-
1
-
-
0027489773
-
-
K. Ueda et al., Proc. Natl. Acad. Sci. U.S.A. 90, 11282 (1993); R. Jakes, M. G. Spillantini, M. Goedert, FEBS Lett. 345, 27 (1994).
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 11282
-
-
Ueda, K.1
-
2
-
-
0028277520
-
-
K. Ueda et al., Proc. Natl. Acad. Sci. U.S.A. 90, 11282 (1993); R. Jakes, M. G. Spillantini, M. Goedert, FEBS Lett. 345, 27 (1994).
-
(1994)
FEBS Lett.
, vol.345
, pp. 27
-
-
Jakes, R.1
Spillantini, M.G.2
Goedert, M.3
-
3
-
-
0028958551
-
-
X. Chen et al., Genomics 26, 425 (1995).
-
(1995)
Genomics
, vol.26
, pp. 425
-
-
Chen, X.1
-
5
-
-
0028985267
-
-
A. Iwai et al., Neuron 14, 467 (1994).
-
(1994)
Neuron
, vol.14
, pp. 467
-
-
Iwai, A.1
-
7
-
-
0030882856
-
-
M. G. Spillantini et al., Nature 388, 839 (1997); A. Takeda et al., Am. J. Pathol. 152, 367 (1998); K. Wakabayashi, K. Matsumoto, K. Takayama, M. Yoshimoto, H. Takahashi, Neurosci. Lett. 239, 45 (1997).
-
(1997)
Nature
, vol.388
, pp. 839
-
-
Spillantini, M.G.1
-
8
-
-
0031907128
-
-
M. G. Spillantini et al., Nature 388, 839 (1997); A. Takeda et al., Am. J. Pathol. 152, 367 (1998); K. Wakabayashi, K. Matsumoto, K. Takayama, M. Yoshimoto, H. Takahashi, Neurosci. Lett. 239, 45 (1997).
-
(1998)
Am. J. Pathol.
, vol.152
, pp. 367
-
-
Takeda, A.1
-
9
-
-
0031566042
-
-
M. G. Spillantini et al., Nature 388, 839 (1997); A. Takeda et al., Am. J. Pathol. 152, 367 (1998); K. Wakabayashi, K. Matsumoto, K. Takayama, M. Yoshimoto, H. Takahashi, Neurosci. Lett. 239, 45 (1997).
-
(1997)
Neurosci. Lett.
, vol.239
, pp. 45
-
-
Wakabayashi, K.1
Matsumoto, K.2
Takayama, K.3
Yoshimoto, M.4
Takahashi, H.5
-
10
-
-
0018145267
-
-
K. Kosaka, Acta Neuropathol. 42, 127 (1978); D. W. Dickson et al., Acta Neuropathol. 78, 572 (1989).
-
(1978)
Acta Neuropathol.
, vol.42
, pp. 127
-
-
Kosaka, K.1
-
11
-
-
0024424234
-
-
K. Kosaka, Acta Neuropathol. 42, 127 (1978); D. W. Dickson et al., Acta Neuropathol. 78, 572 (1989).
-
(1989)
Acta Neuropathol.
, vol.78
, pp. 572
-
-
Dickson, D.W.1
-
12
-
-
0030744876
-
-
M. H. Polymeropoulos et al., Science 276, 2045 (1997); R. Kruger et al., Nature Genet. 18, 106 (1998).
-
(1997)
Science
, vol.276
, pp. 2045
-
-
Polymeropoulos, M.H.1
-
13
-
-
0031990490
-
-
M. H. Polymeropoulos et al., Science 276, 2045 (1997); R. Kruger et al., Nature Genet. 18, 106 (1998).
-
(1998)
Nature Genet.
, vol.18
, pp. 106
-
-
Kruger, R.1
-
15
-
-
0342796612
-
-
note
-
1 mice to establish transgenic lines. Transgenic offspring were identified by polymerase chain reaction (PCR) analysis of tail DNA. Genomic DNA was extracted and amplified in 30 cycles (93°C for 30 s, 57°C for 30 s, 72°C for 1.5 min) with a final extension at 72°C for 5 min. Primers were as follows: 5′-CCAGCGGCCGCTCTAGAACTAGTG (sense) and 5′-CCAGTCGACCGGTCATGGCTGCGCC (antisense).
-
-
-
-
16
-
-
0028985574
-
-
D. Games et al., Nature 373, 523 (1995).
-
(1995)
Nature
, vol.373
, pp. 523
-
-
Games, D.1
-
17
-
-
0342361727
-
-
data not shown
-
E. Masliah et al., data not shown.
-
-
-
Masliah, E.1
-
18
-
-
13044287361
-
-
Double-immunolabeling studies were performed on 40-μm-thick vibratome sections, which were first incubated overnight at 4°C with a human α-synuclein-specific antibody (1:1000) (Fig. 1, D to F), followed by detection with the Tyramide Signal Amplification-Direct (Tyramide Red) system (1:100; NEN Life Sciences, Boston, MA). Sections were then incubated overnight with a monoclonal antibody (mAb) to TH (1:10; Roche Molecular Biochemicals), followed by incubation with a fluorescein isothiocyanate (FITC)- conjugated secondary antibody to mouse immunoglobulin G (IgG) (1:75; Vector Laboratories). The specificity of the primary antibodies was confirmed in control experiments in which sections were incubated with preimmune serum instead of primary antibody, or with primary antibody preabsorbed for 48 hours with a 20-fold excess of the peptide to which the antibody was raised, or in the absence of primary antibody. Other sections were double-immunolabeled with antibody to human α-synuclein (as above) and rabbit polyclonal antibody to ubiquitin (1:50 or 0.2 mg/ml; DAKO Corporation, Carpinteria, CA) detected with an FITC-conjugated secondary antibody to rabbit IgG (1:75; Vector Laboratories). To evaluate the integrity of presynaptic terminals and dopaminergic neurons, we double-immunolabeled sections with a mAb to synaptophysin (1:2500; Roche) (Tyramide Red detection system) and a mAb to TH (see above). Brain sections from mice to be compared in any given experiment were processed and immunolabeled in parallel. Three sections were analyzed per mouse, and four serial 2-μm-thick optical sections were obtained per section. For each experiment, the linear range of the intensity of immunoreactive structures in control sections was determined with a MRC1024 (Bio-Rad) confocal microscope. This setting was then used for the collection of all images to be analyzed in the same experiment. Digitized images were transferred to a Power-PC Macintosh computer, and NIH Image 1.4 software was used to calculate the percent image area covered by immimoreactive terminals. The number of TH-positive neurons in the pars compacta of the substantia nigra was estimated essentially as described [A. Hsia et al., Proc. Natl. Acad Sci. U.S.A. 96, 3228 (1999)].
-
(1999)
Proc. Natl. Acad Sci. U.S.A.
, vol.96
, pp. 3228
-
-
Hsia, A.1
-
20
-
-
18544410106
-
-
S. W. Davies et al., Cell 90, 537 (1997).
-
(1997)
Cell
, vol.90
, pp. 537
-
-
Davies, S.W.1
-
21
-
-
0032551656
-
-
M. Hashimoto et al., Brain Res. 799, 301 (1998); M. Hashimoto et al., Neuroreport 10, 717 (1999).
-
(1998)
Brain Res.
, vol.799
, pp. 301
-
-
Hashimoto, M.1
-
22
-
-
0033577159
-
-
M. Hashimoto et al., Brain Res. 799, 301 (1998); M. Hashimoto et al., Neuroreport 10, 717 (1999).
-
(1999)
Neuroreport
, vol.10
, pp. 717
-
-
Hashimoto, M.1
-
24
-
-
0342361726
-
-
note
-
Mice were evaluated as described (19) with a rotorod (San Diego Instruments, San Diego, CA). Initially, they were trained for five trials. During the subsequent test trials, mice were placed individually on the cylinder and the speed of rotation increased from 0 to 40 rpm over a period of 240 s. The length of time mice remained on the rod (fall latency) was recorded and used as a measure of motor function.
-
-
-
-
27
-
-
0032475941
-
-
I. A. Klement et al., Cell 95, 41 (1998); F. Saudou et al., Cell 95, 55 (1998).
-
(1998)
Cell
, vol.95
, pp. 41
-
-
Klement, I.A.1
-
28
-
-
0032475931
-
-
I. A. Klement et al., Cell 95, 41 (1998); F. Saudou et al., Cell 95, 55 (1998).
-
(1998)
Cell
, vol.95
, pp. 55
-
-
Saudou, F.1
-
30
-
-
0343231219
-
-
note
-
For Western blot analysis of TH levels, brains were homogenized and separated into cytosolic and particulate fractions as described (4). Twelve micrograms of cytosolic fraction per mouse were loaded onto 10% SDS-polyacrylamide gel etectrophoresis gels followed by transfer of proteins onto Immobilen membranes and detection of TH with a mAb to TH (1:1000; Roche). Blots were incubated with horseradish peroxidase-coupled secondary antibody and developed with the chemiluminescence reagent (NEN). After exposure of blots to film, the density of bands was quantitated with the ImageQuant system (Molecular Dynamics, Sunnyvale, CA).
-
-
-
-
32
-
-
0343231218
-
-
note
-
We thank S. Ordway and G. Howard for editorial assistance and M. Alford for technical assistance. Supported by NIH Grants AG5131 and AG10689 (to E.M.) and AG11385 (to LM.) and the Spencer Family Foundation (to M.H.).
-
-
-
|