2099-2112.
-
(2013)
EMBO J.
, vol.32
, pp. 2099-2112
-
-
Wauer, T.1
Komander, D.2
-
11
-
-
84879980089
-
A molecular explanation for the recessive nature of parkin-linked Parkinson's disease
-
Spratt D.E., et al. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat. Commun. 2013, 4:1983.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1983
-
-
Spratt, D.E.1
-
12
-
-
84858135252
-
Following Ariadne's thread: a new perspective on RBR ubiquitin ligases
-
Wenzel D.M., Klevit R.E. Following Ariadne's thread: a new perspective on RBR ubiquitin ligases. BMC Biol. 2012, 10:24.
-
(2012)
BMC Biol.
, vol.10
, pp. 24
-
-
Wenzel, D.M.1
Klevit, R.E.2
-
13
-
-
84882608308
-
Structural biology: parkin's serpentine shape revealed in the Year of the Snake
-
Dove K.K., Klevit R.E. Structural biology: parkin's serpentine shape revealed in the Year of the Snake. Curr. Biol. 2013, 23:R691-R693.
-
(2013)
Curr. Biol.
, vol.23
-
-
Dove, K.K.1
Klevit, R.E.2
-
14
-
-
79960649509
-
Autoregulation of parkin activity through its ubiquitin-like domain
-
Chaugule V.K., et al. Autoregulation of parkin activity through its ubiquitin-like domain. EMBO J. 2011, 30:2853-2867.
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
-
15
-
-
79957517961
-
Parkin mediates apparent e2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination
-
Chew K.C., et al. Parkin mediates apparent e2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination. PLoS ONE 2011, 6:e19720.
-
(2011)
PLoS ONE
, vol.6
-
-
Chew, K.C.1
-
16
-
-
67649383293
-
2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin
-
2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J. Biol. Chem. 2009, 284:14978-14986.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14978-14986
-
-
Hristova, V.A.1
-
17
-
-
84878840303
-
Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism
-
Duda D.M., et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 2013, 21:1030-1041.
-
(2013)
Structure
, vol.21
, pp. 1030-1041
-
-
Duda, D.M.1
-
18
-
-
84867096523
-
The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension
-
Smit J.J., et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 2012, 31:3833-3844.
-
(2012)
EMBO J.
, vol.31
, pp. 3833-3844
-
-
Smit, J.J.1
-
19
-
-
84865709638
-
LUBAC synthesizes linear ubiquitin chains via a thioester intermediate
-
Stieglitz B., et al. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 2012, 13:840-846.
-
(2012)
EMBO Rep.
, vol.13
, pp. 840-846
-
-
Stieglitz, B.1
-
20
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
Sarraf S.A., et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013, 496:372-376.
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
-
21
-
-
84876886863
-
The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
-
Muller-Rischart A.K., et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 2013, 49:908-921.
-
(2013)
Mol. Cell
, vol.49
, pp. 908-921
-
-
Muller-Rischart, A.K.1
-
22
-
-
80052389174
-
Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells
-
Kim K.Y., et al. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J. Clin. Invest. 2011, 121:3701-3712.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3701-3712
-
-
Kim, K.Y.1
-
23
-
-
22544458436
-
Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila
-
Cha G.H., et al. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:10345-10350.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 10345-10350
-
-
Cha, G.H.1
-
24
-
-
0037338634
-
Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death
-
Darios F., et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum. Mol. Genet. 2003, 12:517-526.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 517-526
-
-
Darios, F.1
-
25
-
-
0033933048
-
Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase
-
Shimura H., et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000, 25:302-305.
-
(2000)
Nat. Genet.
, vol.25
, pp. 302-305
-
-
Shimura, H.1
-
26
-
-
84859371301
-
Small, N-terminal tags activate parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation
-
Burchell L., et al. Small, N-terminal tags activate parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation. PLoS ONE 2012, 7:e34748.
-
(2012)
PLoS ONE
, vol.7
-
-
Burchell, L.1
-
27
-
-
33748753935
-
Induction of parkin expression in the presence of oxidative stress
-
Yang Y.X., et al. Induction of parkin expression in the presence of oxidative stress. Eur. J. Neurosci. 2006, 24:1366-1372.
-
(2006)
Eur. J. Neurosci.
, vol.24
, pp. 1366-1372
-
-
Yang, Y.X.1
-
28
-
-
84873287971
-
ATF4 protects against neuronal death in cellular Parkinson's disease models by maintaining levels of parkin
-
Sun X., et al. ATF4 protects against neuronal death in cellular Parkinson's disease models by maintaining levels of parkin. J. Neurosci. 2013, 33:2398-2407.
-
(2013)
J. Neurosci.
, vol.33
, pp. 2398-2407
-
-
Sun, X.1
-
29
-
-
84860747905
-
Restriction of trophic factors and nutrients induces PARKIN expression
-
Klinkenberg M., et al. Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 2012, 13:9-21.
-
(2012)
Neurogenetics
, vol.13
, pp. 9-21
-
-
Klinkenberg, M.1
-
30
-
-
79954417075
-
Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress
-
Bouman L., et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2011, 18:769-782.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 769-782
-
-
Bouman, L.1
-
31
-
-
80053635472
-
Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect
-
Zhang C., et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16259-16264.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16259-16264
-
-
Zhang, C.1
-
32
-
-
33847191686
-
Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling
-
Henn I.H., et al. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J. Neurosci. 2007, 27:1868-1878.
-
(2007)
J. Neurosci.
, vol.27
, pp. 1868-1878
-
-
Henn, I.H.1
-
33
-
-
3042656791
-
Parkin attenuates manganese-induced dopaminergic cell death
-
Higashi Y., et al. Parkin attenuates manganese-induced dopaminergic cell death. J. Neurochem. 2004, 89:1490-1497.
-
(2004)
J. Neurochem.
, vol.89
, pp. 1490-1497
-
-
Higashi, Y.1
-
34
-
-
0034680913
-
Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity
-
Imai Y., et al. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 2000, 275:35661-35664.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 35661-35664
-
-
Imai, Y.1
-
35
-
-
30744474461
-
Impaired transcriptional upregulation of parkin promoter variant under oxidative stress and proteasomal inhibition: clinical association
-
Tan E.K., et al. Impaired transcriptional upregulation of parkin promoter variant under oxidative stress and proteasomal inhibition: clinical association. Hum. Genet. 2005, 118:484-488.
-
(2005)
Hum. Genet.
, vol.118
, pp. 484-488
-
-
Tan, E.K.1
-
36
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
Clark I.E., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441:1162-1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
-
37
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
Greene J.C., et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4078-4083.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
-
38
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
Park J., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441:1157-1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
-
39
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by parkin
-
Yang Y., et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by parkin. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10793-10798.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
-
40
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183:795-803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
-
41
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate parkin
-
Narendra D.P., et al. PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 2010, 8:e1000298.
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
-
42
-
-
77952062668
-
PINK1/parkin direct mitochondria to autophagy
-
Vives-Bauza C., et al. PINK1/parkin direct mitochondria to autophagy. Autophagy 2010, 6:315-316.
-
(2010)
Autophagy
, vol.6
, pp. 315-316
-
-
Vives-Bauza, C.1
-
43
-
-
75949130828
-
PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S., et al. PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
-
44
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy
-
Matsuda N., et al. PINK1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy. J. Cell Biol. 2010, 189:211-221.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
-
45
-
-
45249112594
-
Characterization of PINK1 processing, stability, and subcellular localization
-
Lin W., Kang U.J. Characterization of PINK1 processing, stability, and subcellular localization. J. Neurochem. 2008, 106:464-474.
-
(2008)
J. Neurochem.
, vol.106
, pp. 464-474
-
-
Lin, W.1
Kang, U.J.2
-
46
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin S.M., et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191:933-942.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
-
47
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
-
Meissner C., et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117:856-867.
-
(2011)
J. Neurochem.
, vol.117
, pp. 856-867
-
-
Meissner, C.1
-
48
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment
-
Greene A.W., et al. Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment. EMBO Rep. 2012, 13:378-385.
-
(2012)
EMBO Rep.
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
-
49
-
-
58149397651
-
Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and parkin
-
discussion 173
-
Whitworth A.J., et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and parkin. Dis. Model Mech. 2008, 1:168-174. discussion 173.
-
(2008)
Dis. Model Mech.
, vol.1
, pp. 168-174
-
-
Whitworth, A.J.1
-
50
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
Deas E., et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 2011, 20:867-879.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 867-879
-
-
Deas, E.1
-
51
-
-
79955410000
-
Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease
-
Shi G., et al. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet. 2011, 20:1966-1974.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1966-1974
-
-
Shi, G.1
-
52
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
Yamano K., Youle R.J. PINK1 is degraded through the N-end rule pathway. Autophagy 2013, 9:1758-1769.
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
53
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin
-
Lazarou M., et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin. Dev. Cell 2012, 22:320-333.
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
-
54
-
-
84863308390
-
Pink1 kinase and its membrane potential (deltapsi)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode
-
Becker D., et al. Pink1 kinase and its membrane potential (deltapsi)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode. J. Biol. Chem. 2012, 287:22969-22987.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 22969-22987
-
-
Becker, D.1
-
55
-
-
84887561435
-
Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression
-
Gomez-Sanchez R., et al. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol. Dis. 2014, 62:426-440.
-
(2014)
Neurobiol. Dis.
, vol.62
, pp. 426-440
-
-
Gomez-Sanchez, R.1
-
56
-
-
84873045973
-
PINK1 drives parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
-
Lazarou M., et al. PINK1 drives parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 2013, 200:163-172.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 163-172
-
-
Lazarou, M.1
-
57
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
Hasson S.A., et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 2013, 504:291-295.
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
-
58
-
-
84890339047
-
Hexokinase activity is required for recruitment of parkin to depolarized mitochondria
-
McCoy M.K., et al. Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum. Mol. Genet. 2014, 23:145-156.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 145-156
-
-
McCoy, M.K.1
-
59
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by parkin
-
Tanaka A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by parkin. J. Cell Biol. 2010, 191:1367-1380.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
-
60
-
-
81055140895
-
PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang X., et al. PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893-906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
-
61
-
-
84859237566
-
Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
-
Liu S., et al. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 2012, 8:e1002537.
-
(2012)
PLoS Genet.
, vol.8
-
-
Liu, S.1
-
62
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
Gegg M.E., et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19:4861-4870.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
-
63
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by parkin is critical for mitophagy
-
Chan N.C., et al. Broad activation of the ubiquitin-proteasome system by parkin is critical for mitophagy. Hum. Mol. Genet. 2011, 20:1726-1737.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
-
64
-
-
77950384477
-
Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
-
Ziviani E., et al. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:5018-5023.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 5018-5023
-
-
Ziviani, E.1
-
65
-
-
77955844260
-
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway
-
Poole A.C., et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE 2010, 5:e10054.
-
(2010)
PLoS ONE
, vol.5
-
-
Poole, A.C.1
-
66
-
-
79952369437
-
Mutations in PINK1 and parkin impair ubiquitination of mitofusins in human fibroblasts
-
Rakovic A., et al. Mutations in PINK1 and parkin impair ubiquitination of mitofusins in human fibroblasts. PLoS ONE 2011, 6:e16746.
-
(2011)
PLoS ONE
, vol.6
-
-
Rakovic, A.1
-
67
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii S.R., et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 2011, 286:19630-19640.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
-
68
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating serine 65
-
Kondapalli C., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2012, 2:120080.
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
-
69
-
-
84871891737
-
PINK1-mediated phosphorylation of the parkin ubiquitin-like domain primes mitochondrial translocation of parkin and regulates mitophagy
-
Shiba-Fukushima K., et al. PINK1-mediated phosphorylation of the parkin ubiquitin-like domain primes mitochondrial translocation of parkin and regulates mitophagy. Sci. Rep. 2012, 2:1002.
-
(2012)
Sci. Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
-
70
-
-
84881260124
-
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
-
Iguchi M., et al. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 2013, 288:22019-22032.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
-
71
-
-
79956323688
-
DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy
-
Thomas K.J., et al. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet. 2011, 20:40-50.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 40-50
-
-
Thomas, K.J.1
-
72
-
-
75949098487
-
PINK1-dependent recruitment of parkin to mitochondria in mitophagy
-
Vives-Bauza C., et al. PINK1-dependent recruitment of parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:378-383.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 378-383
-
-
Vives-Bauza, C.1
-
73
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for parkin recruitment to damaged mitochondria
-
Okatsu K., et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for parkin recruitment to damaged mitochondria. Nat. Commun. 2012, 3:1016.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1016
-
-
Okatsu, K.1
-
74
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria
-
Chen Y., Dorn G.W. PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science 2013, 340:471-475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
75
-
-
84883462430
-
The Parkinson's disease-linked proteins Fbxo7 and parkin interact to mediate mitophagy
-
Burchell V.S., et al. The Parkinson's disease-linked proteins Fbxo7 and parkin interact to mediate mitophagy. Nat. Neurosci. 2013, 16:1257-1265.
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 1257-1265
-
-
Burchell, V.S.1
-
76
-
-
84876070458
-
VCP is essential for mitochondrial quality control by PINK1/parkin and this function is impaired by VCP mutations
-
Kim N.C., et al. VCP is essential for mitochondrial quality control by PINK1/parkin and this function is impaired by VCP mutations. Neuron 2013, 78:65-80.
-
(2013)
Neuron
, vol.78
, pp. 65-80
-
-
Kim, N.C.1
-
77
-
-
84878529485
-
TRAP1 rescues PINK1 loss-of-function phenotypes
-
Zhang L., et al. TRAP1 rescues PINK1 loss-of-function phenotypes. Hum. Mol. Genet. 2013, 22:2829-2841.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 2829-2841
-
-
Zhang, L.1
-
78
-
-
84878533362
-
Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease
-
Costa A.C., et al. Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease. Cell Death Dis. 2013, 4:e467.
-
(2013)
Cell Death Dis.
, vol.4
-
-
Costa, A.C.1
-
79
-
-
84897895717
-
Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants
-
Klein P., et al. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J. 2014, 10.1002/embj.201284290.
-
(2014)
EMBO J.
-
-
Klein, P.1
-
80
-
-
84875993938
-
Hepatitis C virus induces the mitochondrial translocation of parkin and subsequent mitophagy
-
Kim S.J., et al. Hepatitis C virus induces the mitochondrial translocation of parkin and subsequent mitophagy. PLoS Pathog. 2013, 9:e1003285.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Kim, S.J.1
-
81
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/parkin-mediated mitophagy of polarized mitochondria
-
Jin S.M., Youle R.J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013, 9:1750-1757.
-
(2013)
Autophagy
, vol.9
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
82
-
-
77955398958
-
Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
-
Suen D.F., et al. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11835-11840.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11835-11840
-
-
Suen, D.F.1
-
83
-
-
84884313897
-
Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model
-
Hamalainen R.H., et al. Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E3622-E3630.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
-
-
Hamalainen, R.H.1
-
84
-
-
84856951239
-
Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
-
Gilkerson R.W., et al. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum. Mol. Genet. 2012, 21:978-990.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 978-990
-
-
Gilkerson, R.W.1
-
85
-
-
84876213313
-
The PINK1-parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo
-
Vincow E.S., et al. The PINK1-parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:6400-6405.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 6400-6405
-
-
Vincow, E.S.1
-
86
-
-
84856221632
-
A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
-
Soubannier V., et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 2012, 22:135-141.
-
(2012)
Curr. Biol.
, vol.22
, pp. 135-141
-
-
Soubannier, V.1
-
87
-
-
79961239061
-
Impaired mitochondrial transport and parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
-
Sterky F.H., et al. Impaired mitochondrial transport and parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12937-12942.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 12937-12942
-
-
Sterky, F.H.1
-
88
-
-
84884902975
-
Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss
-
Lee Y., et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 2013, 16:1392-1400.
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 1392-1400
-
-
Lee, Y.1
-
89
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
Shin J.H., et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 2011, 144:689-702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
-
90
-
-
84883521293
-
Parkin-dependent degradation of the F-box protein Fbw7beta promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1
-
Ekholm-Reed S., et al. Parkin-dependent degradation of the F-box protein Fbw7beta promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol. Cell. Biol. 2013, 33:3627-3643.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 3627-3643
-
-
Ekholm-Reed, S.1
-
91
-
-
77949478474
-
Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling
-
Sha D., et al. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum. Mol. Genet. 2010, 19:352-363.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 352-363
-
-
Sha, D.1
-
92
-
-
0033634663
-
Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti
-
Makris C., et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 2000, 5:969-979.
-
(2000)
Mol. Cell
, vol.5
, pp. 969-979
-
-
Makris, C.1
-
93
-
-
0033638970
-
NEMO/IKK gamma-deficient mice model incontinentia pigmenti
-
Schmidt-Supprian M., et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol. Cell 2000, 5:981-992.
-
(2000)
Mol. Cell
, vol.5
, pp. 981-992
-
-
Schmidt-Supprian, M.1
-
94
-
-
84872820481
-
Linear ubiquitination: a newly discovered regulator of cell signalling
-
Rieser E., et al. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem. Sci. 2013, 38:94-102.
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 94-102
-
-
Rieser, E.1
-
95
-
-
84857031377
-
Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease
-
Pilsl A., Winklhofer K.F. Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathol. 2012, 123:173-188.
-
(2012)
Acta Neuropathol.
, vol.123
, pp. 173-188
-
-
Pilsl, A.1
Winklhofer, K.F.2
-
96
-
-
69249096578
-
Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation
-
Lutz A.K., et al. Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 2009, 284:22938-22951.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 22938-22951
-
-
Lutz, A.K.1
-
97
-
-
70350689923
-
Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release
-
Berger A.K., et al. Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum. Mol. Genet. 2009, 18:4317-4328.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 4317-4328
-
-
Berger, A.K.1
-
98
-
-
84871739055
-
The dynamin GTPase OPA1: more than mitochondria?
-
Belenguer P., Pellegrini L. The dynamin GTPase OPA1: more than mitochondria?. Biochim. Biophys. Acta 2013, 1833:176-183.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 176-183
-
-
Belenguer, P.1
Pellegrini, L.2
-
99
-
-
79960230433
-
Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics
-
Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 2011, 21:92-101.
-
(2011)
Dev. Cell
, vol.21
, pp. 92-101
-
-
Martinou, J.C.1
Youle, R.J.2
-
100
-
-
84871016609
-
Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency
-
Ramonet D., et al. Optic atrophy 1 mediates mitochondria remodeling and dopaminergic neurodegeneration linked to complex I deficiency. Cell Death Differ. 2013, 20:77-85.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 77-85
-
-
Ramonet, D.1
-
101
-
-
4444327827
-
Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis
-
Jiang H., et al. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum. Mol. Genet. 2004, 13:1745-1754.
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 1745-1754
-
-
Jiang, H.1
-
102
-
-
63649093151
-
Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation
-
Ren Y., et al. Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J. Biol. Chem. 2009, 284:4009-4017.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 4009-4017
-
-
Ren, Y.1
-
103
-
-
77955058151
-
Parkin suppresses c-Jun N-terminal kinase-induced cell death via transcriptional regulation in Drosophila
-
Hwang S., et al. Parkin suppresses c-Jun N-terminal kinase-induced cell death via transcriptional regulation in Drosophila. Mol. Cells 2010, 29:575-580.
-
(2010)
Mol. Cells
, vol.29
, pp. 575-580
-
-
Hwang, S.1
-
104
-
-
84878646405
-
ER-stress-associated functional link between parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1
-
Duplan E., et al. ER-stress-associated functional link between parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J. Cell Sci. 2013, 126:2124-2133.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 2124-2133
-
-
Duplan, E.1
-
105
-
-
70449519412
-
Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease
-
da Costa C.A., et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat. Cell Biol. 2009, 11:1370-1375.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1370-1375
-
-
da Costa, C.A.1
-
106
-
-
84859962717
-
The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax
-
Johnson B.N., et al. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6283-6288.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 6283-6288
-
-
Johnson, B.N.1
-
107
-
-
10744220764
-
Susceptibility to leprosy is associated with PARK2 and PACRG
-
Mira M.T., et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004, 427:636-640.
-
(2004)
Nature
, vol.427
, pp. 636-640
-
-
Mira, M.T.1
-
108
-
-
33744471365
-
PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever
-
Ali S., et al. PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever. Clin. Exp. Immunol. 2006, 144:425-431.
-
(2006)
Clin. Exp. Immunol.
, vol.144
, pp. 425-431
-
-
Ali, S.1
-
109
-
-
84880788145
-
Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated Indian population groups
-
Chopra R., et al. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated Indian population groups. PLoS Genet. 2013, 9:e1003578.
-
(2013)
PLoS Genet.
, vol.9
-
-
Chopra, R.1
-
110
-
-
84885576570
-
The ubiquitin ligase parkin mediates resistance to intracellular pathogens
-
Manzanillo P.S., et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013, 501:512-516.
-
(2013)
Nature
, vol.501
, pp. 512-516
-
-
Manzanillo, P.S.1
-
111
-
-
84873488329
-
PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages
-
de Leseleuc L., et al. PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl. Trop. Dis. 2013, 7:e2015.
-
(2013)
PLoS Negl. Trop. Dis.
, vol.7
-
-
de Leseleuc, L.1
-
112
-
-
10744221310
-
Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse
-
Itier J.M., et al. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet. 2003, 12:2277-2291.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 2277-2291
-
-
Itier, J.M.1
-
113
-
-
0141891953
-
Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons
-
Goldberg M.S., et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 2003, 278:43628-43635.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 43628-43635
-
-
Goldberg, M.S.1
-
114
-
-
5444236802
-
Parkin-associated Parkinson's disease
-
von Coelln R., et al. Parkin-associated Parkinson's disease. Cell Tissue Res. 2004, 318:175-184.
-
(2004)
Cell Tissue Res.
, vol.318
, pp. 175-184
-
-
von Coelln, R.1
-
115
-
-
84897113087
-
Mitochondrial contagion induced by parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin
-
Bhandari P., et al. Mitochondrial contagion induced by parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ. Res. 2013, 10.1161/CIRCRESAHA.114.302734.
-
(2013)
Circ. Res.
-
-
Bhandari, P.1
-
116
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
-
Wenzel D.M., et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011, 474:105-108.
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
|