-
1
-
-
80053391987
-
Hypertrophic cardiomyopathy
-
Ommen SR. Hypertrophic cardiomyopathy. Curr Probl Cardiol. 2011; 36: 409-53.
-
(2011)
Curr Probl Cardiol
, vol.36
, pp. 409-453
-
-
Ommen, S.R.1
-
2
-
-
84861917873
-
How do MYBPC3 mutations cause hypertrophic cardiomyopathy?
-
Marston S, Copeland O, Gehmlich K, et al. How do MYBPC3 mutations cause hypertrophic cardiomyopathy? J Muscle Res Cell Motil. 2012; 33: 75-80.
-
(2012)
J Muscle Res Cell Motil
, vol.33
, pp. 75-80
-
-
Marston, S.1
Copeland, O.2
Gehmlich, K.3
-
3
-
-
0037070514
-
Hypertrophic cardiomyopathy: a systematic review
-
Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002; 287: 1308-20.
-
(2002)
JAMA
, vol.287
, pp. 1308-1320
-
-
Maron, B.J.1
-
4
-
-
84872551624
-
Hypertrophic cardiomyopathy
-
Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013; 381: 242-55.
-
(2013)
Lancet
, vol.381
, pp. 242-255
-
-
Maron, B.J.1
Maron, M.S.2
-
5
-
-
83655172389
-
Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy
-
Schlossarek S, Englmann DR, Sultan KR, et al. Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy. Basic Res Cardiol. 2012; 107: 235.
-
(2012)
Basic Res Cardiol
, vol.107
, pp. 235
-
-
Schlossarek, S.1
Englmann, D.R.2
Sultan, K.R.3
-
6
-
-
84892425475
-
Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy
-
Cilvik SN, Wang JI, Lavine KJ, et al. Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy. PLoS ONE. 2013; 8: e82979.
-
(2013)
PLoS ONE
, vol.8
, pp. e82979
-
-
Cilvik, S.N.1
Wang, J.I.2
Lavine, K.J.3
-
7
-
-
84255192637
-
The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling
-
Schramm C, Fine DM, Edwards MA, et al. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol. 2012; 302: H231-43.
-
(2012)
Am J Physiol Heart Circ Physiol
, vol.302
, pp. H231-H243
-
-
Schramm, C.1
Fine, D.M.2
Edwards, M.A.3
-
8
-
-
84868687470
-
Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy
-
Liu X, Ye B, Miller S, et al. Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy. Mol Cell Biol. 2012; 32: 4493-504.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 4493-4504
-
-
Liu, X.1
Ye, B.2
Miller, S.3
-
9
-
-
0035902491
-
Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy
-
Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001; 104: 317-24.
-
(2001)
Circulation
, vol.104
, pp. 317-324
-
-
Patel, R.1
Nagueh, S.F.2
Tsybouleva, N.3
-
10
-
-
0028844204
-
Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy
-
Watkins H, Conner D, Thierfelder L, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995; 11: 434-7.
-
(1995)
Nat Genet
, vol.11
, pp. 434-437
-
-
Watkins, H.1
Conner, D.2
Thierfelder, L.3
-
11
-
-
0032580520
-
Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy
-
Niimura H, Bachinski LL, Sangwatanaroj S, et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med. 1998; 338: 1248-57.
-
(1998)
N Engl J Med
, vol.338
, pp. 1248-1257
-
-
Niimura, H.1
Bachinski, L.L.2
Sangwatanaroj, S.3
-
12
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012; 3: 1078.
-
(2012)
Nat Commun
, vol.3
, pp. 1078
-
-
Ucar, A.1
Gupta, S.K.2
Fiedler, J.3
-
13
-
-
70349202176
-
MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice
-
Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009; 119: 2772-86.
-
(2009)
J Clin Invest
, vol.119
, pp. 2772-2786
-
-
Callis, T.E.1
Pandya, K.2
Seok, H.Y.3
-
14
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13: 613-8.
-
(2007)
Nat Med
, vol.13
, pp. 613-618
-
-
Care, A.1
Catalucci, D.2
Felicetti, F.3
-
15
-
-
84865439215
-
MicroRNA-24 regulates cardiac fibrosis after myocardial infarction
-
Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 2012; 16: 2150-60.
-
(2012)
J Cell Mol Med
, vol.16
, pp. 2150-2160
-
-
Wang, J.1
Huang, W.2
Xu, R.3
-
16
-
-
70349254444
-
Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure
-
Rao PK, Toyama Y, Chiang HR, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009; 105: 585-94.
-
(2009)
Circ Res
, vol.105
, pp. 585-594
-
-
Rao, P.K.1
Toyama, Y.2
Chiang, H.R.3
-
17
-
-
84868474396
-
MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways
-
Ge Y, Pan S, Guan D, et al. MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways. Biochim Biophys Acta. 2013; 1832: 1-10.
-
(2013)
Biochim Biophys Acta
, vol.1832
, pp. 1-10
-
-
Ge, Y.1
Pan, S.2
Guan, D.3
-
18
-
-
84859564908
-
MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression
-
Wang C, Wang S, Zhao P, et al. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J Cell Biochem. 2012; 113: 2040-6.
-
(2012)
J Cell Biochem
, vol.113
, pp. 2040-2046
-
-
Wang, C.1
Wang, S.2
Zhao, P.3
-
19
-
-
84860157611
-
Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1
-
Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012; 94: 379-90.
-
(2012)
Cardiovasc Res
, vol.94
, pp. 379-390
-
-
Wang, X.1
Zhu, H.2
Zhang, X.3
-
20
-
-
77957225240
-
Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death
-
Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol. 2010; 49: 841-50.
-
(2010)
J Mol Cell Cardiol
, vol.49
, pp. 841-850
-
-
Zhang, X.1
Wang, X.2
Zhu, H.3
-
21
-
-
34447272449
-
Tuberous sclerosis complex: advances in diagnosis, genetics, and management
-
Schwartz RA, Fernandez G, Kotulska K, et al. Tuberous sclerosis complex: advances in diagnosis, genetics, and management. J Am Acad Dermatol. 2007; 57: 189-202.
-
(2007)
J Am Acad Dermatol
, vol.57
, pp. 189-202
-
-
Schwartz, R.A.1
Fernandez, G.2
Kotulska, K.3
-
22
-
-
34047095297
-
The two TORCs and Akt
-
Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007; 12: 487-502.
-
(2007)
Dev Cell
, vol.12
, pp. 487-502
-
-
Bhaskar, P.T.1
Hay, N.2
-
23
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008; 132: 27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
24
-
-
77955342581
-
Inhibition of autophagy in the heart induces age-related cardiomyopathy
-
Taneike M, Yamaguchi O, Nakai A, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 2010; 6: 600-6.
-
(2010)
Autophagy
, vol.6
, pp. 600-606
-
-
Taneike, M.1
Yamaguchi, O.2
Nakai, A.3
-
25
-
-
84890072367
-
Enhanced autophagy ameliorates cardiac proteinopathy
-
Bhuiyan MS, Pattison JS, Osinska H, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest. 2013; 123: 5284-97.
-
(2013)
J Clin Invest
, vol.123
, pp. 5284-5297
-
-
Bhuiyan, M.S.1
Pattison, J.S.2
Osinska, H.3
-
26
-
-
84872184492
-
Reactivation of autophagy ameliorates LMNA cardiomyopathy
-
Choi JC, Worman HJ. Reactivation of autophagy ameliorates LMNA cardiomyopathy. Autophagy. 2013; 9: 110-1.
-
(2013)
Autophagy
, vol.9
, pp. 110-111
-
-
Choi, J.C.1
Worman, H.J.2
-
28
-
-
84885580133
-
Cardiovascular autophagy: concepts, controversies and perspectives
-
Lavandero S, Troncoso R, Rothermel BA, et al. Cardiovascular autophagy: concepts, controversies and perspectives. Autophagy. 2013; 9: 1455-66.
-
(2013)
Autophagy
, vol.9
, pp. 1455-1466
-
-
Lavandero, S.1
Troncoso, R.2
Rothermel, B.A.3
-
29
-
-
34447133404
-
Cardiac autophagy is a maladaptive response to hemodynamic stress
-
Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007; 117: 1782-93.
-
(2007)
J Clin Invest
, vol.117
, pp. 1782-1793
-
-
Zhu, H.1
Tannous, P.2
Johnstone, J.L.3
-
30
-
-
77955290360
-
MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice
-
Zhang D, Contu R, Latronico MV, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest. 2010; 120: 2805-16.
-
(2010)
J Clin Invest
, vol.120
, pp. 2805-2816
-
-
Zhang, D.1
Contu, R.2
Latronico, M.V.3
-
31
-
-
77950998587
-
Autophagy in transition from hypertrophic cardiomyopathy to heart failure
-
Fidzianska A, Bilinska ZT, Walczak E, et al. Autophagy in transition from hypertrophic cardiomyopathy to heart failure. J Electron Microsc. 2010; 59: 181-3.
-
(2010)
J Electron Microsc
, vol.59
, pp. 181-183
-
-
Fidzianska, A.1
Bilinska, Z.T.2
Walczak, E.3
-
32
-
-
77649259296
-
MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells
-
Godlewski J, Nowicki MO, Bronisz A, et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010; 37: 620-32.
-
(2010)
Mol Cell
, vol.37
, pp. 620-632
-
-
Godlewski, J.1
Nowicki, M.O.2
Bronisz, A.3
-
33
-
-
77956790980
-
microRNA-451: a conditional switch controlling glioma cell proliferation and migration
-
Godlewski J, Bronisz A, Nowicki MO, et al. microRNA-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle. 2010; 9: 2742-8.
-
(2010)
Cell Cycle
, vol.9
, pp. 2742-2748
-
-
Godlewski, J.1
Bronisz, A.2
Nowicki, M.O.3
-
34
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003; 115: 577-90.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
35
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008; 30: 214-26.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
36
-
-
80053476420
-
The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
-
Egan D, Kim J, Shaw RJ, et al. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011; 7: 643-4.
-
(2011)
Autophagy
, vol.7
, pp. 643-644
-
-
Egan, D.1
Kim, J.2
Shaw, R.J.3
-
37
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011; 331: 456-61.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
-
38
-
-
84875232070
-
Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy
-
Papadakis M, Hadley G, Xilouri M, et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat Med. 2013; 19: 351-7.
-
(2013)
Nat Med
, vol.19
, pp. 351-357
-
-
Papadakis, M.1
Hadley, G.2
Xilouri, M.3
-
39
-
-
84884319880
-
MTORC1 determines autophagy through ULK1 regulation in skeletal muscle
-
Castets P, Ruegg MA. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. Autophagy. 2013; 9: 1435-7.
-
(2013)
Autophagy
, vol.9
, pp. 1435-1437
-
-
Castets, P.1
Ruegg, M.A.2
|