메뉴 건너뛰기




Volumn 23, Issue 7, 2012, Pages 319-325

Circadian autophagy rhythm: A link between clock and metabolism?

Author keywords

[No Author keywords available]

Indexed keywords

BECLIN 1; HISTONE DEACETYLASE 3; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MAMMALIAN TARGET OF RAPAMYCIN; MESSENGER RNA; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1; NUCLEAR RECEPTOR NR1D1; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PROTEIN BMAL1; PROTEOME; SIRTUIN 1; VERY LOW DENSITY LIPOPROTEIN;

EID: 84863083811     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2012.03.004     Document Type: Review
Times cited : (73)

References (104)
  • 1
    • 79551534130 scopus 로고    scopus 로고
    • Crosstalk between components of circadian and metabolic cycles in mammals
    • Asher G., Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011, 13:125-137.
    • (2011) Cell Metab. , vol.13 , pp. 125-137
    • Asher, G.1    Schibler, U.2
  • 2
    • 50249100374 scopus 로고    scopus 로고
    • The meter of metabolism
    • Green C.B., et al. The meter of metabolism. Cell 2008, 134:728-742.
    • (2008) Cell , vol.134 , pp. 728-742
    • Green, C.B.1
  • 3
    • 0035997367 scopus 로고    scopus 로고
    • Metabolism and the control of circadian rhythms
    • Rutter J., et al. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 2002, 71:307-331.
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 307-331
    • Rutter, J.1
  • 4
    • 4544362674 scopus 로고    scopus 로고
    • Mammalian circadian biology: elucidating genome-wide levels of temporal organization
    • Lowrey P.L., Takahashi J.S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 2004, 5:407-441.
    • (2004) Annu. Rev. Genomics Hum. Genet. , vol.5 , pp. 407-441
    • Lowrey, P.L.1    Takahashi, J.S.2
  • 5
    • 78349311677 scopus 로고    scopus 로고
    • Genomics and systems approaches in the mammalian circadian clock
    • Baggs J.E., Hogenesch J.B. Genomics and systems approaches in the mammalian circadian clock. Curr. Opin. Genet. Dev. 2010, 20:581-587.
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 581-587
    • Baggs, J.E.1    Hogenesch, J.B.2
  • 6
    • 33745329809 scopus 로고    scopus 로고
    • The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification
    • Gachon F., et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006, 4:25-36.
    • (2006) Cell Metab. , vol.4 , pp. 25-36
    • Gachon, F.1
  • 7
    • 0016726198 scopus 로고
    • Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle
    • Hems D.A., et al. Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle. Biochem. J. 1975, 150:167-173.
    • (1975) Biochem. J. , vol.150 , pp. 167-173
    • Hems, D.A.1
  • 8
    • 0014780026 scopus 로고
    • Circadian rhythm of mouse liver phosphoenolpyruvate carboxykinase
    • Phillips L.J., Berry L.J. Circadian rhythm of mouse liver phosphoenolpyruvate carboxykinase. Am. J. Physiol. 1970, 218:1440-1444.
    • (1970) Am. J. Physiol. , vol.218 , pp. 1440-1444
    • Phillips, L.J.1    Berry, L.J.2
  • 9
    • 0015480730 scopus 로고
    • In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat
    • Edwards P.A., et al. In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat. J. Lipid Res. 1972, 13:396-401.
    • (1972) J. Lipid Res. , vol.13 , pp. 396-401
    • Edwards, P.A.1
  • 10
    • 79953329154 scopus 로고    scopus 로고
    • Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP
    • Pan X., et al. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 2010, 12:174-186.
    • (2010) Cell Metab. , vol.12 , pp. 174-186
    • Pan, X.1
  • 11
    • 0035047945 scopus 로고    scopus 로고
    • Molecular analysis of mammalian circadian rhythms
    • Reppert S.M., Weaver D.R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 2001, 63:647-676.
    • (2001) Annu. Rev. Physiol. , vol.63 , pp. 647-676
    • Reppert, S.M.1    Weaver, D.R.2
  • 12
    • 34548853967 scopus 로고    scopus 로고
    • Identification of the circadian transcriptome in adult mouse skeletal muscle
    • McCarthy J.J., et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 2007, 31:86-95.
    • (2007) Physiol. Genomics , vol.31 , pp. 86-95
    • McCarthy, J.J.1
  • 13
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1
  • 14
    • 0037007625 scopus 로고    scopus 로고
    • Extensive and divergent circadian gene expression in liver and heart
    • Storch K.F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
    • (2002) Nature , vol.417 , pp. 78-83
    • Storch, K.F.1
  • 15
    • 0036682099 scopus 로고    scopus 로고
    • A transcription factor response element for gene expression during circadian night
    • Ueda H.R., et al. A transcription factor response element for gene expression during circadian night. Nature 2002, 418:534-539.
    • (2002) Nature , vol.418 , pp. 534-539
    • Ueda, H.R.1
  • 16
    • 33645790960 scopus 로고    scopus 로고
    • Characterization of peripheral circadian clocks in adipose tissues
    • Zvonic S., et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006, 55:962-970.
    • (2006) Diabetes , vol.55 , pp. 962-970
    • Zvonic, S.1
  • 17
    • 79952261359 scopus 로고    scopus 로고
    • Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
    • Rey G., et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 2011, 9:e1000595.
    • (2011) PLoS Biol. , vol.9
    • Rey, G.1
  • 18
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng D., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331:1315-1319.
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 19
    • 72649087136 scopus 로고    scopus 로고
    • Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver
    • Cretenet G., et al. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab. 2010, 11:47-57.
    • (2010) Cell Metab. , vol.11 , pp. 47-57
    • Cretenet, G.1
  • 20
    • 33747157406 scopus 로고    scopus 로고
    • Nuclear receptor expression links the circadian clock to metabolism
    • Yang X., et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006, 126:801-810.
    • (2006) Cell , vol.126 , pp. 801-810
    • Yang, X.1
  • 21
    • 76749139528 scopus 로고    scopus 로고
    • The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
    • Schmutz I., et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2011, 24:345-357.
    • (2011) Genes Dev. , vol.24 , pp. 345-357
    • Schmutz, I.1
  • 22
    • 84255206549 scopus 로고    scopus 로고
    • Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
    • Lamia K.A., et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011, 480:552-556.
    • (2011) Nature , vol.480 , pp. 552-556
    • Lamia, K.A.1
  • 23
    • 70349764508 scopus 로고    scopus 로고
    • REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis
    • Le Martelot G., et al. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 2009, 7:e1000181.
    • (2009) PLoS Biol. , vol.7
    • Le Martelot, G.1
  • 24
    • 33744792310 scopus 로고    scopus 로고
    • Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response
    • Rosenfeld M.G., et al. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006, 20:1405-1428.
    • (2006) Genes Dev. , vol.20 , pp. 1405-1428
    • Rosenfeld, M.G.1
  • 25
    • 5444264003 scopus 로고    scopus 로고
    • Biological control through regulated transcriptional coactivators
    • Spiegelman B.M., Heinrich R. Biological control through regulated transcriptional coactivators. Cell 2004, 119:157-167.
    • (2004) Cell , vol.119 , pp. 157-167
    • Spiegelman, B.M.1    Heinrich, R.2
  • 26
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
    • Finck B.N., Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006, 116:615-622.
    • (2006) J. Clin. Invest. , vol.116 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 27
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • Lin J., et al. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1:361-370.
    • (2005) Cell Metab. , vol.1 , pp. 361-370
    • Lin, J.1
  • 28
    • 34249275727 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
    • Liu C., et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007, 447:477-481.
    • (2007) Nature , vol.447 , pp. 477-481
    • Liu, C.1
  • 29
    • 82055194432 scopus 로고    scopus 로고
    • Circadian metabolic regulation through crosstalk between casein kinase 1δ and transcriptional coactivator PGC-1α
    • Li S., et al. Circadian metabolic regulation through crosstalk between casein kinase 1δ and transcriptional coactivator PGC-1α. Mol. Endocrinol. 2011, 25:2084-2093.
    • (2011) Mol. Endocrinol. , vol.25 , pp. 2084-2093
    • Li, S.1
  • 30
    • 22344445394 scopus 로고    scopus 로고
    • The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene
    • Yin L., Lazar M.A. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 2005, 19:1452-1459.
    • (2005) Mol. Endocrinol. , vol.19 , pp. 1452-1459
    • Yin, L.1    Lazar, M.A.2
  • 31
    • 73449091515 scopus 로고    scopus 로고
    • Rev-erb-α: an integrator of circadian rhythms and metabolism
    • Duez H., Staels B. Rev-erb-α: an integrator of circadian rhythms and metabolism. J. Appl. Physiol. 2009, 107:1972-1980.
    • (2009) J. Appl. Physiol. , vol.107 , pp. 1972-1980
    • Duez, H.1    Staels, B.2
  • 32
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 33
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 34
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G., et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142:943-953.
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1
  • 35
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • Bai P., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011, 13:461-468.
    • (2011) Cell Metab. , vol.13 , pp. 461-468
    • Bai, P.1
  • 36
    • 34547127625 scopus 로고    scopus 로고
    • Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2
    • Um J.H., et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J. Biol. Chem. 2007, 282:20794-20798.
    • (2007) J. Biol. Chem. , vol.282 , pp. 20794-20798
    • Um, J.H.1
  • 37
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1
  • 38
    • 0033661133 scopus 로고    scopus 로고
    • Pathophysiology of human circadian rhythms
    • discussion 157-162
    • Copinschi G., et al. Pathophysiology of human circadian rhythms. Novartis Found. Symp. 2000, 227:143-157. discussion 157-162.
    • (2000) Novartis Found. Symp. , vol.227 , pp. 143-157
    • Copinschi, G.1
  • 39
    • 63149163425 scopus 로고    scopus 로고
    • Adverse metabolic and cardiovascular consequences of circadian misalignment
    • Scheer F.A., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4453-4458.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4453-4458
    • Scheer, F.A.1
  • 40
    • 0033598598 scopus 로고    scopus 로고
    • Impact of sleep debt on metabolic and endocrine function
    • Spiegel K., et al. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354:1435-1439.
    • (1999) Lancet , vol.354 , pp. 1435-1439
    • Spiegel, K.1
  • 41
    • 77957253419 scopus 로고    scopus 로고
    • Obesity and shift work: chronobiological aspects
    • Antunes L.C., et al. Obesity and shift work: chronobiological aspects. Nutr. Res. Rev. 2010, 23:155-168.
    • (2010) Nutr. Res. Rev. , vol.23 , pp. 155-168
    • Antunes, L.C.1
  • 42
    • 77954848215 scopus 로고    scopus 로고
    • Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
    • Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
    • (2010) Nature , vol.466 , pp. 627-631
    • Marcheva, B.1
  • 43
    • 20844461135 scopus 로고    scopus 로고
    • Obesity and metabolic syndrome in circadian Clock mutant mice
    • Turek F.W., et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005, 308:1043-1045.
    • (2005) Science , vol.308 , pp. 1043-1045
    • Turek, F.W.1
  • 44
    • 54449085416 scopus 로고    scopus 로고
    • Physiological significance of a peripheral tissue circadian clock
    • Lamia K.A., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15172-15177.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 15172-15177
    • Lamia, K.A.1
  • 45
    • 78649864368 scopus 로고    scopus 로고
    • Light at night increases body mass by shifting the time of food intake
    • Fonken L.K., et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18664-18669.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 18664-18669
    • Fonken, L.K.1
  • 46
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: a history of macroautophagy
    • Yang Z., Klionsky D.J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 2010, 12:814-822.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 47
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009, 43:67-93.
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 48
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma A., et al. The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
    • (2004) Nature , vol.432 , pp. 1032-1036
    • Kuma, A.1
  • 49
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • Mizushima N., et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 2004, 15:1101-1111.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1
  • 50
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: renovation of cells and tissues
    • Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 51
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Ebato C., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008, 8:325-332.
    • (2008) Cell Metab. , vol.8 , pp. 325-332
    • Ebato, C.1
  • 52
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
    • Jung H.S., et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008, 8:318-324.
    • (2008) Cell Metab. , vol.8 , pp. 318-324
    • Jung, H.S.1
  • 53
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 54
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Liang X.H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1
  • 55
    • 78149319082 scopus 로고    scopus 로고
    • Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration
    • Grumati P., et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat. Med. 2010, 16:1313-1320.
    • (2010) Nat. Med. , vol.16 , pp. 1313-1320
    • Grumati, P.1
  • 56
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1
  • 57
    • 0019349745 scopus 로고
    • Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats
    • Pfeifer U., Strauss P. Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats. J. Mol. Cell. Cardiol. 1981, 13:37-49.
    • (1981) J. Mol. Cell. Cardiol. , vol.13 , pp. 37-49
    • Pfeifer, U.1    Strauss, P.2
  • 58
    • 0016611791 scopus 로고
    • A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats
    • Pfeifer U., Scheller H. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J. Cell Biol. 1975, 64:608-621.
    • (1975) J. Cell Biol. , vol.64 , pp. 608-621
    • Pfeifer, U.1    Scheller, H.2
  • 59
    • 81255177778 scopus 로고    scopus 로고
    • Temporal orchestration of circadian autophagy rhythm by C/EBPbeta
    • Ma D., et al. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J. 2011, 30:4642-4651.
    • (2011) EMBO J. , vol.30 , pp. 4642-4651
    • Ma, D.1
  • 60
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes
    • Tu B.P., et al. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
    • (2005) Science , vol.310 , pp. 1152-1158
    • Tu, B.P.1
  • 61
    • 0033637383 scopus 로고    scopus 로고
    • Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
    • Damiola F., et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14:2950-2961.
    • (2000) Genes Dev. , vol.14 , pp. 2950-2961
    • Damiola, F.1
  • 62
    • 0015265211 scopus 로고
    • Inverted diurnal rhythm of cellular autophagy in liver cells of rats fed a single daily meal
    • Pfeifer U. Inverted diurnal rhythm of cellular autophagy in liver cells of rats fed a single daily meal. Virchows Arch. B: Cell. Pathol. 1972, 10:1-3.
    • (1972) Virchows Arch. B: Cell. Pathol. , vol.10 , pp. 1-3
    • Pfeifer, U.1
  • 63
    • 0028853334 scopus 로고
    • Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages
    • Tanaka T., et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 1995, 80:353-361.
    • (1995) Cell , vol.80 , pp. 353-361
    • Tanaka, T.1
  • 64
    • 0035808330 scopus 로고    scopus 로고
    • Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism
    • Croniger C.M., et al. Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism. J. Biol. Chem. 2001, 276:629-638.
    • (2001) J. Biol. Chem. , vol.276 , pp. 629-638
    • Croniger, C.M.1
  • 65
    • 0026050219 scopus 로고
    • Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells
    • Cao Z., et al. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991, 5:1538-1552.
    • (1991) Genes Dev. , vol.5 , pp. 1538-1552
    • Cao, Z.1
  • 66
    • 0025297353 scopus 로고
    • A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family
    • Akira S., et al. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990, 9:1897-1906.
    • (1990) EMBO J. , vol.9 , pp. 1897-1906
    • Akira, S.1
  • 67
    • 0034640262 scopus 로고    scopus 로고
    • Increased insulin receptor substrate-1 and enhanced skeletal muscle insulin sensitivity in mice lacking CCAAT/enhancer-binding protein beta
    • Wang L., et al. Increased insulin receptor substrate-1 and enhanced skeletal muscle insulin sensitivity in mice lacking CCAAT/enhancer-binding protein beta. J. Biol. Chem. 2000, 275:14173-14181.
    • (2000) J. Biol. Chem. , vol.275 , pp. 14173-14181
    • Wang, L.1
  • 68
    • 36448940798 scopus 로고    scopus 로고
    • FoxO3 controls autophagy in skeletal muscle in vivo
    • Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
    • (2007) Cell Metab. , vol.6 , pp. 458-471
    • Mammucari, C.1
  • 69
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao J., et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6:472-483.
    • (2007) Cell Metab. , vol.6 , pp. 472-483
    • Zhao, J.1
  • 70
    • 70350500068 scopus 로고    scopus 로고
    • FoxO transcription factors promote autophagy in cardiomyocytes
    • Sengupta A., et al. FoxO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem. 2009, 284:28319-28331.
    • (2009) J. Biol. Chem. , vol.284 , pp. 28319-28331
    • Sengupta, A.1
  • 71
    • 79953756678 scopus 로고    scopus 로고
    • Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy
    • Seo Y.K., et al. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab. 2011, 13:367-375.
    • (2011) Cell Metab. , vol.13 , pp. 367-375
    • Seo, Y.K.1
  • 72
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre C., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 73
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello M., et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 74
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley I.G., et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284:12297-12305.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12297-12305
    • Ganley, I.G.1
  • 75
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung C.H., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 76
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1
  • 77
    • 79953211917 scopus 로고    scopus 로고
    • Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
    • Shang L., et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4788-4793.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 4788-4793
    • Shang, L.1
  • 78
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1
  • 79
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 80
    • 63449135737 scopus 로고    scopus 로고
    • Diurnal variation of the human adipose transcriptome and the link to metabolic disease
    • Loboda A., et al. Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Med. Genomics 2009, 2:7.
    • (2009) BMC Med. Genomics , vol.2 , pp. 7
    • Loboda, A.1
  • 81
    • 67649875655 scopus 로고    scopus 로고
    • Measurement of internal body time by blood metabolomics
    • Minami Y., et al. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9890-9895.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9890-9895
    • Minami, Y.1
  • 82
    • 79959952405 scopus 로고    scopus 로고
    • Liver autophagy contributes to the maintenance of blood glucose and amino acid levels
    • Ezaki J., et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 2011, 7:727-736.
    • (2011) Autophagy , vol.7 , pp. 727-736
    • Ezaki, J.1
  • 83
    • 33744515807 scopus 로고    scopus 로고
    • Circadian orchestration of the hepatic proteome
    • Reddy A.B., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
    • (2006) Curr. Biol. , vol.16 , pp. 1107-1115
    • Reddy, A.B.1
  • 85
    • 0025064603 scopus 로고
    • Rhythms in morphology and function of hepatocytes
    • Uchiyama Y. Rhythms in morphology and function of hepatocytes. J. Gastroenterol. Hepatol. 1990, 5:321-333.
    • (1990) J. Gastroenterol. Hepatol. , vol.5 , pp. 321-333
    • Uchiyama, Y.1
  • 86
    • 79955377420 scopus 로고    scopus 로고
    • Autophagy-deficient mice develop multiple liver tumors
    • Takamura A., et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011, 25:795-800.
    • (2011) Genes Dev. , vol.25 , pp. 795-800
    • Takamura, A.1
  • 87
    • 77954597127 scopus 로고    scopus 로고
    • An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis
    • Hidvegi T., et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010, 329:229-232.
    • (2010) Science , vol.329 , pp. 229-232
    • Hidvegi, T.1
  • 88
    • 71449091240 scopus 로고    scopus 로고
    • Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin
    • Liu H.Y., et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 2009, 284:31484-31492.
    • (2009) J. Biol. Chem. , vol.284 , pp. 31484-31492
    • Liu, H.Y.1
  • 89
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1
  • 90
    • 33744755382 scopus 로고    scopus 로고
    • Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B
    • Ohsaki Y., et al. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol. Biol. Cell 2006, 17:2674-2683.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2674-2683
    • Ohsaki, Y.1
  • 91
    • 34548312474 scopus 로고    scopus 로고
    • Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels
    • Pan X., Hussain M.M. Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels. J. Biol. Chem. 2007, 282:24707-24719.
    • (2007) J. Biol. Chem. , vol.282 , pp. 24707-24719
    • Pan, X.1    Hussain, M.M.2
  • 92
    • 73949124173 scopus 로고    scopus 로고
    • Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
    • Zhang Y., et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19860-19865.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19860-19865
    • Zhang, Y.1
  • 93
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • Singh R., et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 2009, 119:3329-3339.
    • (2009) J. Clin. Invest. , vol.119 , pp. 3329-3339
    • Singh, R.1
  • 94
    • 77951897767 scopus 로고    scopus 로고
    • Systems biology of mammalian circadian clocks
    • Ukai H., Ueda H.R. Systems biology of mammalian circadian clocks. Annu. Rev. Physiol. 2010, 72:579-603.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 579-603
    • Ukai, H.1    Ueda, H.R.2
  • 95
    • 77951889295 scopus 로고    scopus 로고
    • The mammalian circadian timing system: organization and coordination of central and peripheral clocks
    • Dibner C., et al. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72:517-549.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 517-549
    • Dibner, C.1
  • 96
    • 77951927020 scopus 로고    scopus 로고
    • Suprachiasmatic nucleus: cell autonomy and network properties
    • Welsh D.K., et al. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 2010, 72:551-577.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 551-577
    • Welsh, D.K.1
  • 97
    • 33144465537 scopus 로고    scopus 로고
    • Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock
    • Yin L., et al. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 2006, 311:1002-1005.
    • (2006) Science , vol.311 , pp. 1002-1005
    • Yin, L.1
  • 98
    • 70349330769 scopus 로고    scopus 로고
    • Post-translational modifications in circadian rhythms
    • Mehra A., et al. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 2009, 34:483-490.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 483-490
    • Mehra, A.1
  • 99
    • 84925879082 scopus 로고    scopus 로고
    • Role of sleep and sleep loss in hormonal release and metabolism
    • Leproult R., Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr. Dev. 2010, 17:11-21.
    • (2010) Endocr. Dev. , vol.17 , pp. 11-21
    • Leproult, R.1    Van Cauter, E.2
  • 100
    • 14044264801 scopus 로고    scopus 로고
    • BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
    • Rudic R.D., et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004, 2:e377.
    • (2004) PLoS Biol. , vol.2
    • Rudic, R.D.1
  • 101
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • Mizushima N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 102
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G., et al. Autophagy and the integrated stress response. Mol. Cell 2010, 40:280-293.
    • (2010) Mol. Cell , vol.40 , pp. 280-293
    • Kroemer, G.1
  • 103
    • 77955708390 scopus 로고    scopus 로고
    • Overview of macroautophagy regulation in mammalian cells
    • Mehrpour M., et al. Overview of macroautophagy regulation in mammalian cells. Cell Res. 2010, 20:748-762.
    • (2010) Cell Res. , vol.20 , pp. 748-762
    • Mehrpour, M.1
  • 104
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.