-
1
-
-
40349085926
-
Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria?
-
Bogaerts V., Theuns J., van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria?. Genes Brain Behav 2008, 7:129-151.
-
(2008)
Genes Brain Behav
, vol.7
, pp. 129-151
-
-
Bogaerts, V.1
Theuns, J.2
van Broeckhoven, C.3
-
2
-
-
67649756320
-
Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease
-
Bueler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol 2009, 218:235-246.
-
(2009)
Exp Neurol
, vol.218
, pp. 235-246
-
-
Bueler, H.1
-
3
-
-
70349783430
-
Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila
-
Park J., Kim Y., Chung J. Mitochondrial dysfunction and Parkinson's disease genes: insights from Drosophila. Dis Model Mech 2009, 2:336-340.
-
(2009)
Dis Model Mech
, vol.2
, pp. 336-340
-
-
Park, J.1
Kim, Y.2
Chung, J.3
-
4
-
-
37049004489
-
Mitochondria in the aetiology and pathogenesis of Parkinson's disease
-
Schapira A.H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 2008, 7:97-109.
-
(2008)
Lancet Neurol
, vol.7
, pp. 97-109
-
-
Schapira, A.H.1
-
5
-
-
84857953098
-
Mitochondrial dysfunction in genetic animal models of Parkinson's disease
-
Trancikova A., Tsika E., Moore D.J. Mitochondrial dysfunction in genetic animal models of Parkinson's disease. Antioxid Redox Signal 2012, 16:896-919.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 896-919
-
-
Trancikova, A.1
Tsika, E.2
Moore, D.J.3
-
6
-
-
33750018371
-
Detrimental deletions: mitochondria, aging and Parkinson's disease
-
Biskup S., Moore D.J. Detrimental deletions: mitochondria, aging and Parkinson's disease. Bioessays 2006, 28:963-967.
-
(2006)
Bioessays
, vol.28
, pp. 963-967
-
-
Biskup, S.1
Moore, D.J.2
-
7
-
-
0344824689
-
MPP+analogs acting on mitochondria and inducing neuro-degeneration
-
Kotake Y., Ohta S. MPP+analogs acting on mitochondria and inducing neuro-degeneration. Curr Med Chem 2003, 10:2507-2516.
-
(2003)
Curr Med Chem
, vol.10
, pp. 2507-2516
-
-
Kotake, Y.1
Ohta, S.2
-
8
-
-
79951963668
-
Roles of mitochondria in human disease
-
Duchen M.R., Szabadkai G. Roles of mitochondria in human disease. Essays Biochem 2010, 47:115-137.
-
(2010)
Essays Biochem
, vol.47
, pp. 115-137
-
-
Duchen, M.R.1
Szabadkai, G.2
-
10
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
11
-
-
84919787042
-
The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity
-
(epub ahead of print)
-
Wang C., Wang X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim Biophys Acta 2014, (epub ahead of print). 10.1016/j.bbadis.2014.07.028.
-
(2014)
Biochim Biophys Acta
-
-
Wang, C.1
Wang, X.2
-
12
-
-
84913546616
-
Mitophagy is required for acute cardioprotection by simvastatin
-
Andres A.M., Hernandez G., Lee P., Huang C., Ratliff E.P., Sin J., et al. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid Redox Signal 2013, 10.1089/ars.2013.5416.
-
(2013)
Antioxid Redox Signal
-
-
Andres, A.M.1
Hernandez, G.2
Lee, P.3
Huang, C.4
Ratliff, E.P.5
Sin, J.6
-
13
-
-
79958172986
-
Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1
-
Huang C., Andres A.M., Ratliff E.P., Hernandez G., Lee P., Gottlieb R.A. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 2011, 6:e20975.
-
(2011)
PLoS One
, vol.6
, pp. e20975
-
-
Huang, C.1
Andres, A.M.2
Ratliff, E.P.3
Hernandez, G.4
Lee, P.5
Gottlieb, R.A.6
-
14
-
-
84887419570
-
Protective role of park2/parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction
-
Piquereau J., Godin R., Deschenes S., Bessi V.L., Mofarrahi M., Hussain S.N., Burelle Y. Protective role of park2/parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 2013, 9:1837-1851.
-
(2013)
Autophagy
, vol.9
, pp. 1837-1851
-
-
Piquereau, J.1
Godin, R.2
Deschenes, S.3
Bessi, V.L.4
Mofarrahi, M.5
Hussain, S.N.6
Burelle, Y.7
-
15
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y., Dorn G.W. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013, 340:471-475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
16
-
-
57049172037
-
Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion
-
Kubli D.A., Quinsay M.N., Huang C., Lee Y., Gustafsson A.B. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2008, 295:H2025-H2031.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.295
, pp. H2025-H2031
-
-
Kubli, D.A.1
Quinsay, M.N.2
Huang, C.3
Lee, Y.4
Gustafsson, A.B.5
-
17
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007, 26:1749-1760.
-
(2007)
EMBO J
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
18
-
-
77953704724
-
Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells
-
Carreira R.S., Lee Y., Ghochani M., Gustafsson A.B., Gottlieb R.A. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy 2010, 6:462-472.
-
(2010)
Autophagy
, vol.6
, pp. 462-472
-
-
Carreira, R.S.1
Lee, Y.2
Ghochani, M.3
Gustafsson, A.B.4
Gottlieb, R.A.5
-
19
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S., Holmstrom K.M., Skujat D., Fiesel F.C., Rothfuss O.C., Kahle P.J., et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010, 12:119-131.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
-
20
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda N., Sato S., Shiba K., Okatsu K., Saisho K., Gautier C.A., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010, 189:211-221.
-
(2010)
J Cell Biol
, vol.189
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
Okatsu, K.4
Saisho, K.5
Gautier, C.A.6
-
21
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D., Tanaka A., Suen D.F., Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008, 183:795-803.
-
(2008)
J Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
22
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra D.P., Jin S.M., Tanaka A., Suen D.F., Gautier C.A., Shen J., et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010, 8:e1000298.
-
(2010)
PLoS Biol
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
-
23
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin
-
Clark I.E., Dodson M.W., Jiang C., Cao J.H., Huh J.R., Seol J.H., et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin. Nature 2006, 441:1162-1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
-
24
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin
-
Park J., Lee S.B., Lee S., Kim Y., Song S., Kim S., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin. Nature 2006, 441:1157-1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
Kim, Y.4
Song, S.5
Kim, S.6
-
25
-
-
84908085343
-
A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
-
Sugiura A., McLelland G.L., Fon E.A., McBride H.M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 2014, 33:2142-2156.
-
(2014)
EMBO J
, vol.33
, pp. 2142-2156
-
-
Sugiura, A.1
McLelland, G.L.2
Fon, E.A.3
McBride, H.M.4
-
26
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A., Cleland M.M., Xu S., Narendra D.P., Suen D.F., Karbowski M., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010, 191:1367-1380.
-
(2010)
J Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
Karbowski, M.6
-
27
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G., Elorza A., Molina A.J., Mohamed H., Wikstrom J.D., Walzer G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008, 27:433-446.
-
(2008)
EMBO J
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
-
28
-
-
0035166814
-
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
-
Smirnova E., Griparic L., Shurland D.L., van der Bliek A.M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001, 12:2245-2256.
-
(2001)
Mol Biol Cell
, vol.12
, pp. 2245-2256
-
-
Smirnova, E.1
Griparic, L.2
Shurland, D.L.3
van der Bliek, A.M.4
-
29
-
-
0043092647
-
The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1
-
Yoon Y., Krueger E.W., Oswald B.J., McNiven M.A. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 2003, 23:5409-5420.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 5409-5420
-
-
Yoon, Y.1
Krueger, E.W.2
Oswald, B.J.3
McNiven, M.A.4
-
30
-
-
84900801787
-
Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation
-
MacVicar T.D., Lane J.D. Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation. J Cell Sci 2014, 127:2313-2325.
-
(2014)
J Cell Sci
, vol.127
, pp. 2313-2325
-
-
MacVicar, T.D.1
Lane, J.D.2
-
31
-
-
0344012569
-
Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease
-
Kaser M., Kambacheld M., Kisters-Woike B., Langer T. Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 2003, 278:46414-46423.
-
(2003)
J Biol Chem
, vol.278
, pp. 46414-46423
-
-
Kaser, M.1
Kambacheld, M.2
Kisters-Woike, B.3
Langer, T.4
-
32
-
-
77949479537
-
Mitochondrial function: OMA1 and OPA1, the grandmasters of mitochondrial health
-
McBride H., Soubannier V. Mitochondrial function: OMA1 and OPA1, the grandmasters of mitochondrial health. Curr Biol 2010, 20:R274-R276.
-
(2010)
Curr Biol
, vol.20
, pp. R274-R276
-
-
McBride, H.1
Soubannier, V.2
-
33
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
Greene A.W., Grenier K., Aguileta M.A., Muise S., Farazifard R., Haque M.E., et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012, 13:378-385.
-
(2012)
EMBO Rep
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
Grenier, K.2
Aguileta, M.A.3
Muise, S.4
Farazifard, R.5
Haque, M.E.6
-
34
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin S.M., Lazarou M., Wang C., Kane L.A., Narendra D.P., Youle R.J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010, 191:933-942.
-
(2010)
J Cell Biol
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
35
-
-
50149121528
-
The kinase domain of mitochondrial PINK1 faces the cytoplasm
-
Zhou C., Huang Y., Shao Y., May J., Prou D., Perier C., et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A 2008, 105:12022-12027.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 12022-12027
-
-
Zhou, C.1
Huang, Y.2
Shao, Y.3
May, J.4
Prou, D.5
Perier, C.6
-
36
-
-
84881260124
-
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
-
Iguchi M., Kujuro Y., Okatsu K., Koyano F., Kosako H., Kimura M., et al. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 2013, 288:22019-22032.
-
(2013)
J Biol Chem
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
Kujuro, Y.2
Okatsu, K.3
Koyano, F.4
Kosako, H.5
Kimura, M.6
-
37
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou M., Jin S.M., Kane L.A., Youle R.J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 2012, 22:320-333.
-
(2012)
Dev Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
38
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y.L., Selkoe D., et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011, 147:893-906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
Schlehe, J.4
Wong, Y.L.5
Selkoe, D.6
-
39
-
-
78649300971
-
P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra D., Kane L.A., Hauser D.N., Fearnley I.M., Youle R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010, 6:1090-1106.
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
40
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
Gegg M.E., Cooper J.M., Chau K.Y., Rojo M., Schapira A.H., Taanman J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 2010, 19:4861-4870.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
Cooper, J.M.2
Chau, K.Y.3
Rojo, M.4
Schapira, A.H.5
Taanman, J.W.6
-
41
-
-
79960493052
-
Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
-
Glauser L., Sonnay S., Stafa K., Moore D.J. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 2011, 118:636-645.
-
(2011)
J Neurochem
, vol.118
, pp. 636-645
-
-
Glauser, L.1
Sonnay, S.2
Stafa, K.3
Moore, D.J.4
-
42
-
-
77955844260
-
The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway
-
Poole A.C., Thomas R.E., Yu S., Vincow E.S., Pallanck L. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway. PLoS One 2010, 5:e10054.
-
(2010)
PLoS One
, vol.5
, pp. e10054
-
-
Poole, A.C.1
Thomas, R.E.2
Yu, S.3
Vincow, E.S.4
Pallanck, L.5
-
43
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V., Lamark T., Sou Y.S., Bjorkoy G., Nunn J.L., Bruun J.A., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 2009, 33:505-516.
-
(2009)
Mol Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjorkoy, G.4
Nunn, J.L.5
Bruun, J.A.6
-
44
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S., Clausen T.H., Lamark T., Brech A., Bruun J.A., Outzen H., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282:24131-24145.
-
(2007)
J Biol Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
-
45
-
-
82555187810
-
Image-based genome-wide siRNA screen identifies selective autophagy factors
-
Orvedahl A., Sumpter R., Xiao G., Ng A., Zou Z., Tang Y., et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011, 480:113-117.
-
(2011)
Nature
, vol.480
, pp. 113-117
-
-
Orvedahl, A.1
Sumpter, R.2
Xiao, G.3
Ng, A.4
Zou, Z.5
Tang, Y.6
-
46
-
-
34347344990
-
Ambra1 regulates autophagy and development of the nervous system
-
Fimia G.M., Stoykova A., Romagnoli A., Giunta L., Di Bartolomeo S., Nardacci R., et al. Ambra1 regulates autophagy and development of the nervous system. Nature 2007, 447:1121-1125.
-
(2007)
Nature
, vol.447
, pp. 1121-1125
-
-
Fimia, G.M.1
Stoykova, A.2
Romagnoli, A.3
Giunta, L.4
Di Bartolomeo, S.5
Nardacci, R.6
-
47
-
-
79953796695
-
Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy
-
Strappazzon F., Vietri-Rudan M., Campello S., Nazio F., Florenzano F., Fimia G.M., et al. Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 2011, 30:1195-1208.
-
(2011)
EMBO J
, vol.30
, pp. 1195-1208
-
-
Strappazzon, F.1
Vietri-Rudan, M.2
Campello, S.3
Nazio, F.4
Florenzano, F.5
Fimia, G.M.6
-
48
-
-
79960407069
-
Parkin interacts with Ambra1 to induce mitophagy
-
Van Humbeeck C., Cornelissen T., Hofkens H., Mandemakers W., Gevaert K., De Strooper B., et al. Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 2011, 31:10249-10261.
-
(2011)
J Neurosci
, vol.31
, pp. 10249-10261
-
-
Van Humbeeck, C.1
Cornelissen, T.2
Hofkens, H.3
Mandemakers, W.4
Gevaert, K.5
De Strooper, B.6
-
49
-
-
77953728406
-
GABARAPL1 (GEC1) associates with autophagic vesicles
-
Chakrama F.Z., Seguin-Py S., Le Grand J.N., Fraichard A., Delage-Mourroux R., Despouy G., et al. GABARAPL1 (GEC1) associates with autophagic vesicles. Autophagy 2010, 6:495-505.
-
(2010)
Autophagy
, vol.6
, pp. 495-505
-
-
Chakrama, F.Z.1
Seguin-Py, S.2
Le Grand, J.N.3
Fraichard, A.4
Delage-Mourroux, R.5
Despouy, G.6
-
50
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I., Kirkin V., McEwan D.G., Zhang J., Wild P., Rozenknop A., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010, 11:45-51.
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
Rozenknop, A.6
-
51
-
-
80355127945
-
Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes
-
Lee Y., Lee H.Y., Hanna R.A., Gustafsson A.B. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 2011, 301:H1924-H1931.
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.301
, pp. H1924-H1931
-
-
Lee, Y.1
Lee, H.Y.2
Hanna, R.A.3
Gustafsson, A.B.4
-
52
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu L., Feng D., Chen G., Chen M., Zheng Q., Song P., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012, 14:177-185.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
-
53
-
-
80052145606
-
A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
-
Katayama H., Kogure T., Mizushima N., Yoshimori T., Miyawaki A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 2011, 18:1042-1052.
-
(2011)
Chem Biol
, vol.18
, pp. 1042-1052
-
-
Katayama, H.1
Kogure, T.2
Mizushima, N.3
Yoshimori, T.4
Miyawaki, A.5
-
54
-
-
84879138893
-
Selective escape of proteins from the mitochondria during mitophagy
-
Saita S., Shirane M., Nakayama K.I. Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 2013, 4:1410.
-
(2013)
Nat Commun
, vol.4
, pp. 1410
-
-
Saita, S.1
Shirane, M.2
Nakayama, K.I.3
-
55
-
-
84870713042
-
Metabolic labeling reveals proteome dynamics of mouse mitochondria
-
Kim T.Y., Wang D., Kim A.K., Lau E., Lin A.J., Liem D.A., et al. Metabolic labeling reveals proteome dynamics of mouse mitochondria. Mol Cell Proteomics 2012, 11:1586-1594.
-
(2012)
Mol Cell Proteomics
, vol.11
, pp. 1586-1594
-
-
Kim, T.Y.1
Wang, D.2
Kim, A.K.3
Lau, E.4
Lin, A.J.5
Liem, D.A.6
-
56
-
-
0014844545
-
Haem a, cytochrome c and total protein turnover in mitochondria from rat heart and liver
-
Aschenbrenner B., Druyan R., Albin R., Rabinowitz M. Haem a, cytochrome c and total protein turnover in mitochondria from rat heart and liver. Biochem J 1970, 119:157-160.
-
(1970)
Biochem J
, vol.119
, pp. 157-160
-
-
Aschenbrenner, B.1
Druyan, R.2
Albin, R.3
Rabinowitz, M.4
-
57
-
-
0019888323
-
Mitochondrial turnover in animal cells. Half-lives of mitochondria and mitochondrial subfractions of rat liver based on [14C]bicarbonate incorporation
-
Lipsky N.G., Pedersen P.L. Mitochondrial turnover in animal cells. Half-lives of mitochondria and mitochondrial subfractions of rat liver based on [14C]bicarbonate incorporation. J Biol Chem 1981, 256:8652-8657.
-
(1981)
J Biol Chem
, vol.256
, pp. 8652-8657
-
-
Lipsky, N.G.1
Pedersen, P.L.2
-
58
-
-
84878540619
-
Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria
-
Kasumov T., Dabkowski E.R., Shekar K.C., Li L., Ribeiro R.F., Walsh K., et al. Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 2013, 304:H1201-H1214.
-
(2013)
Am J Physiol Heart Circ Physiol
, vol.304
, pp. H1201-H1214
-
-
Kasumov, T.1
Dabkowski, E.R.2
Shekar, K.C.3
Li, L.4
Ribeiro, R.F.5
Walsh, K.6
-
59
-
-
84887464529
-
MitoTimer: a novel tool for monitoring mitochondrial turnover
-
Hernandez G., Thornton C., Stotland A., Lui D., Sin J., Ramil J., et al. MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 2013, 9:1852-1861.
-
(2013)
Autophagy
, vol.9
, pp. 1852-1861
-
-
Hernandez, G.1
Thornton, C.2
Stotland, A.3
Lui, D.4
Sin, J.5
Ramil, J.6
-
60
-
-
84872283780
-
Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction
-
Kubli D.A., Zhang X., Lee Y., Hanna R.A., Quinsay M.N., Nguyen C.K., et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 2013, 288:915-926.
-
(2013)
J Biol Chem
, vol.288
, pp. 915-926
-
-
Kubli, D.A.1
Zhang, X.2
Lee, Y.3
Hanna, R.A.4
Quinsay, M.N.5
Nguyen, C.K.6
-
61
-
-
84881329174
-
Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes
-
Kubli D.A., Quinsay M.N., Gustafsson A.B. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun Integr Biol 2013, 6:e24511.
-
(2013)
Commun Integr Biol
, vol.6
, pp. e24511
-
-
Kubli, D.A.1
Quinsay, M.N.2
Gustafsson, A.B.3
-
62
-
-
84860705893
-
Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
-
Oka T., Hikoso S., Yamaguchi O., Taneike M., Takeda T., Tamai T., et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485:251-255.
-
(2012)
Nature
, vol.485
, pp. 251-255
-
-
Oka, T.1
Hikoso, S.2
Yamaguchi, O.3
Taneike, M.4
Takeda, T.5
Tamai, T.6
-
63
-
-
79959344616
-
PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function
-
Billia F., Hauck L., Konecny F., Rao V., Shen J., Mak T.W. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A 2011, 108:9572-9577.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 9572-9577
-
-
Billia, F.1
Hauck, L.2
Konecny, F.3
Rao, V.4
Shen, J.5
Mak, T.W.6
-
64
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A., Yamaguchi O., Takeda T., Higuchi Y., Hikoso S., Taniike M., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007, 13:619-624.
-
(2007)
Nat Med
, vol.13
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
Higuchi, Y.4
Hikoso, S.5
Taniike, M.6
-
65
-
-
84856109625
-
Mitochondrial fusion is essential for organelle function and cardiac homeostasis
-
Chen Y., Liu Y., Dorn G.W. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 2011, 109:1327-1331.
-
(2011)
Circ Res
, vol.109
, pp. 1327-1331
-
-
Chen, Y.1
Liu, Y.2
Dorn, G.W.3
-
67
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P., Wu Z., Park C.W., Graves R., Wright M., Spiegelman B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
68
-
-
84878773230
-
Recent progresses in identifying nuclear receptors and their families
-
Xiao X., Wang P., Chou K.C. Recent progresses in identifying nuclear receptors and their families. Curr Top Med Chem 2013, 13:1192-1200.
-
(2013)
Curr Top Med Chem
, vol.13
, pp. 1192-1200
-
-
Xiao, X.1
Wang, P.2
Chou, K.C.3
-
69
-
-
0028011017
-
Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis
-
Virbasius J.V., Scarpulla R.C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A 1994, 91:1309-1313.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 1309-1313
-
-
Virbasius, J.V.1
Scarpulla, R.C.2
-
70
-
-
0022212873
-
A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro
-
Fisher R.P., Clayton D.A. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro. J Biol Chem 1985, 260:11330-11338.
-
(1985)
J Biol Chem
, vol.260
, pp. 11330-11338
-
-
Fisher, R.P.1
Clayton, D.A.2
-
71
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98:115-124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
-
72
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1
-
Baar K., Wende A.R., Jones T.E., Marison M., Nolte L.A., Chen M., et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002, 16:1879-1886.
-
(2002)
FASEB J
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.E.3
Marison, M.4
Nolte, L.A.5
Chen, M.6
-
73
-
-
0038682372
-
Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo
-
Meirhaeghe A., Crowley V., Lenaghan C., Lelliott C., Green K., Stewart A., et al. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J 2003, 373:155-165.
-
(2003)
Biochem J
, vol.373
, pp. 155-165
-
-
Meirhaeghe, A.1
Crowley, V.2
Lenaghan, C.3
Lelliott, C.4
Green, K.5
Stewart, A.6
-
74
-
-
44649151707
-
The PPAR trio: regulators of myocardial energy metabolism in health and disease
-
Madrazo J.A., Kelly D.P. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 2008, 44:968-975.
-
(2008)
J Mol Cell Cardiol
, vol.44
, pp. 968-975
-
-
Madrazo, J.A.1
Kelly, D.P.2
-
75
-
-
46749125376
-
Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha
-
Ventura-Clapier R., Garnier A., Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 2008, 79:208-217.
-
(2008)
Cardiovasc Res
, vol.79
, pp. 208-217
-
-
Ventura-Clapier, R.1
Garnier, A.2
Veksler, V.3
-
76
-
-
53849088227
-
Transcriptional control of energy homeostasis by the estrogen-related receptors
-
Giguere V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 2008, 29:677-696.
-
(2008)
Endocr Rev
, vol.29
, pp. 677-696
-
-
Giguere, V.1
-
77
-
-
2342592545
-
The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis
-
Schreiber S.N., Emter R., Hock M.B., Knutti D., Cardenas J., Podvinec M., et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 2004, 101:6472-6477.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 6472-6477
-
-
Schreiber, S.N.1
Emter, R.2
Hock, M.B.3
Knutti, D.4
Cardenas, J.5
Podvinec, M.6
-
78
-
-
80053897262
-
Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function
-
McDermott-Roe C., Ye J., Ahmed R., Sun X.M., Serafin A., Ware J., et al. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 2011, 478:114-118.
-
(2011)
Nature
, vol.478
, pp. 114-118
-
-
McDermott-Roe, C.1
Ye, J.2
Ahmed, R.3
Sun, X.M.4
Serafin, A.5
Ware, J.6
-
79
-
-
84937058516
-
Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats
-
Marton O., Koltai E., Takeda M., Koch L.G., Britton S.L., Davies K.J., et al. Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Arch European Journal of Physiology 2014, 1-10.
-
(2014)
Pflugers Arch European Journal of Physiology
, pp. 1-10
-
-
Marton, O.1
Koltai, E.2
Takeda, M.3
Koch, L.G.4
Britton, S.L.5
Davies, K.J.6
-
80
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S., Long F., Jhala U.S., Hedrick S., Quinn R., Bauer A., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
-
81
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
-
Handschin C., Rhee J., Lin J., Tarr P.T., Spiegelman B.M. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 2003, 100:7111-7116.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 7111-7116
-
-
Handschin, C.1
Rhee, J.2
Lin, J.3
Tarr, P.T.4
Spiegelman, B.M.5
-
82
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
Lin J., Wu H., Tarr P.T., Zhang C.Y., Wu Z., Boss O., et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418:797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
Zhang, C.Y.4
Wu, Z.5
Boss, O.6
-
83
-
-
21244477127
-
Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway
-
Akimoto T., Pohnert S.C., Li P., Zhang M., Gumbs C., Rosenberg P.B., et al. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 2005, 280:19587-19593.
-
(2005)
J Biol Chem
, vol.280
, pp. 19587-19593
-
-
Akimoto, T.1
Pohnert, S.C.2
Li, P.3
Zhang, M.4
Gumbs, C.5
Rosenberg, P.B.6
-
84
-
-
0032953307
-
Regulation of the MEF2 family of transcription factors by p38
-
Zhao M., New L., Kravchenko V.V., Kato Y., Gram H., di Padova F., et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999, 19:21-30.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 21-30
-
-
Zhao, M.1
New, L.2
Kravchenko, V.V.3
Kato, Y.4
Gram, H.5
di Padova, F.6
-
85
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager S., Handschin C., St-Pierre J., Spiegelman B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 2007, 104:12017-12022.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
86
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1
-
Puigserver P., Rhee J., Lin J., Wu Z., Yoon J.C., Zhang C.Y., et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 2001, 8:971-982.
-
(2001)
Mol Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
Rhee, J.2
Lin, J.3
Wu, Z.4
Yoon, J.C.5
Zhang, C.Y.6
-
87
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
Zong H., Ren J.M., Young L.H., Pypaert M., Mu J., Birnbaum M.J., et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 2002, 99:15983-15987.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 15983-15987
-
-
Zong, H.1
Ren, J.M.2
Young, L.H.3
Pypaert, M.4
Mu, J.5
Birnbaum, M.J.6
-
88
-
-
34548512239
-
Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha
-
Sano M., Tokudome S., Shimizu N., Yoshikawa N., Ogawa C., Shirakawa K., et al. Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha. J Biol Chem 2007, 282:25970-25980.
-
(2007)
J Biol Chem
, vol.282
, pp. 25970-25980
-
-
Sano, M.1
Tokudome, S.2
Shimizu, N.3
Yoshikawa, N.4
Ogawa, C.5
Shirakawa, K.6
-
89
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
-
Li X., Monks B., Ge Q., Birnbaum M.J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 2007, 447:1012-1016.
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
90
-
-
72649098153
-
Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis
-
Rodgers J.T., Haas W., Gygi S.P., Puigserver P. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab 2010, 11:23-34.
-
(2010)
Cell Metab
, vol.11
, pp. 23-34
-
-
Rodgers, J.T.1
Haas, W.2
Gygi, S.P.3
Puigserver, P.4
-
91
-
-
38349130508
-
Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response
-
Anderson R.M., Barger J.L., Edwards M.G., Braun K.H., O'Connor C.E., Prolla T.A., et al. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 2008, 7:101-111.
-
(2008)
Aging Cell
, vol.7
, pp. 101-111
-
-
Anderson, R.M.1
Barger, J.L.2
Edwards, M.G.3
Braun, K.H.4
O'Connor, C.E.5
Prolla, T.A.6
-
92
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
-
Lerin C., Rodgers J.T., Kalume D.E., Kim S.H., Pandey A., Puigserver P. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 2006, 3:429-438.
-
(2006)
Cell Metab
, vol.3
, pp. 429-438
-
-
Lerin, C.1
Rodgers, J.T.2
Kalume, D.E.3
Kim, S.H.4
Pandey, A.5
Puigserver, P.6
-
93
-
-
77952288176
-
Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice
-
Hayashida S., Arimoto A., Kuramoto Y., Kozako T., Honda S., Shimeno H., et al. Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARalpha in mice. Mol Cell Biochem 2010, 339:285-292.
-
(2010)
Mol Cell Biochem
, vol.339
, pp. 285-292
-
-
Hayashida, S.1
Arimoto, A.2
Kuramoto, Y.3
Kozako, T.4
Honda, S.5
Shimeno, H.6
-
94
-
-
84861885100
-
NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise
-
White A.T., Schenk S. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab 2012, 303:E308-E321.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
, pp. E308-E321
-
-
White, A.T.1
Schenk, S.2
-
95
-
-
77953631698
-
The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways
-
Houtkooper R.H., Canto C., Wanders R.J., Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010, 31:194-223.
-
(2010)
Endocr Rev
, vol.31
, pp. 194-223
-
-
Houtkooper, R.H.1
Canto, C.2
Wanders, R.J.3
Auwerx, J.4
-
96
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z., Rodgers J.T., Bare O., Lerin C., Kim S.H., Mostoslavsky R., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007, 26:1913-1923.
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
-
97
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity
-
Canto C., Gerhart-Hines Z., Feige J.N., Lagouge M., Noriega L., Milne J.C., et al. AMPK regulates energy expenditure by modulating NAD+metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
-
98
-
-
79953210362
-
Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis
-
Fernandez-Marcos P.J., Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011, 93:884S-890S.
-
(2011)
Am J Clin Nutr
, vol.93
, pp. 884S-890S
-
-
Fernandez-Marcos, P.J.1
Auwerx, J.2
-
99
-
-
51349085937
-
VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase
-
Wright G.L., Maroulakou I.G., Eldridge J., Liby T.L., Sridharan V., Tsichlis P.N., et al. VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase. FASEB J 2008, 22:3264-3275.
-
(2008)
FASEB J
, vol.22
, pp. 3264-3275
-
-
Wright, G.L.1
Maroulakou, I.G.2
Eldridge, J.3
Liby, T.L.4
Sridharan, V.5
Tsichlis, P.N.6
-
100
-
-
39749140405
-
HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
-
Arany Z., Foo S.Y., Ma Y., Ruas J.L., Bommi-Reddy A., Girnun G., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 2008, 451:1008-1012.
-
(2008)
Nature
, vol.451
, pp. 1008-1012
-
-
Arany, Z.1
Foo, S.Y.2
Ma, Y.3
Ruas, J.L.4
Bommi-Reddy, A.5
Girnun, G.6
-
101
-
-
60549087508
-
PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells
-
O'Hagan K.A., Cocchiglia S., Zhdanov A.V., Tambuwala M.M., Cummins E.P., Monfared M., et al. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A 2009, 106:2188-2193.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 2188-2193
-
-
O'Hagan, K.A.1
Cocchiglia, S.2
Zhdanov, A.V.3
Tambuwala, M.M.4
Cummins, E.P.5
Monfared, M.6
-
102
-
-
34247614521
-
HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity
-
Zhang H., Gao P., Fukuda R., Kumar G., Krishnamachary B., Zeller K.I., et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 2007, 11:407-420.
-
(2007)
Cancer Cell
, vol.11
, pp. 407-420
-
-
Zhang, H.1
Gao, P.2
Fukuda, R.3
Kumar, G.4
Krishnamachary, B.5
Zeller, K.I.6
-
103
-
-
41549138483
-
A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
-
Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., Bruns N.E., et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 2008, 105:3374-3379.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 3374-3379
-
-
Lee, I.H.1
Cao, L.2
Mostoslavsky, R.3
Lombard, D.B.4
Liu, J.5
Bruns, N.E.6
-
104
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
-
Nemoto S., Fergusson M.M., Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 2005, 280:16456-16460.
-
(2005)
J Biol Chem
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
105
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease
-
Shin J.H., Ko H.S., Kang H., Lee Y., Lee Y.I., Pletinkova O., et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 2011, 144:689-702.
-
(2011)
Cell
, vol.144
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
Lee, Y.4
Lee, Y.I.5
Pletinkova, O.6
-
106
-
-
81055125669
-
NCoR1 is a conserved physiological modulator of muscle mass and oxidative function
-
Yamamoto H., Williams E.G., Mouchiroud L., Canto C., Fan W., Downes M., et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 2011, 147:827-839.
-
(2011)
Cell
, vol.147
, pp. 827-839
-
-
Yamamoto, H.1
Williams, E.G.2
Mouchiroud, L.3
Canto, C.4
Fan, W.5
Downes, M.6
-
107
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
McPhee, C.K.2
Zheng, L.3
Mardones, G.A.4
Rong, Y.5
Peng, J.6
-
108
-
-
84887415150
-
MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
Morita M., Gravel S.P., Chenard V., Sikstrom K., Zheng L., Alain T., et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013, 18:698-711.
-
(2013)
Cell Metab
, vol.18
, pp. 698-711
-
-
Morita, M.1
Gravel, S.P.2
Chenard, V.3
Sikstrom, K.4
Zheng, L.5
Alain, T.6
-
109
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham J.T., Rodgers J.T., Arlow D.H., Vazquez F., Mootha V.K., Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450:736-740.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
110
-
-
84863923855
-
PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
-
142ra97
-
Tsunemi T., Ashe T.D., Morrison B.E., Soriano K.R., Au J., Roque R.A., et al. PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 2012, 4:142ra97.
-
(2012)
Sci Transl Med
, vol.4
-
-
Tsunemi, T.1
Ashe, T.D.2
Morrison, B.E.3
Soriano, K.R.4
Au, J.5
Roque, R.A.6
-
111
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., Di Malta C., Polito V.A., Garcia Arencibia M., Vetrini F., Erdin S., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
-
112
-
-
84893500088
-
GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy
-
Scott I., Webster B.R., Chan C.K., Okonkwo J.U., Han K., Sack M.N. GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J Biol Chem 2014, 289:2864-2872.
-
(2014)
J Biol Chem
, vol.289
, pp. 2864-2872
-
-
Scott, I.1
Webster, B.R.2
Chan, C.K.3
Okonkwo, J.U.4
Han, K.5
Sack, M.N.6
-
113
-
-
0016611791
-
A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats
-
Pfeifer U., Scheller H. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J Cell Biol 1975, 64:608-621.
-
(1975)
J Cell Biol
, vol.64
, pp. 608-621
-
-
Pfeifer, U.1
Scheller, H.2
-
115
-
-
81255177778
-
Temporal orchestration of circadian autophagy rhythm by C/EBPbeta
-
Ma D., Panda S., Lin J.D. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 2011, 30:4642-4651.
-
(2011)
EMBO J
, vol.30
, pp. 4642-4651
-
-
Ma, D.1
Panda, S.2
Lin, J.D.3
-
116
-
-
84873254580
-
Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics
-
Cali T., Ottolini D., Negro A., Brini M. Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics. Biochim Biophys Acta 1832, 2013:495-508.
-
(1832)
Biochim Biophys Acta
, vol.2013
, pp. 495-508
-
-
Cali, T.1
Ottolini, D.2
Negro, A.3
Brini, M.4
-
117
-
-
77955398958
-
Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
-
Suen D.F., Narendra D.P., Tanaka A., Manfredi G., Youle R.J. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A 2010, 107:11835-11840.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 11835-11840
-
-
Suen, D.F.1
Narendra, D.P.2
Tanaka, A.3
Manfredi, G.4
Youle, R.J.5
-
118
-
-
46749086668
-
Diurnal variations in myocardial metabolism
-
Bray M.S., Young M.E. Diurnal variations in myocardial metabolism. Cardiovasc Res 2008, 79:228-237.
-
(2008)
Cardiovasc Res
, vol.79
, pp. 228-237
-
-
Bray, M.S.1
Young, M.E.2
-
119
-
-
39149108483
-
Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression
-
Bray M.S., Shaw C.A., Moore M.W., Garcia R.A., Zanquetta M.M., Durgan D.J., et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 2008, 294:H1036-H1047.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
, pp. H1036-H1047
-
-
Bray, M.S.1
Shaw, C.A.2
Moore, M.W.3
Garcia, R.A.4
Zanquetta, M.M.5
Durgan, D.J.6
-
120
-
-
0035824916
-
Intrinsic diurnal variations in cardiac metabolism and contractile function
-
Young M.E., Razeghi P., Cedars A.M., Guthrie P.H., Taegtmeyer H. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 2001, 89:1199-1208.
-
(2001)
Circ Res
, vol.89
, pp. 1199-1208
-
-
Young, M.E.1
Razeghi, P.2
Cedars, A.M.3
Guthrie, P.H.4
Taegtmeyer, H.5
-
121
-
-
84863083811
-
Circadian autophagy rhythm: a link between clock and metabolism?
-
Ma D., Li S., Molusky M.M., Lin J.D. Circadian autophagy rhythm: a link between clock and metabolism?. Trends Endocrinol Metab 2012, 23:319-325.
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 319-325
-
-
Ma, D.1
Li, S.2
Molusky, M.M.3
Lin, J.D.4
-
122
-
-
84879409964
-
Regulation of cardiac autophagy by insulin-like growth factor 1
-
Troncoso R., Diaz-Elizondo J., Espinoza S.P., Navarro-Marquez M.F., Oyarzun A.P., Riquelme J.A., et al. Regulation of cardiac autophagy by insulin-like growth factor 1. IUBMB Life 2013, 65:593-601.
-
(2013)
IUBMB Life
, vol.65
, pp. 593-601
-
-
Troncoso, R.1
Diaz-Elizondo, J.2
Espinoza, S.P.3
Navarro-Marquez, M.F.4
Oyarzun, A.P.5
Riquelme, J.A.6
-
123
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 2013, 17:491-506.
-
(2013)
Cell Metab
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
124
-
-
84875652238
-
Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E
-
Jhun B.S., Lee H., Jin Z.G., Yoon Y. Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E. PLoS One 2013, 8:e60810.
-
(2013)
PLoS One
, vol.8
, pp. e60810
-
-
Jhun, B.S.1
Lee, H.2
Jin, Z.G.3
Yoon, Y.4
-
125
-
-
84858234291
-
Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes
-
Holmstrom M.H., Iglesias-Gutierrez E., Zierath J.R., Garcia-Roves P.M. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am J Physiol Endocrinol Metab 2012, 302:E731-E739.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.302
, pp. E731-E739
-
-
Holmstrom, M.H.1
Iglesias-Gutierrez, E.2
Zierath, J.R.3
Garcia-Roves, P.M.4
-
126
-
-
84865610149
-
Autophagy, myocardial protection, and the metabolic syndrome
-
Giricz Z., Mentzer R.M., Gottlieb R.A. Autophagy, myocardial protection, and the metabolic syndrome. J Cardiovasc Pharmacol 2012, 60:125-132.
-
(2012)
J Cardiovasc Pharmacol
, vol.60
, pp. 125-132
-
-
Giricz, Z.1
Mentzer, R.M.2
Gottlieb, R.A.3
-
127
-
-
84863081685
-
Unmasking the janus faces of autophagy in obesity-associated insulin resistance and cardiac dysfunction
-
Xu X., Ren J. Unmasking the janus faces of autophagy in obesity-associated insulin resistance and cardiac dysfunction. Clin Exp Pharmacol Physiol 2012, 39:200-208.
-
(2012)
Clin Exp Pharmacol Physiol
, vol.39
, pp. 200-208
-
-
Xu, X.1
Ren, J.2
-
128
-
-
84857914471
-
Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome
-
Sciarretta S., Zhai P., Shao D., Maejima Y., Robbins J., Volpe M., et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012, 125:1134-1146.
-
(2012)
Circulation
, vol.125
, pp. 1134-1146
-
-
Sciarretta, S.1
Zhai, P.2
Shao, D.3
Maejima, Y.4
Robbins, J.5
Volpe, M.6
-
129
-
-
84899450022
-
A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo
-
Laker R.C., Xu P., Ryall K.A., Sujkowski A., Kenwood B.M., Chain K.H., et al. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 2014, 289:12005-12015.
-
(2014)
J Biol Chem
, vol.289
, pp. 12005-12015
-
-
Laker, R.C.1
Xu, P.2
Ryall, K.A.3
Sujkowski, A.4
Kenwood, B.M.5
Chain, K.H.6
-
130
-
-
84887499718
-
MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age
-
Ferree A.W., Trudeau K., Zik E., Benador I.Y., Twig G., Gottlieb R.A., et al. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 2013, 9:1887-1896.
-
(2013)
Autophagy
, vol.9
, pp. 1887-1896
-
-
Ferree, A.W.1
Trudeau, K.2
Zik, E.3
Benador, I.Y.4
Twig, G.5
Gottlieb, R.A.6
-
131
-
-
84862301849
-
The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy
-
Zhang J., Liu J., Liu L., McKeehan W.L., Wang F. The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy 2012, 8:690-691.
-
(2012)
Autophagy
, vol.8
, pp. 690-691
-
-
Zhang, J.1
Liu, J.2
Liu, L.3
McKeehan, W.L.4
Wang, F.5
-
132
-
-
84899450195
-
FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis
-
Sanchez A.M., Candau R.B., Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 2014, 71:1657-1671.
-
(2014)
Cell Mol Life Sci
, vol.71
, pp. 1657-1671
-
-
Sanchez, A.M.1
Candau, R.B.2
Bernardi, H.3
-
133
-
-
84908080008
-
Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise
-
Sanchez A.M., Bernardi H., Py G., Candau R. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014, 307:R956-R959.
-
(2014)
Am J Physiol Regul Integr Comp Physiol
, vol.307
, pp. R956-R959
-
-
Sanchez, A.M.1
Bernardi, H.2
Py, G.3
Candau, R.4
-
134
-
-
84857569701
-
FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity
-
Zhang J., Liu J., Huang Y., Chang J.Y., Liu L., McKeehan W.L., et al. FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res 2012, 110:e29-e39.
-
(2012)
Circ Res
, vol.110
, pp. e29-e39
-
-
Zhang, J.1
Liu, J.2
Huang, Y.3
Chang, J.Y.4
Liu, L.5
McKeehan, W.L.6
-
135
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen H., Detmer S.A., Ewald A.J., Griffin E.E., Fraser S.E., Chan D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003, 160:189-200.
-
(2003)
J Cell Biol
, vol.160
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
Fraser, S.E.5
Chan, D.C.6
-
136
-
-
0142058391
-
Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion
-
Eura Y., Ishihara N., Yokota S., Mihara K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem 2003, 134:333-344.
-
(2003)
J Biochem
, vol.134
, pp. 333-344
-
-
Eura, Y.1
Ishihara, N.2
Yokota, S.3
Mihara, K.4
-
137
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
de Brito O.M., Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008, 456:605-610.
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
de Brito, O.M.1
Scorrano, L.2
-
138
-
-
84863613170
-
Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes
-
Zhao T., Huang X., Han L., Wang X., Cheng H., Zhao Y., et al. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012, 287:23615-23625.
-
(2012)
J Biol Chem
, vol.287
, pp. 23615-23625
-
-
Zhao, T.1
Huang, X.2
Han, L.3
Wang, X.4
Cheng, H.5
Zhao, Y.6
-
139
-
-
84876889535
-
Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury
-
Siddall H.K., Yellon D.M., Ong S.B., Mukherjee U.A., Burke N., Hall A.R., et al. Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury. PLoS One 2013, 8:e62400.
-
(2013)
PLoS One
, vol.8
, pp. e62400
-
-
Siddall, H.K.1
Yellon, D.M.2
Ong, S.B.3
Mukherjee, U.A.4
Burke, N.5
Hall, A.R.6
-
140
-
-
0022970945
-
Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium
-
Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74:1124-1136.
-
(1986)
Circulation
, vol.74
, pp. 1124-1136
-
-
Murry, C.E.1
Jennings, R.B.2
Reimer, K.A.3
-
141
-
-
0037623908
-
Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning
-
Zhao Z.Q., Corvera J.S., Halkos M.E., Kerendi F., Wang N.P., Guyton R.A., et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003, 285:H579-H588.
-
(2003)
Am J Physiol Heart Circ Physiol
, vol.285
, pp. H579-H588
-
-
Zhao, Z.Q.1
Corvera, J.S.2
Halkos, M.E.3
Kerendi, F.4
Wang, N.P.5
Guyton, R.A.6
-
142
-
-
84899889966
-
Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice
-
Han Z., Cao J., Song D., Tian L., Chen K., Wang Y., et al. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS One 2014, 9:e86838.
-
(2014)
PLoS One
, vol.9
, pp. e86838
-
-
Han, Z.1
Cao, J.2
Song, D.3
Tian, L.4
Chen, K.5
Wang, Y.6
-
143
-
-
77955518491
-
Autophagy induced by ischemic preconditioning is essential for cardioprotection
-
Huang C., Yitzhaki S., Perry C.N., Liu W., Giricz Z., Mentzer R.M., et al. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J Cardiovasc Transl Res 2010, 3:365-373.
-
(2010)
J Cardiovasc Transl Res
, vol.3
, pp. 365-373
-
-
Huang, C.1
Yitzhaki, S.2
Perry, C.N.3
Liu, W.4
Giricz, Z.5
Mentzer, R.M.6
-
144
-
-
84877626889
-
Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts
-
Wei C., Li H., Han L., Zhang L., Yang X. Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts. J Cardiovasc Pharmacol 2013, 61:416-422.
-
(2013)
J Cardiovasc Pharmacol
, vol.61
, pp. 416-422
-
-
Wei, C.1
Li, H.2
Han, L.3
Zhang, L.4
Yang, X.5
-
145
-
-
84866992233
-
Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats
-
Gao L., Jiang T., Guo J., Liu Y., Cui G., Gu L., et al. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 2012, 7:e46092.
-
(2012)
PLoS One
, vol.7
, pp. e46092
-
-
Gao, L.1
Jiang, T.2
Guo, J.3
Liu, Y.4
Cui, G.5
Gu, L.6
-
146
-
-
84870398864
-
AKT/GSK3beta-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model
-
Qi Z.F., Luo Y.M., Liu X.R., Wang R.L., Zhao H.P., Yan F., et al. AKT/GSK3beta-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model. CNS Neurosci Ther 2012, 965-73.
-
(2012)
CNS Neurosci Ther
-
-
Qi, Z.F.1
Luo, Y.M.2
Liu, X.R.3
Wang, R.L.4
Zhao, H.P.5
Yan, F.6
-
147
-
-
77957221783
-
Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury
-
Sala-Mercado J.A., Wider J., Undyala V.V., Jahania S., Yoo W., Mentzer R.M., et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 2010, 122:S179-S184.
-
(2010)
Circulation
, vol.122
, pp. S179-S184
-
-
Sala-Mercado, J.A.1
Wider, J.2
Undyala, V.V.3
Jahania, S.4
Yoo, W.5
Mentzer, R.M.6
-
148
-
-
78650835776
-
Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging
-
Shinmura K., Tamaki K., Sano M., Murata M., Yamakawa H., Ishida H., et al. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 2011, 50:117-127.
-
(2011)
J Mol Cell Cardiol
, vol.50
, pp. 117-127
-
-
Shinmura, K.1
Tamaki, K.2
Sano, M.3
Murata, M.4
Yamakawa, H.5
Ishida, H.6
-
149
-
-
84895923936
-
Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy
-
Xie M., Kong Y., Tan W., May H., Battiprolu P.K., Pedrozo Z., et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 2014, 129:1139-1151.
-
(2014)
Circulation
, vol.129
, pp. 1139-1151
-
-
Xie, M.1
Kong, Y.2
Tan, W.3
May, H.4
Battiprolu, P.K.5
Pedrozo, Z.6
-
150
-
-
84877342029
-
Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity
-
Dutta D., Xu J., Kim J.S., Dunn W.A., Leeuwenburgh C. Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 2013, 9:328-344.
-
(2013)
Autophagy
, vol.9
, pp. 328-344
-
-
Dutta, D.1
Xu, J.2
Kim, J.S.3
Dunn, W.A.4
Leeuwenburgh, C.5
-
151
-
-
84894109257
-
Mammalian target of rapamycin signaling in cardiac physiology and disease
-
Sciarretta S., Volpe M., Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 2014, 114:549-564.
-
(2014)
Circ Res
, vol.114
, pp. 549-564
-
-
Sciarretta, S.1
Volpe, M.2
Sadoshima, J.3
-
152
-
-
84894466528
-
Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy
-
Xu X., Hua Y., Nair S., Bucala R., Ren J. Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy. Hypertension 2014, 63:490-499.
-
(2014)
Hypertension
, vol.63
, pp. 490-499
-
-
Xu, X.1
Hua, Y.2
Nair, S.3
Bucala, R.4
Ren, J.5
-
153
-
-
84865610149
-
Autophagy, myocardial protection and the metabolic syndrome
-
Giricz Z., Mentzer R.M., Gottlieb R.A. Autophagy, myocardial protection and the metabolic syndrome. J Cardiovasc Pharmacol 2012, 60:125-132.
-
(2012)
J Cardiovasc Pharmacol
, vol.60
, pp. 125-132
-
-
Giricz, Z.1
Mentzer, R.M.2
Gottlieb, R.A.3
-
154
-
-
84919786439
-
Role of autophagy in metabolic syndrome-associated heart disease
-
(epub ahead of print)
-
Ren S.Y., Xu X. Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 2014, (epub ahead of print). 10.1016/j.bbadis.2014.04.029.
-
(2014)
Biochim Biophys Acta
-
-
Ren, S.Y.1
Xu, X.2
-
155
-
-
84919822611
-
Autophagy and mitophagy in diabetic cardiomyopathy
-
(Epub ahead of print)
-
Kobayashi S., Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 2014, (Epub ahead of print). 10.1016/j.bbadis.2014.05.020.
-
(2014)
Biochim Biophys Acta
-
-
Kobayashi, S.1
Liang, Q.2
-
156
-
-
46749092545
-
Role of diet and fuel overabundance in the development and progression of heart failure
-
Chess D.J., Stanley W.C. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res 2008, 79:269-278.
-
(2008)
Cardiovasc Res
, vol.79
, pp. 269-278
-
-
Chess, D.J.1
Stanley, W.C.2
-
157
-
-
53849142124
-
Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome
-
[Silver Spring, Md]
-
Mozaffari M.S., Schaffer S.W. Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome. Obesity 2008, 16:2253-2258. [Silver Spring, Md].
-
(2008)
Obesity
, vol.16
, pp. 2253-2258
-
-
Mozaffari, M.S.1
Schaffer, S.W.2
-
158
-
-
70350754647
-
Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetes
-
Essop M.F., Anna Chan W.Y., Valle A., Garcia-Palmer F.J., Du Toit E.F. Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetes. Acta Physiol 2009, 197:289-296.
-
(2009)
Acta Physiol
, vol.197
, pp. 289-296
-
-
Essop, M.F.1
Anna Chan, W.Y.2
Valle, A.3
Garcia-Palmer, F.J.4
Du Toit, E.F.5
-
159
-
-
84894170825
-
Dietary fat, fatty acid saturation and mitochondrial bioenergetics
-
Yu L., Fink B.D., Herlein J.A., Oltman C.L., Lamping K.G., Sivitz W.I. Dietary fat, fatty acid saturation and mitochondrial bioenergetics. J Bioenerg Biomembr 2014, 46:33-44.
-
(2014)
J Bioenerg Biomembr
, vol.46
, pp. 33-44
-
-
Yu, L.1
Fink, B.D.2
Herlein, J.A.3
Oltman, C.L.4
Lamping, K.G.5
Sivitz, W.I.6
-
160
-
-
84905392441
-
The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development
-
Sin J., Puccini J.M., Huang C., Konstandin M.H., Gilbert P.E., Sussman M.A., et al. The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development. PLoS Pathog 2014, 10:e1004249.
-
(2014)
PLoS Pathog
, vol.10
, pp. e1004249
-
-
Sin, J.1
Puccini, J.M.2
Huang, C.3
Konstandin, M.H.4
Gilbert, P.E.5
Sussman, M.A.6
-
161
-
-
84901370753
-
Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers
-
Robinson S.M., Tsueng G., Sin J., Mangale V., Rahawi S., McIntyre L.L., et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 2014, 10:e1004045.
-
(2014)
PLoS Pathog
, vol.10
, pp. e1004045
-
-
Robinson, S.M.1
Tsueng, G.2
Sin, J.3
Mangale, V.4
Rahawi, S.5
McIntyre, L.L.6
-
162
-
-
84888291618
-
The role of autophagy in doxorubicin-induced cardiotoxicity
-
Dirks-Naylor A.J. The role of autophagy in doxorubicin-induced cardiotoxicity. Life Sci 2013, 93:913-916.
-
(2013)
Life Sci
, vol.93
, pp. 913-916
-
-
Dirks-Naylor, A.J.1
-
163
-
-
84897116012
-
Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK
-
Wang X., Wang X.L., Chen H.L., Wu D., Chen J.X., Wang X.X., et al. Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem Pharmacol 2014, 88:334-350.
-
(2014)
Biochem Pharmacol
, vol.88
, pp. 334-350
-
-
Wang, X.1
Wang, X.L.2
Chen, H.L.3
Wu, D.4
Chen, J.X.5
Wang, X.X.6
-
164
-
-
84869452725
-
Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes
-
Kawaguchi T., Takemura G., Kanamori H., Takeyama T., Watanabe T., Morishita K., et al. Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc Res 2012, 96:456-465.
-
(2012)
Cardiovasc Res
, vol.96
, pp. 456-465
-
-
Kawaguchi, T.1
Takemura, G.2
Kanamori, H.3
Takeyama, T.4
Watanabe, T.5
Morishita, K.6
-
165
-
-
84882425828
-
Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
-
Hoshino A., Mita Y., Okawa Y., Ariyoshi M., Iwai-Kanai E., Ueyama T., et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 2013, 4:2308.
-
(2013)
Nat Commun
, vol.4
, pp. 2308
-
-
Hoshino, A.1
Mita, Y.2
Okawa, Y.3
Ariyoshi, M.4
Iwai-Kanai, E.5
Ueyama, T.6
-
166
-
-
84871718306
-
Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity
-
Sishi B.J., Loos B., van Rooyen J., Engelbrecht A.M. Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochem Pharmacol 2013, 85:124-134.
-
(2013)
Biochem Pharmacol
, vol.85
, pp. 124-134
-
-
Sishi, B.J.1
Loos, B.2
van Rooyen, J.3
Engelbrecht, A.M.4
-
167
-
-
84893490518
-
Macrophage migration inhibitory factor deficiency augments doxorubicin-induced cardiomyopathy
-
Xu X., Bucala R., Ren J. Macrophage migration inhibitory factor deficiency augments doxorubicin-induced cardiomyopathy. J Am Heart Assoc 2013, 2:e000439.
-
(2013)
J Am Heart Assoc
, vol.2
, pp. e000439
-
-
Xu, X.1
Bucala, R.2
Ren, J.3
-
168
-
-
84901916253
-
Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction
-
Li S., Wang W., Niu T., Wang H., Li B., Shao L., et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev 2014, 2014:748524.
-
(2014)
Oxid Med Cell Longev
, vol.2014
, pp. 748524
-
-
Li, S.1
Wang, W.2
Niu, T.3
Wang, H.4
Li, B.5
Shao, L.6
-
169
-
-
84904717701
-
Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function
-
Neary M.T., Ng K.E., Ludtmann M.H., Hall A.R., Piotrowska I., Ong S.B., et al. Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. J Mol Cell Cardiol 2014, 74:340-352.
-
(2014)
J Mol Cell Cardiol
, vol.74
, pp. 340-352
-
-
Neary, M.T.1
Ng, K.E.2
Ludtmann, M.H.3
Hall, A.R.4
Piotrowska, I.5
Ong, S.B.6
-
170
-
-
84908480082
-
Mitochondrial adaptations during myocardial hypertrophy induced by abdominal aortic constriction
-
Mei Z., Wang X., Liu W., Gong J., Gao X., Zhang T., et al. Mitochondrial adaptations during myocardial hypertrophy induced by abdominal aortic constriction. Cardiovasc Pathol 2014, 23:283-288.
-
(2014)
Cardiovasc Pathol
, vol.23
, pp. 283-288
-
-
Mei, Z.1
Wang, X.2
Liu, W.3
Gong, J.4
Gao, X.5
Zhang, T.6
-
171
-
-
84908374171
-
Promoting PGC1alpha-driven mitochondrial biogenesis is detrimental in pressure overloaded mouse hearts
-
(epub ahead of print)
-
Karamanlidis G., Garcia Menendez L., Kolwicz S.C., Lee C.F., Tian R. Promoting PGC1alpha-driven mitochondrial biogenesis is detrimental in pressure overloaded mouse hearts. Am J Physiol Heart Circ Physiol 2014, (epub ahead of print). 10.1152/ajpheart.00280.2014.
-
(2014)
Am J Physiol Heart Circ Physiol
-
-
Karamanlidis, G.1
Garcia Menendez, L.2
Kolwicz, S.C.3
Lee, C.F.4
Tian, R.5
-
172
-
-
12144286554
-
Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner
-
Russell L.K., Mansfield C.M., Lehman J.J., Kovacs A., Courtois M., Saffitz J.E., et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 2004, 94:525-533.
-
(2004)
Circ Res
, vol.94
, pp. 525-533
-
-
Russell, L.K.1
Mansfield, C.M.2
Lehman, J.J.3
Kovacs, A.4
Courtois, M.5
Saffitz, J.E.6
-
173
-
-
84902539169
-
Valsartan regulates myocardial autophagy and mitochondrial turnover in experimental hypertension
-
Zhang X., Li Z.L., Crane J.A., Jordan K.L., Pawar A.S., Textor S.C., et al. Valsartan regulates myocardial autophagy and mitochondrial turnover in experimental hypertension. Hypertension 2014, 64:87-93.
-
(2014)
Hypertension
, vol.64
, pp. 87-93
-
-
Zhang, X.1
Li, Z.L.2
Crane, J.A.3
Jordan, K.L.4
Pawar, A.S.5
Textor, S.C.6
-
174
-
-
84863192578
-
Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia-reperfusion injury
-
Ma X., Liu H., Foyil S.R., Godar R.J., Weinheimer C.J., Hill J.A., et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia-reperfusion injury. Circulation 2012, 125:3170-3181.
-
(2012)
Circulation
, vol.125
, pp. 3170-3181
-
-
Ma, X.1
Liu, H.2
Foyil, S.R.3
Godar, R.J.4
Weinheimer, C.J.5
Hill, J.A.6
-
175
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong Y., Wang Q.J., Li X., Yan Y., Backer J.M., Chait B.T., et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009, 11:468-476.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 468-476
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
Yan, Y.4
Backer, J.M.5
Chait, B.T.6
-
176
-
-
84907707462
-
Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1
-
Miyata N., Steffen J., Johnson M.E., Fargue S., Danpure C.J., Koehler C.M. Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc Natl Acad Sci U S A 2014, 111:14406-14411.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 14406-14411
-
-
Miyata, N.1
Steffen, J.2
Johnson, M.E.3
Fargue, S.4
Danpure, C.J.5
Koehler, C.M.6
-
177
-
-
84899103245
-
MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle
-
Mohamed J.S., Hajira A., Pardo P.S., Boriek A.M. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle. Diabetes 2014, 63:1546-1559.
-
(2014)
Diabetes
, vol.63
, pp. 1546-1559
-
-
Mohamed, J.S.1
Hajira, A.2
Pardo, P.S.3
Boriek, A.M.4
-
178
-
-
84889025854
-
MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells
-
Kang T., Lu W., Xu W., Anderson L., Bacanamwo M., Thompson W., et al. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem 2013, 288:34394-34402.
-
(2013)
J Biol Chem
, vol.288
, pp. 34394-34402
-
-
Kang, T.1
Lu, W.2
Xu, W.3
Anderson, L.4
Bacanamwo, M.5
Thompson, W.6
-
179
-
-
84885185272
-
Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis
-
Cheng X., Ku C.H., Siow R.C. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med 2013, 64:4-11.
-
(2013)
Free Radic Biol Med
, vol.64
, pp. 4-11
-
-
Cheng, X.1
Ku, C.H.2
Siow, R.C.3
-
180
-
-
84907087913
-
MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin
-
Wang Z., Wang N., Liu P., Chen Q., Situ H., Xie T., et al. MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget 2014, 5:7013-7026.
-
(2014)
Oncotarget
, vol.5
, pp. 7013-7026
-
-
Wang, Z.1
Wang, N.2
Liu, P.3
Chen, Q.4
Situ, H.5
Xie, T.6
-
181
-
-
84911435656
-
MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1
-
(epub ahead of print)
-
Song L., Su M., Wang S., Zou Y., Wang X., Wang Y., et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med 2014, (epub ahead of print). 10.1111/jcmm.12380.
-
(2014)
J Cell Mol Med
-
-
Song, L.1
Su, M.2
Wang, S.3
Zou, Y.4
Wang, X.5
Wang, Y.6
-
182
-
-
84881353774
-
Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells
-
Seca H., Lima R.T., Lopes-Rodrigues V., Guimaraes J.E., Almeida G.M., Vasconcelos M.H. Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells. Curr Drug Targets 2013, 14:1135-1143.
-
(2013)
Curr Drug Targets
, vol.14
, pp. 1135-1143
-
-
Seca, H.1
Lima, R.T.2
Lopes-Rodrigues, V.3
Guimaraes, J.E.4
Almeida, G.M.5
Vasconcelos, M.H.6
-
183
-
-
84872240012
-
MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy
-
Pan W., Zhong Y., Cheng C., Liu B., Wang L., Li A., et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One 2013, 8:e53950.
-
(2013)
PLoS One
, vol.8
, pp. e53950
-
-
Pan, W.1
Zhong, Y.2
Cheng, C.3
Liu, B.4
Wang, L.5
Li, A.6
-
184
-
-
84864884448
-
Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells
-
Yu Y., Yang L., Zhao M., Zhu S., Kang R., Vernon P., et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 2012, 26:1752-1760.
-
(2012)
Leukemia
, vol.26
, pp. 1752-1760
-
-
Yu, Y.1
Yang, L.2
Zhao, M.3
Zhu, S.4
Kang, R.5
Vernon, P.6
|