메뉴 건너뛰기




Volumn 78, Issue , 2015, Pages 62-72

A time to reap, a time to sow: Mitophagy and biogenesis in cardiac pathophysiology

Author keywords

Autophagy; Cardiac; Mitochondria; Mitochondrial biogenesis; Mitophagy; Pathogenesis

Indexed keywords

5 AMINOLEVULINATE SYNTHASE; CELL PROTEIN; CYTOCHROME C OXIDASE; ENDONUCLEASE G; HYPOXIA INDUCIBLE FACTOR 1; MAMMALIAN TARGET OF RAPAMYCIN; MITOCHONDRIAL PROCESSING PEPTIDASE; MITOCHONDRIAL TRANSCRIPTION FACTOR A; MITOFUSIN 1; MITOFUSIN 2; NIX PROTEIN; PARKIN; PEPTIDASE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PINK1 PROTEIN; PRESENILIN ASSOCIATED RHOMBOID LIKE PROTEIN; PROTEIN BNIP3; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; REACTIVE OXYGEN METABOLITE; UNCLASSIFIED DRUG; VASCULOTROPIN; VOLTAGE DEPENDENT ANION CHANNEL 1;

EID: 84916608405     PISSN: 00222828     EISSN: 10958584     Source Type: Journal    
DOI: 10.1016/j.yjmcc.2014.10.003     Document Type: Review
Times cited : (66)

References (184)
  • 1
    • 40349085926 scopus 로고    scopus 로고
    • Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria?
    • Bogaerts V., Theuns J., van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria?. Genes Brain Behav 2008, 7:129-151.
    • (2008) Genes Brain Behav , vol.7 , pp. 129-151
    • Bogaerts, V.1    Theuns, J.2    van Broeckhoven, C.3
  • 2
    • 67649756320 scopus 로고    scopus 로고
    • Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease
    • Bueler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol 2009, 218:235-246.
    • (2009) Exp Neurol , vol.218 , pp. 235-246
    • Bueler, H.1
  • 3
    • 70349783430 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila
    • Park J., Kim Y., Chung J. Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila. Dis Model Mech 2009, 2:336-340.
    • (2009) Dis Model Mech , vol.2 , pp. 336-340
    • Park, J.1    Kim, Y.2    Chung, J.3
  • 4
    • 37049004489 scopus 로고    scopus 로고
    • Mitochondria in the aetiology and pathogenesis of Parkinson's disease
    • Schapira A.H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 2008, 7:97-109.
    • (2008) Lancet Neurol , vol.7 , pp. 97-109
    • Schapira, A.H.1
  • 5
    • 84857953098 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in genetic animal models of Parkinson's disease
    • Trancikova A., Tsika E., Moore D.J. Mitochondrial dysfunction in genetic animal models of Parkinson's disease. Antioxid Redox Signal 2012, 16:896-919.
    • (2012) Antioxid Redox Signal , vol.16 , pp. 896-919
    • Trancikova, A.1    Tsika, E.2    Moore, D.J.3
  • 6
    • 33750018371 scopus 로고    scopus 로고
    • Detrimental deletions: mitochondria, aging and Parkinson's disease
    • Biskup S., Moore D.J. Detrimental deletions: mitochondria, aging and Parkinson's disease. Bioessays 2006, 28:963-967.
    • (2006) Bioessays , vol.28 , pp. 963-967
    • Biskup, S.1    Moore, D.J.2
  • 7
    • 0344824689 scopus 로고    scopus 로고
    • MPP+analogs acting on mitochondria and inducing neuro-degeneration
    • Kotake Y., Ohta S. MPP+analogs acting on mitochondria and inducing neuro-degeneration. Curr Med Chem 2003, 10:2507-2516.
    • (2003) Curr Med Chem , vol.10 , pp. 2507-2516
    • Kotake, Y.1    Ohta, S.2
  • 8
    • 79951963668 scopus 로고    scopus 로고
    • Roles of mitochondria in human disease
    • Duchen M.R., Szabadkai G. Roles of mitochondria in human disease. Essays Biochem 2010, 47:115-137.
    • (2010) Essays Biochem , vol.47 , pp. 115-137
    • Duchen, M.R.1    Szabadkai, G.2
  • 10
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 11
    • 84919787042 scopus 로고    scopus 로고
    • The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity
    • (epub ahead of print)
    • Wang C., Wang X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim Biophys Acta 2014, (epub ahead of print). 10.1016/j.bbadis.2014.07.028.
    • (2014) Biochim Biophys Acta
    • Wang, C.1    Wang, X.2
  • 13
  • 14
    • 84887419570 scopus 로고    scopus 로고
    • Protective role of park2/parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction
    • Piquereau J., Godin R., Deschenes S., Bessi V.L., Mofarrahi M., Hussain S.N., Burelle Y. Protective role of park2/parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 2013, 9:1837-1851.
    • (2013) Autophagy , vol.9 , pp. 1837-1851
    • Piquereau, J.1    Godin, R.2    Deschenes, S.3    Bessi, V.L.4    Mofarrahi, M.5    Hussain, S.N.6    Burelle, Y.7
  • 15
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • Chen Y., Dorn G.W. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013, 340:471-475.
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 16
    • 57049172037 scopus 로고    scopus 로고
    • Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion
    • Kubli D.A., Quinsay M.N., Huang C., Lee Y., Gustafsson A.B. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2008, 295:H2025-H2031.
    • (2008) Am J Physiol Heart Circ Physiol , vol.295 , pp. H2025-H2031
    • Kubli, D.A.1    Quinsay, M.N.2    Huang, C.3    Lee, Y.4    Gustafsson, A.B.5
  • 17
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007, 26:1749-1760.
    • (2007) EMBO J , vol.26 , pp. 1749-1760
    • Scherz-Shouval, R.1    Shvets, E.2    Fass, E.3    Shorer, H.4    Gil, L.5    Elazar, Z.6
  • 18
    • 77953704724 scopus 로고    scopus 로고
    • Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells
    • Carreira R.S., Lee Y., Ghochani M., Gustafsson A.B., Gottlieb R.A. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy 2010, 6:462-472.
    • (2010) Autophagy , vol.6 , pp. 462-472
    • Carreira, R.S.1    Lee, Y.2    Ghochani, M.3    Gustafsson, A.B.4    Gottlieb, R.A.5
  • 20
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N., Sato S., Shiba K., Okatsu K., Saisho K., Gautier C.A., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010, 189:211-221.
    • (2010) J Cell Biol , vol.189 , pp. 211-221
    • Matsuda, N.1    Sato, S.2    Shiba, K.3    Okatsu, K.4    Saisho, K.5    Gautier, C.A.6
  • 21
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D., Tanaka A., Suen D.F., Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008, 183:795-803.
    • (2008) J Cell Biol , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 22
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra D.P., Jin S.M., Tanaka A., Suen D.F., Gautier C.A., Shen J., et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010, 8:e1000298.
    • (2010) PLoS Biol , vol.8 , pp. e1000298
    • Narendra, D.P.1    Jin, S.M.2    Tanaka, A.3    Suen, D.F.4    Gautier, C.A.5    Shen, J.6
  • 23
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin
    • Clark I.E., Dodson M.W., Jiang C., Cao J.H., Huh J.R., Seol J.H., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin. Nature 2006, 441:1162-1166.
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1    Dodson, M.W.2    Jiang, C.3    Cao, J.H.4    Huh, J.R.5    Seol, J.H.6
  • 24
    • 33745602748 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin
    • Park J., Lee S.B., Lee S., Kim Y., Song S., Kim S., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin. Nature 2006, 441:1157-1161.
    • (2006) Nature , vol.441 , pp. 1157-1161
    • Park, J.1    Lee, S.B.2    Lee, S.3    Kim, Y.4    Song, S.5    Kim, S.6
  • 25
    • 84908085343 scopus 로고    scopus 로고
    • A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
    • Sugiura A., McLelland G.L., Fon E.A., McBride H.M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 2014, 33:2142-2156.
    • (2014) EMBO J , vol.33 , pp. 2142-2156
    • Sugiura, A.1    McLelland, G.L.2    Fon, E.A.3    McBride, H.M.4
  • 26
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka A., Cleland M.M., Xu S., Narendra D.P., Suen D.F., Karbowski M., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010, 191:1367-1380.
    • (2010) J Cell Biol , vol.191 , pp. 1367-1380
    • Tanaka, A.1    Cleland, M.M.2    Xu, S.3    Narendra, D.P.4    Suen, D.F.5    Karbowski, M.6
  • 27
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig G., Elorza A., Molina A.J., Mohamed H., Wikstrom J.D., Walzer G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008, 27:433-446.
    • (2008) EMBO J , vol.27 , pp. 433-446
    • Twig, G.1    Elorza, A.2    Molina, A.J.3    Mohamed, H.4    Wikstrom, J.D.5    Walzer, G.6
  • 28
    • 0035166814 scopus 로고    scopus 로고
    • Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
    • Smirnova E., Griparic L., Shurland D.L., van der Bliek A.M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001, 12:2245-2256.
    • (2001) Mol Biol Cell , vol.12 , pp. 2245-2256
    • Smirnova, E.1    Griparic, L.2    Shurland, D.L.3    van der Bliek, A.M.4
  • 29
    • 0043092647 scopus 로고    scopus 로고
    • The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1
    • Yoon Y., Krueger E.W., Oswald B.J., McNiven M.A. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 2003, 23:5409-5420.
    • (2003) Mol Cell Biol , vol.23 , pp. 5409-5420
    • Yoon, Y.1    Krueger, E.W.2    Oswald, B.J.3    McNiven, M.A.4
  • 30
    • 84900801787 scopus 로고    scopus 로고
    • Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation
    • MacVicar T.D., Lane J.D. Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation. J Cell Sci 2014, 127:2313-2325.
    • (2014) J Cell Sci , vol.127 , pp. 2313-2325
    • MacVicar, T.D.1    Lane, J.D.2
  • 31
    • 0344012569 scopus 로고    scopus 로고
    • Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease
    • Kaser M., Kambacheld M., Kisters-Woike B., Langer T. Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 2003, 278:46414-46423.
    • (2003) J Biol Chem , vol.278 , pp. 46414-46423
    • Kaser, M.1    Kambacheld, M.2    Kisters-Woike, B.3    Langer, T.4
  • 32
    • 77949479537 scopus 로고    scopus 로고
    • Mitochondrial function: OMA1 and OPA1, the grandmasters of mitochondrial health
    • McBride H., Soubannier V. Mitochondrial function: OMA1 and OPA1, the grandmasters of mitochondrial health. Curr Biol 2010, 20:R274-R276.
    • (2010) Curr Biol , vol.20 , pp. R274-R276
    • McBride, H.1    Soubannier, V.2
  • 33
    • 84859428688 scopus 로고    scopus 로고
    • Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
    • Greene A.W., Grenier K., Aguileta M.A., Muise S., Farazifard R., Haque M.E., et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012, 13:378-385.
    • (2012) EMBO Rep , vol.13 , pp. 378-385
    • Greene, A.W.1    Grenier, K.2    Aguileta, M.A.3    Muise, S.4    Farazifard, R.5    Haque, M.E.6
  • 34
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin S.M., Lazarou M., Wang C., Kane L.A., Narendra D.P., Youle R.J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010, 191:933-942.
    • (2010) J Cell Biol , vol.191 , pp. 933-942
    • Jin, S.M.1    Lazarou, M.2    Wang, C.3    Kane, L.A.4    Narendra, D.P.5    Youle, R.J.6
  • 36
    • 84881260124 scopus 로고    scopus 로고
    • Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
    • Iguchi M., Kujuro Y., Okatsu K., Koyano F., Kosako H., Kimura M., et al. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 2013, 288:22019-22032.
    • (2013) J Biol Chem , vol.288 , pp. 22019-22032
    • Iguchi, M.1    Kujuro, Y.2    Okatsu, K.3    Koyano, F.4    Kosako, H.5    Kimura, M.6
  • 37
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou M., Jin S.M., Kane L.A., Youle R.J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 2012, 22:320-333.
    • (2012) Dev Cell , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 38
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y.L., Selkoe D., et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893-906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1    Winter, D.2    Ashrafi, G.3    Schlehe, J.4    Wong, Y.L.5    Selkoe, D.6
  • 39
    • 78649300971 scopus 로고    scopus 로고
    • P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
    • Narendra D., Kane L.A., Hauser D.N., Fearnley I.M., Youle R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010, 6:1090-1106.
    • (2010) Autophagy , vol.6 , pp. 1090-1106
    • Narendra, D.1    Kane, L.A.2    Hauser, D.N.3    Fearnley, I.M.4    Youle, R.J.5
  • 40
    • 78649463381 scopus 로고    scopus 로고
    • Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
    • Gegg M.E., Cooper J.M., Chau K.Y., Rojo M., Schapira A.H., Taanman J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 2010, 19:4861-4870.
    • (2010) Hum Mol Genet , vol.19 , pp. 4861-4870
    • Gegg, M.E.1    Cooper, J.M.2    Chau, K.Y.3    Rojo, M.4    Schapira, A.H.5    Taanman, J.W.6
  • 41
    • 79960493052 scopus 로고    scopus 로고
    • Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
    • Glauser L., Sonnay S., Stafa K., Moore D.J. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 2011, 118:636-645.
    • (2011) J Neurochem , vol.118 , pp. 636-645
    • Glauser, L.1    Sonnay, S.2    Stafa, K.3    Moore, D.J.4
  • 42
    • 77955844260 scopus 로고    scopus 로고
    • The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway
    • Poole A.C., Thomas R.E., Yu S., Vincow E.S., Pallanck L. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway. PLoS One 2010, 5:e10054.
    • (2010) PLoS One , vol.5 , pp. e10054
    • Poole, A.C.1    Thomas, R.E.2    Yu, S.3    Vincow, E.S.4    Pallanck, L.5
  • 43
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin V., Lamark T., Sou Y.S., Bjorkoy G., Nunn J.L., Bruun J.A., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 2009, 33:505-516.
    • (2009) Mol Cell , vol.33 , pp. 505-516
    • Kirkin, V.1    Lamark, T.2    Sou, Y.S.3    Bjorkoy, G.4    Nunn, J.L.5    Bruun, J.A.6
  • 44
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S., Clausen T.H., Lamark T., Brech A., Bruun J.A., Outzen H., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282:24131-24145.
    • (2007) J Biol Chem , vol.282 , pp. 24131-24145
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3    Brech, A.4    Bruun, J.A.5    Outzen, H.6
  • 45
    • 82555187810 scopus 로고    scopus 로고
    • Image-based genome-wide siRNA screen identifies selective autophagy factors
    • Orvedahl A., Sumpter R., Xiao G., Ng A., Zou Z., Tang Y., et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011, 480:113-117.
    • (2011) Nature , vol.480 , pp. 113-117
    • Orvedahl, A.1    Sumpter, R.2    Xiao, G.3    Ng, A.4    Zou, Z.5    Tang, Y.6
  • 50
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • Novak I., Kirkin V., McEwan D.G., Zhang J., Wild P., Rozenknop A., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010, 11:45-51.
    • (2010) EMBO Rep , vol.11 , pp. 45-51
    • Novak, I.1    Kirkin, V.2    McEwan, D.G.3    Zhang, J.4    Wild, P.5    Rozenknop, A.6
  • 51
    • 80355127945 scopus 로고    scopus 로고
    • Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes
    • Lee Y., Lee H.Y., Hanna R.A., Gustafsson A.B. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 2011, 301:H1924-H1931.
    • (2011) Am J Physiol Heart Circ Physiol , vol.301 , pp. H1924-H1931
    • Lee, Y.1    Lee, H.Y.2    Hanna, R.A.3    Gustafsson, A.B.4
  • 52
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu L., Feng D., Chen G., Chen M., Zheng Q., Song P., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012, 14:177-185.
    • (2012) Nat Cell Biol , vol.14 , pp. 177-185
    • Liu, L.1    Feng, D.2    Chen, G.3    Chen, M.4    Zheng, Q.5    Song, P.6
  • 53
    • 80052145606 scopus 로고    scopus 로고
    • A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
    • Katayama H., Kogure T., Mizushima N., Yoshimori T., Miyawaki A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 2011, 18:1042-1052.
    • (2011) Chem Biol , vol.18 , pp. 1042-1052
    • Katayama, H.1    Kogure, T.2    Mizushima, N.3    Yoshimori, T.4    Miyawaki, A.5
  • 54
    • 84879138893 scopus 로고    scopus 로고
    • Selective escape of proteins from the mitochondria during mitophagy
    • Saita S., Shirane M., Nakayama K.I. Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 2013, 4:1410.
    • (2013) Nat Commun , vol.4 , pp. 1410
    • Saita, S.1    Shirane, M.2    Nakayama, K.I.3
  • 55
    • 84870713042 scopus 로고    scopus 로고
    • Metabolic labeling reveals proteome dynamics of mouse mitochondria
    • Kim T.Y., Wang D., Kim A.K., Lau E., Lin A.J., Liem D.A., et al. Metabolic labeling reveals proteome dynamics of mouse mitochondria. Mol Cell Proteomics 2012, 11:1586-1594.
    • (2012) Mol Cell Proteomics , vol.11 , pp. 1586-1594
    • Kim, T.Y.1    Wang, D.2    Kim, A.K.3    Lau, E.4    Lin, A.J.5    Liem, D.A.6
  • 56
    • 0014844545 scopus 로고
    • Haem a, cytochrome c and total protein turnover in mitochondria from rat heart and liver
    • Aschenbrenner B., Druyan R., Albin R., Rabinowitz M. Haem a, cytochrome c and total protein turnover in mitochondria from rat heart and liver. Biochem J 1970, 119:157-160.
    • (1970) Biochem J , vol.119 , pp. 157-160
    • Aschenbrenner, B.1    Druyan, R.2    Albin, R.3    Rabinowitz, M.4
  • 57
    • 0019888323 scopus 로고
    • Mitochondrial turnover in animal cells. Half-lives of mitochondria and mitochondrial subfractions of rat liver based on [14C]bicarbonate incorporation
    • Lipsky N.G., Pedersen P.L. Mitochondrial turnover in animal cells. Half-lives of mitochondria and mitochondrial subfractions of rat liver based on [14C]bicarbonate incorporation. J Biol Chem 1981, 256:8652-8657.
    • (1981) J Biol Chem , vol.256 , pp. 8652-8657
    • Lipsky, N.G.1    Pedersen, P.L.2
  • 58
    • 84878540619 scopus 로고    scopus 로고
    • Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria
    • Kasumov T., Dabkowski E.R., Shekar K.C., Li L., Ribeiro R.F., Walsh K., et al. Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 2013, 304:H1201-H1214.
    • (2013) Am J Physiol Heart Circ Physiol , vol.304 , pp. H1201-H1214
    • Kasumov, T.1    Dabkowski, E.R.2    Shekar, K.C.3    Li, L.4    Ribeiro, R.F.5    Walsh, K.6
  • 59
  • 60
    • 84872283780 scopus 로고    scopus 로고
    • Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction
    • Kubli D.A., Zhang X., Lee Y., Hanna R.A., Quinsay M.N., Nguyen C.K., et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 2013, 288:915-926.
    • (2013) J Biol Chem , vol.288 , pp. 915-926
    • Kubli, D.A.1    Zhang, X.2    Lee, Y.3    Hanna, R.A.4    Quinsay, M.N.5    Nguyen, C.K.6
  • 61
    • 84881329174 scopus 로고    scopus 로고
    • Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes
    • Kubli D.A., Quinsay M.N., Gustafsson A.B. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun Integr Biol 2013, 6:e24511.
    • (2013) Commun Integr Biol , vol.6 , pp. e24511
    • Kubli, D.A.1    Quinsay, M.N.2    Gustafsson, A.B.3
  • 62
    • 84860705893 scopus 로고    scopus 로고
    • Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
    • Oka T., Hikoso S., Yamaguchi O., Taneike M., Takeda T., Tamai T., et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485:251-255.
    • (2012) Nature , vol.485 , pp. 251-255
    • Oka, T.1    Hikoso, S.2    Yamaguchi, O.3    Taneike, M.4    Takeda, T.5    Tamai, T.6
  • 63
    • 79959344616 scopus 로고    scopus 로고
    • PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function
    • Billia F., Hauck L., Konecny F., Rao V., Shen J., Mak T.W. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A 2011, 108:9572-9577.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 9572-9577
    • Billia, F.1    Hauck, L.2    Konecny, F.3    Rao, V.4    Shen, J.5    Mak, T.W.6
  • 64
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai A., Yamaguchi O., Takeda T., Higuchi Y., Hikoso S., Taniike M., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007, 13:619-624.
    • (2007) Nat Med , vol.13 , pp. 619-624
    • Nakai, A.1    Yamaguchi, O.2    Takeda, T.3    Higuchi, Y.4    Hikoso, S.5    Taniike, M.6
  • 65
    • 84856109625 scopus 로고    scopus 로고
    • Mitochondrial fusion is essential for organelle function and cardiac homeostasis
    • Chen Y., Liu Y., Dorn G.W. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 2011, 109:1327-1331.
    • (2011) Circ Res , vol.109 , pp. 1327-1331
    • Chen, Y.1    Liu, Y.2    Dorn, G.W.3
  • 67
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P., Wu Z., Park C.W., Graves R., Wright M., Spiegelman B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5    Spiegelman, B.M.6
  • 68
    • 84878773230 scopus 로고    scopus 로고
    • Recent progresses in identifying nuclear receptors and their families
    • Xiao X., Wang P., Chou K.C. Recent progresses in identifying nuclear receptors and their families. Curr Top Med Chem 2013, 13:1192-1200.
    • (2013) Curr Top Med Chem , vol.13 , pp. 1192-1200
    • Xiao, X.1    Wang, P.2    Chou, K.C.3
  • 69
    • 0028011017 scopus 로고
    • Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis
    • Virbasius J.V., Scarpulla R.C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A 1994, 91:1309-1313.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 1309-1313
    • Virbasius, J.V.1    Scarpulla, R.C.2
  • 70
    • 0022212873 scopus 로고
    • A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro
    • Fisher R.P., Clayton D.A. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro. J Biol Chem 1985, 260:11330-11338.
    • (1985) J Biol Chem , vol.260 , pp. 11330-11338
    • Fisher, R.P.1    Clayton, D.A.2
  • 71
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98:115-124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3    Zhang, C.4    Adelmant, G.5    Mootha, V.6
  • 72
    • 0036903174 scopus 로고    scopus 로고
    • Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1
    • Baar K., Wende A.R., Jones T.E., Marison M., Nolte L.A., Chen M., et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002, 16:1879-1886.
    • (2002) FASEB J , vol.16 , pp. 1879-1886
    • Baar, K.1    Wende, A.R.2    Jones, T.E.3    Marison, M.4    Nolte, L.A.5    Chen, M.6
  • 73
    • 0038682372 scopus 로고    scopus 로고
    • Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo
    • Meirhaeghe A., Crowley V., Lenaghan C., Lelliott C., Green K., Stewart A., et al. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J 2003, 373:155-165.
    • (2003) Biochem J , vol.373 , pp. 155-165
    • Meirhaeghe, A.1    Crowley, V.2    Lenaghan, C.3    Lelliott, C.4    Green, K.5    Stewart, A.6
  • 74
    • 44649151707 scopus 로고    scopus 로고
    • The PPAR trio: regulators of myocardial energy metabolism in health and disease
    • Madrazo J.A., Kelly D.P. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 2008, 44:968-975.
    • (2008) J Mol Cell Cardiol , vol.44 , pp. 968-975
    • Madrazo, J.A.1    Kelly, D.P.2
  • 75
    • 46749125376 scopus 로고    scopus 로고
    • Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
    • Ventura-Clapier R., Garnier A., Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 2008, 79:208-217.
    • (2008) Cardiovasc Res , vol.79 , pp. 208-217
    • Ventura-Clapier, R.1    Garnier, A.2    Veksler, V.3
  • 76
    • 53849088227 scopus 로고    scopus 로고
    • Transcriptional control of energy homeostasis by the estrogen-related receptors
    • Giguere V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 2008, 29:677-696.
    • (2008) Endocr Rev , vol.29 , pp. 677-696
    • Giguere, V.1
  • 77
    • 2342592545 scopus 로고    scopus 로고
    • The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis
    • Schreiber S.N., Emter R., Hock M.B., Knutti D., Cardenas J., Podvinec M., et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 2004, 101:6472-6477.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 6472-6477
    • Schreiber, S.N.1    Emter, R.2    Hock, M.B.3    Knutti, D.4    Cardenas, J.5    Podvinec, M.6
  • 78
    • 80053897262 scopus 로고    scopus 로고
    • Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function
    • McDermott-Roe C., Ye J., Ahmed R., Sun X.M., Serafin A., Ware J., et al. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 2011, 478:114-118.
    • (2011) Nature , vol.478 , pp. 114-118
    • McDermott-Roe, C.1    Ye, J.2    Ahmed, R.3    Sun, X.M.4    Serafin, A.5    Ware, J.6
  • 80
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig S., Long F., Jhala U.S., Hedrick S., Quinn R., Bauer A., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1    Long, F.2    Jhala, U.S.3    Hedrick, S.4    Quinn, R.5    Bauer, A.6
  • 81
    • 0038810035 scopus 로고    scopus 로고
    • An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
    • Handschin C., Rhee J., Lin J., Tarr P.T., Spiegelman B.M. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 2003, 100:7111-7116.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 7111-7116
    • Handschin, C.1    Rhee, J.2    Lin, J.3    Tarr, P.T.4    Spiegelman, B.M.5
  • 82
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
    • Lin J., Wu H., Tarr P.T., Zhang C.Y., Wu Z., Boss O., et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418:797-801.
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1    Wu, H.2    Tarr, P.T.3    Zhang, C.Y.4    Wu, Z.5    Boss, O.6
  • 83
    • 21244477127 scopus 로고    scopus 로고
    • Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway
    • Akimoto T., Pohnert S.C., Li P., Zhang M., Gumbs C., Rosenberg P.B., et al. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 2005, 280:19587-19593.
    • (2005) J Biol Chem , vol.280 , pp. 19587-19593
    • Akimoto, T.1    Pohnert, S.C.2    Li, P.3    Zhang, M.4    Gumbs, C.5    Rosenberg, P.B.6
  • 85
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • Jager S., Handschin C., St-Pierre J., Spiegelman B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 2007, 104:12017-12022.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 12017-12022
    • Jager, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 86
    • 18244399631 scopus 로고    scopus 로고
    • Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1
    • Puigserver P., Rhee J., Lin J., Wu Z., Yoon J.C., Zhang C.Y., et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 2001, 8:971-982.
    • (2001) Mol Cell , vol.8 , pp. 971-982
    • Puigserver, P.1    Rhee, J.2    Lin, J.3    Wu, Z.4    Yoon, J.C.5    Zhang, C.Y.6
  • 87
    • 0037058977 scopus 로고    scopus 로고
    • AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
    • Zong H., Ren J.M., Young L.H., Pypaert M., Mu J., Birnbaum M.J., et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 2002, 99:15983-15987.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 15983-15987
    • Zong, H.1    Ren, J.M.2    Young, L.H.3    Pypaert, M.4    Mu, J.5    Birnbaum, M.J.6
  • 88
    • 34548512239 scopus 로고    scopus 로고
    • Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha
    • Sano M., Tokudome S., Shimizu N., Yoshikawa N., Ogawa C., Shirakawa K., et al. Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha. J Biol Chem 2007, 282:25970-25980.
    • (2007) J Biol Chem , vol.282 , pp. 25970-25980
    • Sano, M.1    Tokudome, S.2    Shimizu, N.3    Yoshikawa, N.4    Ogawa, C.5    Shirakawa, K.6
  • 89
    • 34250740323 scopus 로고    scopus 로고
    • Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
    • Li X., Monks B., Ge Q., Birnbaum M.J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 2007, 447:1012-1016.
    • (2007) Nature , vol.447 , pp. 1012-1016
    • Li, X.1    Monks, B.2    Ge, Q.3    Birnbaum, M.J.4
  • 90
    • 72649098153 scopus 로고    scopus 로고
    • Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis
    • Rodgers J.T., Haas W., Gygi S.P., Puigserver P. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab 2010, 11:23-34.
    • (2010) Cell Metab , vol.11 , pp. 23-34
    • Rodgers, J.T.1    Haas, W.2    Gygi, S.P.3    Puigserver, P.4
  • 91
    • 38349130508 scopus 로고    scopus 로고
    • Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response
    • Anderson R.M., Barger J.L., Edwards M.G., Braun K.H., O'Connor C.E., Prolla T.A., et al. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 2008, 7:101-111.
    • (2008) Aging Cell , vol.7 , pp. 101-111
    • Anderson, R.M.1    Barger, J.L.2    Edwards, M.G.3    Braun, K.H.4    O'Connor, C.E.5    Prolla, T.A.6
  • 92
    • 33744534726 scopus 로고    scopus 로고
    • GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
    • Lerin C., Rodgers J.T., Kalume D.E., Kim S.H., Pandey A., Puigserver P. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 2006, 3:429-438.
    • (2006) Cell Metab , vol.3 , pp. 429-438
    • Lerin, C.1    Rodgers, J.T.2    Kalume, D.E.3    Kim, S.H.4    Pandey, A.5    Puigserver, P.6
  • 93
    • 77952288176 scopus 로고    scopus 로고
    • Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice
    • Hayashida S., Arimoto A., Kuramoto Y., Kozako T., Honda S., Shimeno H., et al. Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice. Mol Cell Biochem 2010, 339:285-292.
    • (2010) Mol Cell Biochem , vol.339 , pp. 285-292
    • Hayashida, S.1    Arimoto, A.2    Kuramoto, Y.3    Kozako, T.4    Honda, S.5    Shimeno, H.6
  • 94
    • 84861885100 scopus 로고    scopus 로고
    • NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise
    • White A.T., Schenk S. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab 2012, 303:E308-E321.
    • (2012) Am J Physiol Endocrinol Metab , vol.303 , pp. E308-E321
    • White, A.T.1    Schenk, S.2
  • 95
    • 77953631698 scopus 로고    scopus 로고
    • The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways
    • Houtkooper R.H., Canto C., Wanders R.J., Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010, 31:194-223.
    • (2010) Endocr Rev , vol.31 , pp. 194-223
    • Houtkooper, R.H.1    Canto, C.2    Wanders, R.J.3    Auwerx, J.4
  • 96
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z., Rodgers J.T., Bare O., Lerin C., Kim S.H., Mostoslavsky R., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007, 26:1913-1923.
    • (2007) EMBO J , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3    Lerin, C.4    Kim, S.H.5    Mostoslavsky, R.6
  • 97
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity
    • Canto C., Gerhart-Hines Z., Feige J.N., Lagouge M., Noriega L., Milne J.C., et al. AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3    Lagouge, M.4    Noriega, L.5    Milne, J.C.6
  • 98
    • 79953210362 scopus 로고    scopus 로고
    • Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis
    • Fernandez-Marcos P.J., Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011, 93:884S-890S.
    • (2011) Am J Clin Nutr , vol.93 , pp. 884S-890S
    • Fernandez-Marcos, P.J.1    Auwerx, J.2
  • 100
    • 39749140405 scopus 로고    scopus 로고
    • HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
    • Arany Z., Foo S.Y., Ma Y., Ruas J.L., Bommi-Reddy A., Girnun G., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 2008, 451:1008-1012.
    • (2008) Nature , vol.451 , pp. 1008-1012
    • Arany, Z.1    Foo, S.Y.2    Ma, Y.3    Ruas, J.L.4    Bommi-Reddy, A.5    Girnun, G.6
  • 101
    • 60549087508 scopus 로고    scopus 로고
    • PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells
    • O'Hagan K.A., Cocchiglia S., Zhdanov A.V., Tambuwala M.M., Cummins E.P., Monfared M., et al. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A 2009, 106:2188-2193.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 2188-2193
    • O'Hagan, K.A.1    Cocchiglia, S.2    Zhdanov, A.V.3    Tambuwala, M.M.4    Cummins, E.P.5    Monfared, M.6
  • 102
    • 34247614521 scopus 로고    scopus 로고
    • HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity
    • Zhang H., Gao P., Fukuda R., Kumar G., Krishnamachary B., Zeller K.I., et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 2007, 11:407-420.
    • (2007) Cancer Cell , vol.11 , pp. 407-420
    • Zhang, H.1    Gao, P.2    Fukuda, R.3    Kumar, G.4    Krishnamachary, B.5    Zeller, K.I.6
  • 104
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
    • Nemoto S., Fergusson M.M., Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 2005, 280:16456-16460.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 105
    • 79952303794 scopus 로고    scopus 로고
    • PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
    • Shin J.H., Ko H.S., Kang H., Lee Y., Lee Y.I., Pletinkova O., et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 2011, 144:689-702.
    • (2011) Cell , vol.144 , pp. 689-702
    • Shin, J.H.1    Ko, H.S.2    Kang, H.3    Lee, Y.4    Lee, Y.I.5    Pletinkova, O.6
  • 106
    • 81055125669 scopus 로고    scopus 로고
    • NCoR1 is a conserved physiological modulator of muscle mass and oxidative function
    • Yamamoto H., Williams E.G., Mouchiroud L., Canto C., Fan W., Downes M., et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 2011, 147:827-839.
    • (2011) Cell , vol.147 , pp. 827-839
    • Yamamoto, H.1    Williams, E.G.2    Mouchiroud, L.3    Canto, C.4    Fan, W.5    Downes, M.6
  • 107
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1    McPhee, C.K.2    Zheng, L.3    Mardones, G.A.4    Rong, Y.5    Peng, J.6
  • 108
    • 84887415150 scopus 로고    scopus 로고
    • MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
    • Morita M., Gravel S.P., Chenard V., Sikstrom K., Zheng L., Alain T., et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013, 18:698-711.
    • (2013) Cell Metab , vol.18 , pp. 698-711
    • Morita, M.1    Gravel, S.P.2    Chenard, V.3    Sikstrom, K.4    Zheng, L.5    Alain, T.6
  • 109
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham J.T., Rodgers J.T., Arlow D.H., Vazquez F., Mootha V.K., Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450:736-740.
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3    Vazquez, F.4    Mootha, V.K.5    Puigserver, P.6
  • 110
    • 84863923855 scopus 로고    scopus 로고
    • PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
    • 142ra97
    • Tsunemi T., Ashe T.D., Morrison B.E., Soriano K.R., Au J., Roque R.A., et al. PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 2012, 4:142ra97.
    • (2012) Sci Transl Med , vol.4
    • Tsunemi, T.1    Ashe, T.D.2    Morrison, B.E.3    Soriano, K.R.4    Au, J.5    Roque, R.A.6
  • 112
    • 84893500088 scopus 로고    scopus 로고
    • GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy
    • Scott I., Webster B.R., Chan C.K., Okonkwo J.U., Han K., Sack M.N. GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J Biol Chem 2014, 289:2864-2872.
    • (2014) J Biol Chem , vol.289 , pp. 2864-2872
    • Scott, I.1    Webster, B.R.2    Chan, C.K.3    Okonkwo, J.U.4    Han, K.5    Sack, M.N.6
  • 113
    • 0016611791 scopus 로고
    • A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats
    • Pfeifer U., Scheller H. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J Cell Biol 1975, 64:608-621.
    • (1975) J Cell Biol , vol.64 , pp. 608-621
    • Pfeifer, U.1    Scheller, H.2
  • 115
    • 81255177778 scopus 로고    scopus 로고
    • Temporal orchestration of circadian autophagy rhythm by C/EBPbeta
    • Ma D., Panda S., Lin J.D. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 2011, 30:4642-4651.
    • (2011) EMBO J , vol.30 , pp. 4642-4651
    • Ma, D.1    Panda, S.2    Lin, J.D.3
  • 116
    • 84873254580 scopus 로고
    • Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics
    • Cali T., Ottolini D., Negro A., Brini M. Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics. Biochim Biophys Acta 1832, 2013:495-508.
    • (1832) Biochim Biophys Acta , vol.2013 , pp. 495-508
    • Cali, T.1    Ottolini, D.2    Negro, A.3    Brini, M.4
  • 117
    • 77955398958 scopus 로고    scopus 로고
    • Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
    • Suen D.F., Narendra D.P., Tanaka A., Manfredi G., Youle R.J. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A 2010, 107:11835-11840.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 11835-11840
    • Suen, D.F.1    Narendra, D.P.2    Tanaka, A.3    Manfredi, G.4    Youle, R.J.5
  • 118
    • 46749086668 scopus 로고    scopus 로고
    • Diurnal variations in myocardial metabolism
    • Bray M.S., Young M.E. Diurnal variations in myocardial metabolism. Cardiovasc Res 2008, 79:228-237.
    • (2008) Cardiovasc Res , vol.79 , pp. 228-237
    • Bray, M.S.1    Young, M.E.2
  • 119
    • 39149108483 scopus 로고    scopus 로고
    • Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression
    • Bray M.S., Shaw C.A., Moore M.W., Garcia R.A., Zanquetta M.M., Durgan D.J., et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 2008, 294:H1036-H1047.
    • (2008) Am J Physiol Heart Circ Physiol , vol.294 , pp. H1036-H1047
    • Bray, M.S.1    Shaw, C.A.2    Moore, M.W.3    Garcia, R.A.4    Zanquetta, M.M.5    Durgan, D.J.6
  • 120
    • 0035824916 scopus 로고    scopus 로고
    • Intrinsic diurnal variations in cardiac metabolism and contractile function
    • Young M.E., Razeghi P., Cedars A.M., Guthrie P.H., Taegtmeyer H. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 2001, 89:1199-1208.
    • (2001) Circ Res , vol.89 , pp. 1199-1208
    • Young, M.E.1    Razeghi, P.2    Cedars, A.M.3    Guthrie, P.H.4    Taegtmeyer, H.5
  • 121
    • 84863083811 scopus 로고    scopus 로고
    • Circadian autophagy rhythm: a link between clock and metabolism?
    • Ma D., Li S., Molusky M.M., Lin J.D. Circadian autophagy rhythm: a link between clock and metabolism?. Trends Endocrinol Metab 2012, 23:319-325.
    • (2012) Trends Endocrinol Metab , vol.23 , pp. 319-325
    • Ma, D.1    Li, S.2    Molusky, M.M.3    Lin, J.D.4
  • 123
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 2013, 17:491-506.
    • (2013) Cell Metab , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 124
    • 84875652238 scopus 로고    scopus 로고
    • Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E
    • Jhun B.S., Lee H., Jin Z.G., Yoon Y. Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E. PLoS One 2013, 8:e60810.
    • (2013) PLoS One , vol.8 , pp. e60810
    • Jhun, B.S.1    Lee, H.2    Jin, Z.G.3    Yoon, Y.4
  • 126
    • 84865610149 scopus 로고    scopus 로고
    • Autophagy, myocardial protection, and the metabolic syndrome
    • Giricz Z., Mentzer R.M., Gottlieb R.A. Autophagy, myocardial protection, and the metabolic syndrome. J Cardiovasc Pharmacol 2012, 60:125-132.
    • (2012) J Cardiovasc Pharmacol , vol.60 , pp. 125-132
    • Giricz, Z.1    Mentzer, R.M.2    Gottlieb, R.A.3
  • 127
    • 84863081685 scopus 로고    scopus 로고
    • Unmasking the janus faces of autophagy in obesity-associated insulin resistance and cardiac dysfunction
    • Xu X., Ren J. Unmasking the janus faces of autophagy in obesity-associated insulin resistance and cardiac dysfunction. Clin Exp Pharmacol Physiol 2012, 39:200-208.
    • (2012) Clin Exp Pharmacol Physiol , vol.39 , pp. 200-208
    • Xu, X.1    Ren, J.2
  • 128
    • 84857914471 scopus 로고    scopus 로고
    • Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome
    • Sciarretta S., Zhai P., Shao D., Maejima Y., Robbins J., Volpe M., et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012, 125:1134-1146.
    • (2012) Circulation , vol.125 , pp. 1134-1146
    • Sciarretta, S.1    Zhai, P.2    Shao, D.3    Maejima, Y.4    Robbins, J.5    Volpe, M.6
  • 129
    • 84899450022 scopus 로고    scopus 로고
    • A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo
    • Laker R.C., Xu P., Ryall K.A., Sujkowski A., Kenwood B.M., Chain K.H., et al. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 2014, 289:12005-12015.
    • (2014) J Biol Chem , vol.289 , pp. 12005-12015
    • Laker, R.C.1    Xu, P.2    Ryall, K.A.3    Sujkowski, A.4    Kenwood, B.M.5    Chain, K.H.6
  • 130
    • 84887499718 scopus 로고    scopus 로고
    • MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age
    • Ferree A.W., Trudeau K., Zik E., Benador I.Y., Twig G., Gottlieb R.A., et al. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 2013, 9:1887-1896.
    • (2013) Autophagy , vol.9 , pp. 1887-1896
    • Ferree, A.W.1    Trudeau, K.2    Zik, E.3    Benador, I.Y.4    Twig, G.5    Gottlieb, R.A.6
  • 131
    • 84862301849 scopus 로고    scopus 로고
    • The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy
    • Zhang J., Liu J., Liu L., McKeehan W.L., Wang F. The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy 2012, 8:690-691.
    • (2012) Autophagy , vol.8 , pp. 690-691
    • Zhang, J.1    Liu, J.2    Liu, L.3    McKeehan, W.L.4    Wang, F.5
  • 132
    • 84899450195 scopus 로고    scopus 로고
    • FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis
    • Sanchez A.M., Candau R.B., Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 2014, 71:1657-1671.
    • (2014) Cell Mol Life Sci , vol.71 , pp. 1657-1671
    • Sanchez, A.M.1    Candau, R.B.2    Bernardi, H.3
  • 133
    • 84908080008 scopus 로고    scopus 로고
    • Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise
    • Sanchez A.M., Bernardi H., Py G., Candau R. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014, 307:R956-R959.
    • (2014) Am J Physiol Regul Integr Comp Physiol , vol.307 , pp. R956-R959
    • Sanchez, A.M.1    Bernardi, H.2    Py, G.3    Candau, R.4
  • 134
    • 84857569701 scopus 로고    scopus 로고
    • FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity
    • Zhang J., Liu J., Huang Y., Chang J.Y., Liu L., McKeehan W.L., et al. FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res 2012, 110:e29-e39.
    • (2012) Circ Res , vol.110 , pp. e29-e39
    • Zhang, J.1    Liu, J.2    Huang, Y.3    Chang, J.Y.4    Liu, L.5    McKeehan, W.L.6
  • 135
    • 0037455575 scopus 로고    scopus 로고
    • Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
    • Chen H., Detmer S.A., Ewald A.J., Griffin E.E., Fraser S.E., Chan D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003, 160:189-200.
    • (2003) J Cell Biol , vol.160 , pp. 189-200
    • Chen, H.1    Detmer, S.A.2    Ewald, A.J.3    Griffin, E.E.4    Fraser, S.E.5    Chan, D.C.6
  • 136
    • 0142058391 scopus 로고    scopus 로고
    • Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion
    • Eura Y., Ishihara N., Yokota S., Mihara K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem 2003, 134:333-344.
    • (2003) J Biochem , vol.134 , pp. 333-344
    • Eura, Y.1    Ishihara, N.2    Yokota, S.3    Mihara, K.4
  • 137
    • 57349100367 scopus 로고    scopus 로고
    • Mitofusin 2 tethers endoplasmic reticulum to mitochondria
    • de Brito O.M., Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008, 456:605-610.
    • (2008) Nature , vol.456 , pp. 605-610
    • de Brito, O.M.1    Scorrano, L.2
  • 138
    • 84863613170 scopus 로고    scopus 로고
    • Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes
    • Zhao T., Huang X., Han L., Wang X., Cheng H., Zhao Y., et al. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012, 287:23615-23625.
    • (2012) J Biol Chem , vol.287 , pp. 23615-23625
    • Zhao, T.1    Huang, X.2    Han, L.3    Wang, X.4    Cheng, H.5    Zhao, Y.6
  • 139
    • 84876889535 scopus 로고    scopus 로고
    • Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury
    • Siddall H.K., Yellon D.M., Ong S.B., Mukherjee U.A., Burke N., Hall A.R., et al. Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury. PLoS One 2013, 8:e62400.
    • (2013) PLoS One , vol.8 , pp. e62400
    • Siddall, H.K.1    Yellon, D.M.2    Ong, S.B.3    Mukherjee, U.A.4    Burke, N.5    Hall, A.R.6
  • 140
    • 0022970945 scopus 로고
    • Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium
    • Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74:1124-1136.
    • (1986) Circulation , vol.74 , pp. 1124-1136
    • Murry, C.E.1    Jennings, R.B.2    Reimer, K.A.3
  • 141
    • 0037623908 scopus 로고    scopus 로고
    • Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning
    • Zhao Z.Q., Corvera J.S., Halkos M.E., Kerendi F., Wang N.P., Guyton R.A., et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003, 285:H579-H588.
    • (2003) Am J Physiol Heart Circ Physiol , vol.285 , pp. H579-H588
    • Zhao, Z.Q.1    Corvera, J.S.2    Halkos, M.E.3    Kerendi, F.4    Wang, N.P.5    Guyton, R.A.6
  • 142
    • 84899889966 scopus 로고    scopus 로고
    • Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice
    • Han Z., Cao J., Song D., Tian L., Chen K., Wang Y., et al. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS One 2014, 9:e86838.
    • (2014) PLoS One , vol.9 , pp. e86838
    • Han, Z.1    Cao, J.2    Song, D.3    Tian, L.4    Chen, K.5    Wang, Y.6
  • 144
    • 84877626889 scopus 로고    scopus 로고
    • Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts
    • Wei C., Li H., Han L., Zhang L., Yang X. Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts. J Cardiovasc Pharmacol 2013, 61:416-422.
    • (2013) J Cardiovasc Pharmacol , vol.61 , pp. 416-422
    • Wei, C.1    Li, H.2    Han, L.3    Zhang, L.4    Yang, X.5
  • 145
    • 84866992233 scopus 로고    scopus 로고
    • Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats
    • Gao L., Jiang T., Guo J., Liu Y., Cui G., Gu L., et al. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 2012, 7:e46092.
    • (2012) PLoS One , vol.7 , pp. e46092
    • Gao, L.1    Jiang, T.2    Guo, J.3    Liu, Y.4    Cui, G.5    Gu, L.6
  • 146
    • 84870398864 scopus 로고    scopus 로고
    • AKT/GSK3beta-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model
    • Qi Z.F., Luo Y.M., Liu X.R., Wang R.L., Zhao H.P., Yan F., et al. AKT/GSK3beta-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model. CNS Neurosci Ther 2012, 965-73.
    • (2012) CNS Neurosci Ther
    • Qi, Z.F.1    Luo, Y.M.2    Liu, X.R.3    Wang, R.L.4    Zhao, H.P.5    Yan, F.6
  • 147
    • 77957221783 scopus 로고    scopus 로고
    • Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury
    • Sala-Mercado J.A., Wider J., Undyala V.V., Jahania S., Yoo W., Mentzer R.M., et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 2010, 122:S179-S184.
    • (2010) Circulation , vol.122 , pp. S179-S184
    • Sala-Mercado, J.A.1    Wider, J.2    Undyala, V.V.3    Jahania, S.4    Yoo, W.5    Mentzer, R.M.6
  • 148
    • 78650835776 scopus 로고    scopus 로고
    • Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging
    • Shinmura K., Tamaki K., Sano M., Murata M., Yamakawa H., Ishida H., et al. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 2011, 50:117-127.
    • (2011) J Mol Cell Cardiol , vol.50 , pp. 117-127
    • Shinmura, K.1    Tamaki, K.2    Sano, M.3    Murata, M.4    Yamakawa, H.5    Ishida, H.6
  • 149
    • 84895923936 scopus 로고    scopus 로고
    • Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy
    • Xie M., Kong Y., Tan W., May H., Battiprolu P.K., Pedrozo Z., et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 2014, 129:1139-1151.
    • (2014) Circulation , vol.129 , pp. 1139-1151
    • Xie, M.1    Kong, Y.2    Tan, W.3    May, H.4    Battiprolu, P.K.5    Pedrozo, Z.6
  • 150
    • 84877342029 scopus 로고    scopus 로고
    • Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity
    • Dutta D., Xu J., Kim J.S., Dunn W.A., Leeuwenburgh C. Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 2013, 9:328-344.
    • (2013) Autophagy , vol.9 , pp. 328-344
    • Dutta, D.1    Xu, J.2    Kim, J.S.3    Dunn, W.A.4    Leeuwenburgh, C.5
  • 151
    • 84894109257 scopus 로고    scopus 로고
    • Mammalian target of rapamycin signaling in cardiac physiology and disease
    • Sciarretta S., Volpe M., Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 2014, 114:549-564.
    • (2014) Circ Res , vol.114 , pp. 549-564
    • Sciarretta, S.1    Volpe, M.2    Sadoshima, J.3
  • 152
    • 84894466528 scopus 로고    scopus 로고
    • Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy
    • Xu X., Hua Y., Nair S., Bucala R., Ren J. Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy. Hypertension 2014, 63:490-499.
    • (2014) Hypertension , vol.63 , pp. 490-499
    • Xu, X.1    Hua, Y.2    Nair, S.3    Bucala, R.4    Ren, J.5
  • 153
    • 84865610149 scopus 로고    scopus 로고
    • Autophagy, myocardial protection and the metabolic syndrome
    • Giricz Z., Mentzer R.M., Gottlieb R.A. Autophagy, myocardial protection and the metabolic syndrome. J Cardiovasc Pharmacol 2012, 60:125-132.
    • (2012) J Cardiovasc Pharmacol , vol.60 , pp. 125-132
    • Giricz, Z.1    Mentzer, R.M.2    Gottlieb, R.A.3
  • 154
    • 84919786439 scopus 로고    scopus 로고
    • Role of autophagy in metabolic syndrome-associated heart disease
    • (epub ahead of print)
    • Ren S.Y., Xu X. Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 2014, (epub ahead of print). 10.1016/j.bbadis.2014.04.029.
    • (2014) Biochim Biophys Acta
    • Ren, S.Y.1    Xu, X.2
  • 155
    • 84919822611 scopus 로고    scopus 로고
    • Autophagy and mitophagy in diabetic cardiomyopathy
    • (Epub ahead of print)
    • Kobayashi S., Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 2014, (Epub ahead of print). 10.1016/j.bbadis.2014.05.020.
    • (2014) Biochim Biophys Acta
    • Kobayashi, S.1    Liang, Q.2
  • 156
    • 46749092545 scopus 로고    scopus 로고
    • Role of diet and fuel overabundance in the development and progression of heart failure
    • Chess D.J., Stanley W.C. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res 2008, 79:269-278.
    • (2008) Cardiovasc Res , vol.79 , pp. 269-278
    • Chess, D.J.1    Stanley, W.C.2
  • 157
    • 53849142124 scopus 로고    scopus 로고
    • Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome
    • [Silver Spring, Md]
    • Mozaffari M.S., Schaffer S.W. Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome. Obesity 2008, 16:2253-2258. [Silver Spring, Md].
    • (2008) Obesity , vol.16 , pp. 2253-2258
    • Mozaffari, M.S.1    Schaffer, S.W.2
  • 158
    • 70350754647 scopus 로고    scopus 로고
    • Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetes
    • Essop M.F., Anna Chan W.Y., Valle A., Garcia-Palmer F.J., Du Toit E.F. Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetes. Acta Physiol 2009, 197:289-296.
    • (2009) Acta Physiol , vol.197 , pp. 289-296
    • Essop, M.F.1    Anna Chan, W.Y.2    Valle, A.3    Garcia-Palmer, F.J.4    Du Toit, E.F.5
  • 160
    • 84905392441 scopus 로고    scopus 로고
    • The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development
    • Sin J., Puccini J.M., Huang C., Konstandin M.H., Gilbert P.E., Sussman M.A., et al. The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development. PLoS Pathog 2014, 10:e1004249.
    • (2014) PLoS Pathog , vol.10 , pp. e1004249
    • Sin, J.1    Puccini, J.M.2    Huang, C.3    Konstandin, M.H.4    Gilbert, P.E.5    Sussman, M.A.6
  • 161
    • 84901370753 scopus 로고    scopus 로고
    • Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers
    • Robinson S.M., Tsueng G., Sin J., Mangale V., Rahawi S., McIntyre L.L., et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 2014, 10:e1004045.
    • (2014) PLoS Pathog , vol.10 , pp. e1004045
    • Robinson, S.M.1    Tsueng, G.2    Sin, J.3    Mangale, V.4    Rahawi, S.5    McIntyre, L.L.6
  • 162
    • 84888291618 scopus 로고    scopus 로고
    • The role of autophagy in doxorubicin-induced cardiotoxicity
    • Dirks-Naylor A.J. The role of autophagy in doxorubicin-induced cardiotoxicity. Life Sci 2013, 93:913-916.
    • (2013) Life Sci , vol.93 , pp. 913-916
    • Dirks-Naylor, A.J.1
  • 163
    • 84897116012 scopus 로고    scopus 로고
    • Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK
    • Wang X., Wang X.L., Chen H.L., Wu D., Chen J.X., Wang X.X., et al. Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem Pharmacol 2014, 88:334-350.
    • (2014) Biochem Pharmacol , vol.88 , pp. 334-350
    • Wang, X.1    Wang, X.L.2    Chen, H.L.3    Wu, D.4    Chen, J.X.5    Wang, X.X.6
  • 164
    • 84869452725 scopus 로고    scopus 로고
    • Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes
    • Kawaguchi T., Takemura G., Kanamori H., Takeyama T., Watanabe T., Morishita K., et al. Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc Res 2012, 96:456-465.
    • (2012) Cardiovasc Res , vol.96 , pp. 456-465
    • Kawaguchi, T.1    Takemura, G.2    Kanamori, H.3    Takeyama, T.4    Watanabe, T.5    Morishita, K.6
  • 165
    • 84882425828 scopus 로고    scopus 로고
    • Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
    • Hoshino A., Mita Y., Okawa Y., Ariyoshi M., Iwai-Kanai E., Ueyama T., et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 2013, 4:2308.
    • (2013) Nat Commun , vol.4 , pp. 2308
    • Hoshino, A.1    Mita, Y.2    Okawa, Y.3    Ariyoshi, M.4    Iwai-Kanai, E.5    Ueyama, T.6
  • 166
    • 84871718306 scopus 로고    scopus 로고
    • Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity
    • Sishi B.J., Loos B., van Rooyen J., Engelbrecht A.M. Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochem Pharmacol 2013, 85:124-134.
    • (2013) Biochem Pharmacol , vol.85 , pp. 124-134
    • Sishi, B.J.1    Loos, B.2    van Rooyen, J.3    Engelbrecht, A.M.4
  • 167
    • 84893490518 scopus 로고    scopus 로고
    • Macrophage migration inhibitory factor deficiency augments doxorubicin-induced cardiomyopathy
    • Xu X., Bucala R., Ren J. Macrophage migration inhibitory factor deficiency augments doxorubicin-induced cardiomyopathy. J Am Heart Assoc 2013, 2:e000439.
    • (2013) J Am Heart Assoc , vol.2 , pp. e000439
    • Xu, X.1    Bucala, R.2    Ren, J.3
  • 168
    • 84901916253 scopus 로고    scopus 로고
    • Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction
    • Li S., Wang W., Niu T., Wang H., Li B., Shao L., et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev 2014, 2014:748524.
    • (2014) Oxid Med Cell Longev , vol.2014 , pp. 748524
    • Li, S.1    Wang, W.2    Niu, T.3    Wang, H.4    Li, B.5    Shao, L.6
  • 169
    • 84904717701 scopus 로고    scopus 로고
    • Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function
    • Neary M.T., Ng K.E., Ludtmann M.H., Hall A.R., Piotrowska I., Ong S.B., et al. Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. J Mol Cell Cardiol 2014, 74:340-352.
    • (2014) J Mol Cell Cardiol , vol.74 , pp. 340-352
    • Neary, M.T.1    Ng, K.E.2    Ludtmann, M.H.3    Hall, A.R.4    Piotrowska, I.5    Ong, S.B.6
  • 170
    • 84908480082 scopus 로고    scopus 로고
    • Mitochondrial adaptations during myocardial hypertrophy induced by abdominal aortic constriction
    • Mei Z., Wang X., Liu W., Gong J., Gao X., Zhang T., et al. Mitochondrial adaptations during myocardial hypertrophy induced by abdominal aortic constriction. Cardiovasc Pathol 2014, 23:283-288.
    • (2014) Cardiovasc Pathol , vol.23 , pp. 283-288
    • Mei, Z.1    Wang, X.2    Liu, W.3    Gong, J.4    Gao, X.5    Zhang, T.6
  • 171
    • 84908374171 scopus 로고    scopus 로고
    • Promoting PGC1alpha-driven mitochondrial biogenesis is detrimental in pressure overloaded mouse hearts
    • (epub ahead of print)
    • Karamanlidis G., Garcia Menendez L., Kolwicz S.C., Lee C.F., Tian R. Promoting PGC1alpha-driven mitochondrial biogenesis is detrimental in pressure overloaded mouse hearts. Am J Physiol Heart Circ Physiol 2014, (epub ahead of print). 10.1152/ajpheart.00280.2014.
    • (2014) Am J Physiol Heart Circ Physiol
    • Karamanlidis, G.1    Garcia Menendez, L.2    Kolwicz, S.C.3    Lee, C.F.4    Tian, R.5
  • 172
    • 12144286554 scopus 로고    scopus 로고
    • Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner
    • Russell L.K., Mansfield C.M., Lehman J.J., Kovacs A., Courtois M., Saffitz J.E., et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 2004, 94:525-533.
    • (2004) Circ Res , vol.94 , pp. 525-533
    • Russell, L.K.1    Mansfield, C.M.2    Lehman, J.J.3    Kovacs, A.4    Courtois, M.5    Saffitz, J.E.6
  • 173
    • 84902539169 scopus 로고    scopus 로고
    • Valsartan regulates myocardial autophagy and mitochondrial turnover in experimental hypertension
    • Zhang X., Li Z.L., Crane J.A., Jordan K.L., Pawar A.S., Textor S.C., et al. Valsartan regulates myocardial autophagy and mitochondrial turnover in experimental hypertension. Hypertension 2014, 64:87-93.
    • (2014) Hypertension , vol.64 , pp. 87-93
    • Zhang, X.1    Li, Z.L.2    Crane, J.A.3    Jordan, K.L.4    Pawar, A.S.5    Textor, S.C.6
  • 174
    • 84863192578 scopus 로고    scopus 로고
    • Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia-reperfusion injury
    • Ma X., Liu H., Foyil S.R., Godar R.J., Weinheimer C.J., Hill J.A., et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia-reperfusion injury. Circulation 2012, 125:3170-3181.
    • (2012) Circulation , vol.125 , pp. 3170-3181
    • Ma, X.1    Liu, H.2    Foyil, S.R.3    Godar, R.J.4    Weinheimer, C.J.5    Hill, J.A.6
  • 175
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y., Wang Q.J., Li X., Yan Y., Backer J.M., Chait B.T., et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009, 11:468-476.
    • (2009) Nat Cell Biol , vol.11 , pp. 468-476
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5    Chait, B.T.6
  • 177
    • 84899103245 scopus 로고    scopus 로고
    • MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle
    • Mohamed J.S., Hajira A., Pardo P.S., Boriek A.M. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle. Diabetes 2014, 63:1546-1559.
    • (2014) Diabetes , vol.63 , pp. 1546-1559
    • Mohamed, J.S.1    Hajira, A.2    Pardo, P.S.3    Boriek, A.M.4
  • 178
    • 84889025854 scopus 로고    scopus 로고
    • MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells
    • Kang T., Lu W., Xu W., Anderson L., Bacanamwo M., Thompson W., et al. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem 2013, 288:34394-34402.
    • (2013) J Biol Chem , vol.288 , pp. 34394-34402
    • Kang, T.1    Lu, W.2    Xu, W.3    Anderson, L.4    Bacanamwo, M.5    Thompson, W.6
  • 179
    • 84885185272 scopus 로고    scopus 로고
    • Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis
    • Cheng X., Ku C.H., Siow R.C. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med 2013, 64:4-11.
    • (2013) Free Radic Biol Med , vol.64 , pp. 4-11
    • Cheng, X.1    Ku, C.H.2    Siow, R.C.3
  • 180
    • 84907087913 scopus 로고    scopus 로고
    • MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin
    • Wang Z., Wang N., Liu P., Chen Q., Situ H., Xie T., et al. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget 2014, 5:7013-7026.
    • (2014) Oncotarget , vol.5 , pp. 7013-7026
    • Wang, Z.1    Wang, N.2    Liu, P.3    Chen, Q.4    Situ, H.5    Xie, T.6
  • 181
    • 84911435656 scopus 로고    scopus 로고
    • MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1
    • (epub ahead of print)
    • Song L., Su M., Wang S., Zou Y., Wang X., Wang Y., et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med 2014, (epub ahead of print). 10.1111/jcmm.12380.
    • (2014) J Cell Mol Med
    • Song, L.1    Su, M.2    Wang, S.3    Zou, Y.4    Wang, X.5    Wang, Y.6
  • 183
    • 84872240012 scopus 로고    scopus 로고
    • MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy
    • Pan W., Zhong Y., Cheng C., Liu B., Wang L., Li A., et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One 2013, 8:e53950.
    • (2013) PLoS One , vol.8 , pp. e53950
    • Pan, W.1    Zhong, Y.2    Cheng, C.3    Liu, B.4    Wang, L.5    Li, A.6
  • 184
    • 84864884448 scopus 로고    scopus 로고
    • Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells
    • Yu Y., Yang L., Zhao M., Zhu S., Kang R., Vernon P., et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 2012, 26:1752-1760.
    • (2012) Leukemia , vol.26 , pp. 1752-1760
    • Yu, Y.1    Yang, L.2    Zhao, M.3    Zhu, S.4    Kang, R.5    Vernon, P.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.