메뉴 건너뛰기




Volumn 169, Issue SUPPL.2, 2013, Pages 1-8

The role of mitochondrial function and cellular bioenergetics in ageing and disease

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; HYDROGEN PEROXIDE; OXIDOREDUCTASE; SUPEROXIDE;

EID: 84879390427     PISSN: 00070963     EISSN: 13652133     Source Type: Journal    
DOI: 10.1111/bjd.12208     Document Type: Article
Times cited : (169)

References (65)
  • 1
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120:483-95.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1    Nemoto, S.2    Finkel, T.3
  • 2
    • 77953627194 scopus 로고    scopus 로고
    • Somatic mitochondrial DNA mutations in mammalian aging
    • Larsson NG. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 2010; 79:683-706.
    • (2010) Annu Rev Biochem , vol.79 , pp. 683-706
    • Larsson, N.G.1
  • 3
    • 38549101188 scopus 로고    scopus 로고
    • Quality control of mitochondria: Protection against neurodegeneration and ageing
    • Tatsuta T, Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 2008; 27:306-14.
    • (2008) EMBO J , vol.27 , pp. 306-314
    • Tatsuta, T.1    Langer, T.2
  • 4
    • 79955664111 scopus 로고    scopus 로고
    • Mitochondrial protein quality control during biogenesis and aging
    • Baker BM, Haynes CM. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 2011; 36:254-61.
    • (2011) Trends Biochem Sci , vol.36 , pp. 254-261
    • Baker, B.M.1    Haynes, C.M.2
  • 5
    • 0030854715 scopus 로고    scopus 로고
    • Cellular energy utilization and molecular origin of standard metabolic rate in mammals
    • Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997; 77:731-58.
    • (1997) Physiol Rev , vol.77 , pp. 731-758
    • Rolfe, D.F.S.1    Brown, G.C.2
  • 6
    • 80054051101 scopus 로고    scopus 로고
    • The regulation and physiology of mitochondrial proton leak
    • Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011; 26:192-205.
    • (2011) Physiology (Bethesda) , vol.26 , pp. 192-205
    • Divakaruni, A.S.1    Brand, M.D.2
  • 8
    • 84855943335 scopus 로고    scopus 로고
    • Insights into the mechanism of proton transport in cytochrome c oxidase
    • Yamashita T, Voth GA. Insights into the mechanism of proton transport in cytochrome c oxidase. J Am Chem Soc 2012; 134:1147-52.
    • (2012) J Am Chem Soc , vol.134 , pp. 1147-1152
    • Yamashita, T.1    Voth, G.A.2
  • 9
    • 84864659415 scopus 로고    scopus 로고
    • The coupling mechanism of respiratory complex i - A structural and evolutionary perspective
    • Efremov RG, Sazanov LA. The coupling mechanism of respiratory complex I - a structural and evolutionary perspective. Biochim Biophys Acta 2012; 1817:1785-95.
    • (2012) Biochim Biophys Acta , vol.1817 , pp. 1785-1795
    • Efremov, R.G.1    Sazanov, L.A.2
  • 10
    • 84863955498 scopus 로고    scopus 로고
    • Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM
    • Baker LA, Watt IN, Runswick MJ et al. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Proc Natl Acad Sci USA 2012; 109:11675-80.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 11675-11680
    • Baker, L.A.1    Watt, I.N.2    Runswick, M.J.3
  • 11
    • 79951962628 scopus 로고    scopus 로고
    • Mitochondrial metabolite transport
    • Palmieri F, Pierri CL. Mitochondrial metabolite transport. Essays Biochem 2010; 47:37-52.
    • (2010) Essays Biochem , vol.47 , pp. 37-52
    • Palmieri, F.1    Pierri, C.L.2
  • 12
    • 84865427488 scopus 로고    scopus 로고
    • Mitochondria as sensors and regulators of calcium signalling
    • Rizzuto R, De Stefani D, Raffaello A et al. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012; 13:566-78.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 566-578
    • Rizzuto, R.1    De Stefani, D.2    Raffaello, A.3
  • 13
    • 84855815901 scopus 로고    scopus 로고
    • Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells
    • Yin F, Sancheti H, Cadenas E. Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells. Biochim Biophys Acta 2012; 1817:401-9.
    • (2012) Biochim Biophys Acta , vol.1817 , pp. 401-409
    • Yin, F.1    Sancheti, H.2    Cadenas, E.3
  • 15
    • 84862556334 scopus 로고    scopus 로고
    • Biochemistry and evolution of anaerobic energy metabolism in eukaryotes
    • Muller M, Mentel M, Van Hellemond JJ et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95.
    • (2012) Microbiol Mol Biol Rev , vol.76 , pp. 444-495
    • Muller, M.1    Mentel, M.2    Van Hellemond, J.J.3
  • 16
    • 33845977959 scopus 로고    scopus 로고
    • Mitochondrial membrane permeabilization in cell death
    • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87:99-163.
    • (2007) Physiol Rev , vol.87 , pp. 99-163
    • Kroemer, G.1    Galluzzi, L.2    Brenner, C.3
  • 17
    • 79960230433 scopus 로고    scopus 로고
    • Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics
    • Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011; 21:92-101.
    • (2011) Dev Cell , vol.21 , pp. 92-101
    • Martinou, J.C.1    Youle, R.J.2
  • 19
    • 84857923094 scopus 로고    scopus 로고
    • Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia /reperfusion injury and inflammation
    • Huttemann M, Helling S, Sanderson TH et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia /reperfusion injury and inflammation. Biochim Biophys Acta 2012; 1817:598-609.
    • (2012) Biochim Biophys Acta , vol.1817 , pp. 598-609
    • Huttemann, M.1    Helling, S.2    Sanderson, T.H.3
  • 20
    • 84866685475 scopus 로고    scopus 로고
    • Calpains, mitochondria, and apoptosis
    • Smith MA, Schnellmann RG. Calpains, mitochondria, and apoptosis. Cardiovasc Res 2012; 96:32-7.
    • (2012) Cardiovasc Res , vol.96 , pp. 32-37
    • Smith, M.A.1    Schnellmann, R.G.2
  • 21
    • 0015319592 scopus 로고
    • The biologic clock: The mitochondria?
    • Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 1972; 20:145-7.
    • (1972) J Am Geriatr Soc , vol.20 , pp. 145-147
    • Harman, D.1
  • 22
    • 0031916984 scopus 로고    scopus 로고
    • The free radical theory of aging matures
    • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78:547-81.
    • (1998) Physiol Rev , vol.78 , pp. 547-581
    • Beckman, K.B.1    Ames, B.N.2
  • 23
    • 0034626735 scopus 로고    scopus 로고
    • Oxidants, oxidative stress and the biology of ageing
    • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408:239-47.
    • (2000) Nature , vol.408 , pp. 239-247
    • Finkel, T.1    Holbrook, N.J.2
  • 24
    • 0042734428 scopus 로고    scopus 로고
    • Oxidative stress and aging: Beyond correlation
    • Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell 2002; 1:117-23.
    • (2002) Aging Cell , vol.1 , pp. 117-123
    • Golden, T.R.1    Hinerfeld, D.A.2    Melov, S.3
  • 25
    • 21144434217 scopus 로고    scopus 로고
    • Extension of murine life span by overexpression of catalase targeted to mitochondria
    • Schriner SE, Linford NJ, Martin GM et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005; 308:1909-11
    • (2005) Science , vol.308 , pp. 1909-1911
    • Schriner, S.E.1    Linford, N.J.2    Martin, G.M.3
  • 26
    • 30044434360 scopus 로고    scopus 로고
    • The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations
    • Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci USA 2005; 102:18769-70.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 18769-18770
    • Loeb, L.A.1    Wallace, D.C.2    Martin, G.M.3
  • 28
    • 64949111531 scopus 로고    scopus 로고
    • Current thoughts on the role of mitochondria and free radicals in the biology of aging
    • Van Remmen H, Jones DP. Current thoughts on the role of mitochondria and free radicals in the biology of aging. J Gerontol A Biol Sci Med Sci 2009; 64:171-4.
    • (2009) J Gerontol A Biol Sci Med Sci , vol.64 , pp. 171-174
    • Van Remmen, H.1    Jones, D.P.2
  • 29
    • 78649497300 scopus 로고    scopus 로고
    • Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance
    • Lee HY, Choi CS, Birkenfeld AL et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab 2010; 12:668-74.
    • (2010) Cell Metab , vol.12 , pp. 668-674
    • Lee, H.Y.1    Choi, C.S.2    Birkenfeld, A.L.3
  • 30
    • 79952659906 scopus 로고    scopus 로고
    • The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan
    • Speakman JR, Selman C. The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays 2011; 33:255-9.
    • (2011) BioEssays , vol.33 , pp. 255-259
    • Speakman, J.R.1    Selman, C.2
  • 31
    • 84860196585 scopus 로고    scopus 로고
    • Cardiac aging: From molecular mechanisms to significance in human health and disease
    • Dai DF, Chen T, Johnson SC et al. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 16:1492-526.
    • (2012) Antioxid Redox Signal , vol.16 , pp. 1492-1526
    • Dai, D.F.1    Chen, T.2    Johnson, S.C.3
  • 32
    • 77956635942 scopus 로고    scopus 로고
    • Mitochondrial superoxide: A key player in Alzheimer's disease
    • Massaad CA, Pautler RG, Klann E. Mitochondrial superoxide: a key player in Alzheimer's disease. Aging (Albany NY) 2009; 1:758-61.
    • (2009) Aging (Albany NY) , vol.1 , pp. 758-761
    • Massaad, C.A.1    Pautler, R.G.2    Klann, E.3
  • 33
    • 69449096141 scopus 로고    scopus 로고
    • Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer's disease
    • Massaad CA, Washington TM, Pautler RG et al. Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2009; 106:13576-81.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 13576-13581
    • Massaad, C.A.1    Washington, T.M.2    Pautler, R.G.3
  • 34
    • 37849053352 scopus 로고    scopus 로고
    • Diabetic cardiomyopathy in OVE26 mice shows mitochondrial ROS production and divergence between in vivo and in vitro contractility
    • Song Y, Du Y, Prabhu SD et al. Diabetic cardiomyopathy in OVE26 mice shows mitochondrial ROS production and divergence between in vivo and in vitro contractility. Rev Diabet Stud 2007; 4:159-68.
    • (2007) Rev Diabet Stud , vol.4 , pp. 159-168
    • Song, Y.1    Du, Y.2    Prabhu, S.D.3
  • 35
    • 42049108814 scopus 로고    scopus 로고
    • Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury
    • Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008; 88:581- 609.
    • (2008) Physiol Rev , vol.88 , pp. 581-609
    • Murphy, E.1    Steenbergen, C.2
  • 36
    • 77953809992 scopus 로고    scopus 로고
    • Redox-optimized ROS balance: A unifying hypothesis
    • Aon MA, Cortassa S, O'Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 2010; 1797:865-77.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 865-877
    • Aon, M.A.1    Cortassa, S.2    O'Rourke, B.3
  • 37
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg F, Hamanaka R, Wheaton WW et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107:8788-93.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 8788-8793
    • Weinberg, F.1    Hamanaka, R.2    Wheaton, W.W.3
  • 38
    • 78049447695 scopus 로고    scopus 로고
    • A mitochondrial view of aging, reactive oxygen species and metastatic cancer
    • Ladiges W, Wanagat J, Preston B et al. A mitochondrial view of aging, reactive oxygen species and metastatic cancer. Aging Cell 2010; 9:462-5.
    • (2010) Aging Cell , vol.9 , pp. 462-465
    • Ladiges, W.1    Wanagat, J.2    Preston, B.3
  • 39
    • 0000466588 scopus 로고
    • 2 production in pigeon heart mitochondria
    • Loschen G, Flohe L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 1971; 18: 261-4.
    • (1971) FEBS Lett , vol.18 , pp. 261-264
    • Loschen, G.1    Flohe, L.2    Chance, B.3
  • 40
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973; 134:707-16.
    • (1973) Biochem J , vol.134 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 41
    • 0017859533 scopus 로고
    • The biology and pathology of oxygen radicals
    • McCord JM, Fridovich I. The biology and pathology of oxygen radicals. Ann Intern Med 1978; 89:122-7.
    • (1978) Ann Intern Med , vol.89 , pp. 122-127
    • McCord, J.M.1    Fridovich, I.2
  • 42
    • 4043147798 scopus 로고    scopus 로고
    • Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins
    • Brand MD, Affourtit C, Esteves TC et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37:755-67.
    • (2004) Free Radic Biol Med , vol.37 , pp. 755-767
    • Brand, M.D.1    Affourtit, C.2    Esteves, T.C.3
  • 44
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417:1-13.
    • (2009) Biochem J , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 45
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010; 45:466-72.
    • (2010) Exp Gerontol , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 46
    • 77953809952 scopus 로고    scopus 로고
    • What are the sources of hydrogen peroxide production by heart mitochondria?
    • Grivennikova VG, Kareyeva AV, Vinogradov AD. What are the sources of hydrogen peroxide production by heart mitochondria? Biochim Biophys Acta 2010; 1797:939-44.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 939-944
    • Grivennikova, V.G.1    Kareyeva, A.V.2    Vinogradov, A.D.3
  • 47
    • 84871139444 scopus 로고    scopus 로고
    • A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
    • Orr AL, Quinlan CL, Perevoshchikova IV, Brand MD. A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J Biol Chem 2012; 287:42921-35.
    • (2012) J Biol Chem , vol.287 , pp. 42921-42935
    • Orr, A.L.1    Quinlan, C.L.2    Perevoshchikova, I.V.3    Brand, M.D.4
  • 48
    • 84867401800 scopus 로고    scopus 로고
    • Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters
    • Quinlan CL, Treberg JR, Perevoshchikova IV et al. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radic Biol Med 2012; 53:1807-17.
    • (2012) Free Radic Biol Med , vol.53 , pp. 1807-1817
    • Quinlan, C.L.1    Treberg, J.R.2    Perevoshchikova, I.V.3
  • 49
    • 24344508510 scopus 로고    scopus 로고
    • The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria
    • Miwa S, Brand MD. The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim Biophys Acta 2005; 1709:214-9.
    • (2005) Biochim Biophys Acta , vol.1709 , pp. 214-219
    • Miwa, S.1    Brand, M.D.2
  • 50
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • St-Pierre J, Buckingham JA, Roebuck SJ et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277:44784-90.
    • (2002) J Biol Chem , vol.277 , pp. 44784-44790
    • St-Pierre, J.1    Buckingham, J.A.2    Roebuck, S.J.3
  • 51
    • 0032498793 scopus 로고    scopus 로고
    • Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers
    • Kuznetsov AV, Mayboroda O, Kunz D et al. Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers. J Cell Biol 1998; 140:1091-9.
    • (1998) J Cell Biol , vol.140 , pp. 1091-1099
    • Kuznetsov, A.V.1    Mayboroda, O.2    Kunz, D.3
  • 52
    • 0036224973 scopus 로고    scopus 로고
    • Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein
    • Huang S, Heikal AA, Webb WW. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 2002; 82:2811-25.
    • (2002) Biophys J , vol.82 , pp. 2811-2825
    • Huang, S.1    Heikal, A.A.2    Webb, W.W.3
  • 53
    • 28444443441 scopus 로고    scopus 로고
    • Spectral unmixing of flavin autofluorescence components in cardiac myocytes
    • Chorvat D Jr, Kirchnerova J, Cagalinec M et al. Spectral unmixing of flavin autofluorescence components in cardiac myocytes. Biophys J 2005; 89:L55-7.
    • (2005) Biophys J , vol.89
    • Chorvat Jr., D.1    Kirchnerova, J.2    Cagalinec, M.3
  • 54
    • 78349234310 scopus 로고    scopus 로고
    • Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing
    • Sommer N, Pak O, Schorner S et al. Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing. Eur Respir J 2010; 36:1056-66.
    • (2010) Eur Respir J , vol.36 , pp. 1056-1066
    • Sommer, N.1    Pak, O.2    Schorner, S.3
  • 55
    • 0036408866 scopus 로고    scopus 로고
    • Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species
    • Bunik VI, Sievers C. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur J Biochem 2002; 269:5004-15.
    • (2002) Eur J Biochem , vol.269 , pp. 5004-5015
    • Bunik, V.I.1    Sievers, C.2
  • 56
    • 4544226082 scopus 로고    scopus 로고
    • Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase
    • Tretter L, Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 2004; 24:7771-8.
    • (2004) J Neurosci , vol.24 , pp. 7771-7778
    • Tretter, L.1    Adam-Vizi, V.2
  • 57
    • 4544359913 scopus 로고    scopus 로고
    • Mitochondrial alphaketoglutarate dehydrogenase complex generates reactive oxygen species
    • Starkov AA, Fiskum G, Chinopoulos C et al. Mitochondrial alphaketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 2004; 24:7779-88.
    • (2004) J Neurosci , vol.24 , pp. 7779-7788
    • Starkov, A.A.1    Fiskum, G.2    Chinopoulos, C.3
  • 58
    • 78651366651 scopus 로고    scopus 로고
    • Molecular identification of the enzyme responsible for the mitochondrial NADHsupported ammonium-dependent hydrogen peroxide production
    • Kareyeva AV, Grivennikova VG, Cecchini G et al. Molecular identification of the enzyme responsible for the mitochondrial NADHsupported ammonium-dependent hydrogen peroxide production. FEBS Lett 2010; 585:385-9.
    • (2010) FEBS Lett , vol.585 , pp. 385-389
    • Kareyeva, A.V.1    Grivennikova, V.G.2    Cecchini, G.3
  • 59
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • Quinlan CL, Orr AL, Perevoshchikova IV et al. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 2012; 287:27255-64.
    • (2012) J Biol Chem , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3
  • 60
    • 0036244950 scopus 로고    scopus 로고
    • Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide
    • Drahota Z, Chowdhury SK, Floryk D et al. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J Bioenerg Biomembr 2002; 34:105-13.
    • (2002) J Bioenerg Biomembr , vol.34 , pp. 105-113
    • Drahota, Z.1    Chowdhury, S.K.2    Floryk, D.3
  • 61
    • 0030615104 scopus 로고    scopus 로고
    • Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age
    • Hansford RG, Hogue BA, Mildaziene V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 1997; 29:89-95.
    • (1997) J Bioenerg Biomembr , vol.29 , pp. 89-95
    • Hansford, R.G.1    Hogue, B.A.2    Mildaziene, V.3
  • 62
    • 4544354262 scopus 로고    scopus 로고
    • Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:- ubiquinone oxidoreductase (complex I)
    • Lambert AJ, Brand MD. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:- ubiquinone oxidoreductase (complex I). J Biol Chem 2004; 279: 39414-20.
    • (2004) J Biol Chem , vol.279 , pp. 39414-39420
    • Lambert, A.J.1    Brand, M.D.2
  • 63
    • 4043090717 scopus 로고    scopus 로고
    • Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
    • Lambert AJ, Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 2004; 382:511-7.
    • (2004) Biochem J , vol.382 , pp. 511-517
    • Lambert, A.J.1    Brand, M.D.2
  • 64
    • 80052419584 scopus 로고    scopus 로고
    • The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle
    • Quinlan CL, Gerencser AA, Treberg JR et al. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 2011; 286:31361-72.
    • (2011) J Biol Chem , vol.286 , pp. 31361-31372
    • Quinlan, C.L.1    Gerencser, A.A.2    Treberg, J.R.3
  • 65
    • 77953565915 scopus 로고    scopus 로고
    • Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - A correction using glutathione depletion
    • Treberg JR, Quinlan CL, Brand MD. Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - a correction using glutathione depletion. FEBS J 2010; 277:2766-78.
    • (2010) FEBS J , vol.277 , pp. 2766-2778
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.