-
1
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher G., Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011, 13:125-137.
-
(2011)
Cell Metab.
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
2
-
-
50249100374
-
The meter of metabolism
-
Green C.B., et al. The meter of metabolism. Cell 2008, 134:728-742.
-
(2008)
Cell
, vol.134
, pp. 728-742
-
-
Green, C.B.1
-
3
-
-
0035997367
-
Metabolism and the control of circadian rhythms
-
Rutter J., et al. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 2002, 71:307-331.
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 307-331
-
-
Rutter, J.1
-
4
-
-
4544362674
-
Mammalian circadian biology: elucidating genome-wide levels of temporal organization
-
Lowrey P.L., Takahashi J.S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 2004, 5:407-441.
-
(2004)
Annu. Rev. Genomics Hum. Genet.
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
5
-
-
78349311677
-
Genomics and systems approaches in the mammalian circadian clock
-
Baggs J.E., Hogenesch J.B. Genomics and systems approaches in the mammalian circadian clock. Curr. Opin. Genet. Dev. 2010, 20:581-587.
-
(2010)
Curr. Opin. Genet. Dev.
, vol.20
, pp. 581-587
-
-
Baggs, J.E.1
Hogenesch, J.B.2
-
6
-
-
33745329809
-
The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification
-
Gachon F., et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006, 4:25-36.
-
(2006)
Cell Metab.
, vol.4
, pp. 25-36
-
-
Gachon, F.1
-
7
-
-
0016726198
-
Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle
-
Hems D.A., et al. Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle. Biochem. J. 1975, 150:167-173.
-
(1975)
Biochem. J.
, vol.150
, pp. 167-173
-
-
Hems, D.A.1
-
8
-
-
0014780026
-
Circadian rhythm of mouse liver phosphoenolpyruvate carboxykinase
-
Phillips L.J., Berry L.J. Circadian rhythm of mouse liver phosphoenolpyruvate carboxykinase. Am. J. Physiol. 1970, 218:1440-1444.
-
(1970)
Am. J. Physiol.
, vol.218
, pp. 1440-1444
-
-
Phillips, L.J.1
Berry, L.J.2
-
9
-
-
0015480730
-
In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat
-
Edwards P.A., et al. In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat. J. Lipid Res. 1972, 13:396-401.
-
(1972)
J. Lipid Res.
, vol.13
, pp. 396-401
-
-
Edwards, P.A.1
-
10
-
-
79953329154
-
Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP
-
Pan X., et al. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 2010, 12:174-186.
-
(2010)
Cell Metab.
, vol.12
, pp. 174-186
-
-
Pan, X.1
-
11
-
-
0035047945
-
Molecular analysis of mammalian circadian rhythms
-
Reppert S.M., Weaver D.R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 2001, 63:647-676.
-
(2001)
Annu. Rev. Physiol.
, vol.63
, pp. 647-676
-
-
Reppert, S.M.1
Weaver, D.R.2
-
12
-
-
34548853967
-
Identification of the circadian transcriptome in adult mouse skeletal muscle
-
McCarthy J.J., et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 2007, 31:86-95.
-
(2007)
Physiol. Genomics
, vol.31
, pp. 86-95
-
-
McCarthy, J.J.1
-
13
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
14
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch K.F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
-
15
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda H.R., et al. A transcription factor response element for gene expression during circadian night. Nature 2002, 418:534-539.
-
(2002)
Nature
, vol.418
, pp. 534-539
-
-
Ueda, H.R.1
-
16
-
-
33645790960
-
Characterization of peripheral circadian clocks in adipose tissues
-
Zvonic S., et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006, 55:962-970.
-
(2006)
Diabetes
, vol.55
, pp. 962-970
-
-
Zvonic, S.1
-
17
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G., et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 2011, 9:e1000595.
-
(2011)
PLoS Biol.
, vol.9
-
-
Rey, G.1
-
18
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331:1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
19
-
-
72649087136
-
Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver
-
Cretenet G., et al. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab. 2010, 11:47-57.
-
(2010)
Cell Metab.
, vol.11
, pp. 47-57
-
-
Cretenet, G.1
-
20
-
-
33747157406
-
Nuclear receptor expression links the circadian clock to metabolism
-
Yang X., et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006, 126:801-810.
-
(2006)
Cell
, vol.126
, pp. 801-810
-
-
Yang, X.1
-
21
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
Schmutz I., et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2011, 24:345-357.
-
(2011)
Genes Dev.
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
-
22
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia K.A., et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011, 480:552-556.
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
-
23
-
-
70349764508
-
REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis
-
Le Martelot G., et al. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 2009, 7:e1000181.
-
(2009)
PLoS Biol.
, vol.7
-
-
Le Martelot, G.1
-
24
-
-
33744792310
-
Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response
-
Rosenfeld M.G., et al. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006, 20:1405-1428.
-
(2006)
Genes Dev.
, vol.20
, pp. 1405-1428
-
-
Rosenfeld, M.G.1
-
25
-
-
5444264003
-
Biological control through regulated transcriptional coactivators
-
Spiegelman B.M., Heinrich R. Biological control through regulated transcriptional coactivators. Cell 2004, 119:157-167.
-
(2004)
Cell
, vol.119
, pp. 157-167
-
-
Spiegelman, B.M.1
Heinrich, R.2
-
26
-
-
33644660537
-
PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
-
Finck B.N., Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006, 116:615-622.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
27
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J., et al. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1:361-370.
-
(2005)
Cell Metab.
, vol.1
, pp. 361-370
-
-
Lin, J.1
-
28
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu C., et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007, 447:477-481.
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
-
29
-
-
82055194432
-
Circadian metabolic regulation through crosstalk between casein kinase 1δ and transcriptional coactivator PGC-1α
-
Li S., et al. Circadian metabolic regulation through crosstalk between casein kinase 1δ and transcriptional coactivator PGC-1α. Mol. Endocrinol. 2011, 25:2084-2093.
-
(2011)
Mol. Endocrinol.
, vol.25
, pp. 2084-2093
-
-
Li, S.1
-
30
-
-
22344445394
-
The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene
-
Yin L., Lazar M.A. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 2005, 19:1452-1459.
-
(2005)
Mol. Endocrinol.
, vol.19
, pp. 1452-1459
-
-
Yin, L.1
Lazar, M.A.2
-
31
-
-
73449091515
-
Rev-erb-α: an integrator of circadian rhythms and metabolism
-
Duez H., Staels B. Rev-erb-α: an integrator of circadian rhythms and metabolism. J. Appl. Physiol. 2009, 107:1972-1980.
-
(2009)
J. Appl. Physiol.
, vol.107
, pp. 1972-1980
-
-
Duez, H.1
Staels, B.2
-
32
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
33
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
34
-
-
77956627087
-
Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher G., et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142:943-953.
-
(2010)
Cell
, vol.142
, pp. 943-953
-
-
Asher, G.1
-
35
-
-
79953752384
-
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
-
Bai P., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011, 13:461-468.
-
(2011)
Cell Metab.
, vol.13
, pp. 461-468
-
-
Bai, P.1
-
36
-
-
34547127625
-
Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2
-
Um J.H., et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J. Biol. Chem. 2007, 282:20794-20798.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20794-20798
-
-
Um, J.H.1
-
37
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
38
-
-
0033661133
-
Pathophysiology of human circadian rhythms
-
discussion 157-162
-
Copinschi G., et al. Pathophysiology of human circadian rhythms. Novartis Found. Symp. 2000, 227:143-157. discussion 157-162.
-
(2000)
Novartis Found. Symp.
, vol.227
, pp. 143-157
-
-
Copinschi, G.1
-
39
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer F.A., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4453-4458.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 4453-4458
-
-
Scheer, F.A.1
-
40
-
-
0033598598
-
Impact of sleep debt on metabolic and endocrine function
-
Spiegel K., et al. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354:1435-1439.
-
(1999)
Lancet
, vol.354
, pp. 1435-1439
-
-
Spiegel, K.1
-
41
-
-
77957253419
-
Obesity and shift work: chronobiological aspects
-
Antunes L.C., et al. Obesity and shift work: chronobiological aspects. Nutr. Res. Rev. 2010, 23:155-168.
-
(2010)
Nutr. Res. Rev.
, vol.23
, pp. 155-168
-
-
Antunes, L.C.1
-
42
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
43
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek F.W., et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005, 308:1043-1045.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
-
44
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia K.A., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15172-15177.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
-
45
-
-
78649864368
-
Light at night increases body mass by shifting the time of food intake
-
Fonken L.K., et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18664-18669.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 18664-18669
-
-
Fonken, L.K.1
-
46
-
-
77956404377
-
Eaten alive: a history of macroautophagy
-
Yang Z., Klionsky D.J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 2010, 12:814-822.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
47
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009, 43:67-93.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
48
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A., et al. The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
-
49
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N., et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 2004, 15:1101-1111.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
-
50
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
51
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato C., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008, 8:325-332.
-
(2008)
Cell Metab.
, vol.8
, pp. 325-332
-
-
Ebato, C.1
-
52
-
-
52749094770
-
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
-
Jung H.S., et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008, 8:318-324.
-
(2008)
Cell Metab.
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
-
53
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
-
54
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang X.H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
-
55
-
-
78149319082
-
Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration
-
Grumati P., et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat. Med. 2010, 16:1313-1320.
-
(2010)
Nat. Med.
, vol.16
, pp. 1313-1320
-
-
Grumati, P.1
-
56
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
-
57
-
-
0019349745
-
Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats
-
Pfeifer U., Strauss P. Autophagic vacuoles in heart muscle and liver. A comparative morphometric study including circadian variations in meal-fed rats. J. Mol. Cell. Cardiol. 1981, 13:37-49.
-
(1981)
J. Mol. Cell. Cardiol.
, vol.13
, pp. 37-49
-
-
Pfeifer, U.1
Strauss, P.2
-
58
-
-
0016611791
-
A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats
-
Pfeifer U., Scheller H. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J. Cell Biol. 1975, 64:608-621.
-
(1975)
J. Cell Biol.
, vol.64
, pp. 608-621
-
-
Pfeifer, U.1
Scheller, H.2
-
59
-
-
81255177778
-
Temporal orchestration of circadian autophagy rhythm by C/EBPbeta
-
Ma D., et al. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J. 2011, 30:4642-4651.
-
(2011)
EMBO J.
, vol.30
, pp. 4642-4651
-
-
Ma, D.1
-
60
-
-
27944487902
-
Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes
-
Tu B.P., et al. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
-
(2005)
Science
, vol.310
, pp. 1152-1158
-
-
Tu, B.P.1
-
61
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F., et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14:2950-2961.
-
(2000)
Genes Dev.
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
-
62
-
-
0015265211
-
Inverted diurnal rhythm of cellular autophagy in liver cells of rats fed a single daily meal
-
Pfeifer U. Inverted diurnal rhythm of cellular autophagy in liver cells of rats fed a single daily meal. Virchows Arch. B: Cell. Pathol. 1972, 10:1-3.
-
(1972)
Virchows Arch. B: Cell. Pathol.
, vol.10
, pp. 1-3
-
-
Pfeifer, U.1
-
63
-
-
0028853334
-
Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages
-
Tanaka T., et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 1995, 80:353-361.
-
(1995)
Cell
, vol.80
, pp. 353-361
-
-
Tanaka, T.1
-
64
-
-
0035808330
-
Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism
-
Croniger C.M., et al. Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism. J. Biol. Chem. 2001, 276:629-638.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 629-638
-
-
Croniger, C.M.1
-
65
-
-
0026050219
-
Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells
-
Cao Z., et al. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991, 5:1538-1552.
-
(1991)
Genes Dev.
, vol.5
, pp. 1538-1552
-
-
Cao, Z.1
-
66
-
-
0025297353
-
A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family
-
Akira S., et al. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990, 9:1897-1906.
-
(1990)
EMBO J.
, vol.9
, pp. 1897-1906
-
-
Akira, S.1
-
67
-
-
0034640262
-
Increased insulin receptor substrate-1 and enhanced skeletal muscle insulin sensitivity in mice lacking CCAAT/enhancer-binding protein beta
-
Wang L., et al. Increased insulin receptor substrate-1 and enhanced skeletal muscle insulin sensitivity in mice lacking CCAAT/enhancer-binding protein beta. J. Biol. Chem. 2000, 275:14173-14181.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 14173-14181
-
-
Wang, L.1
-
68
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
-
(2007)
Cell Metab.
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
-
69
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao J., et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6:472-483.
-
(2007)
Cell Metab.
, vol.6
, pp. 472-483
-
-
Zhao, J.1
-
70
-
-
70350500068
-
FoxO transcription factors promote autophagy in cardiomyocytes
-
Sengupta A., et al. FoxO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem. 2009, 284:28319-28331.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 28319-28331
-
-
Sengupta, A.1
-
71
-
-
79953756678
-
Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy
-
Seo Y.K., et al. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab. 2011, 13:367-375.
-
(2011)
Cell Metab.
, vol.13
, pp. 367-375
-
-
Seo, Y.K.1
-
72
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
73
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello M., et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
74
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley I.G., et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284:12297-12305.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
-
75
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
-
76
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
-
77
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang L., et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4788-4793.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4788-4793
-
-
Shang, L.1
-
78
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
79
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
80
-
-
63449135737
-
Diurnal variation of the human adipose transcriptome and the link to metabolic disease
-
Loboda A., et al. Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Med. Genomics 2009, 2:7.
-
(2009)
BMC Med. Genomics
, vol.2
, pp. 7
-
-
Loboda, A.1
-
81
-
-
67649875655
-
Measurement of internal body time by blood metabolomics
-
Minami Y., et al. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9890-9895.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 9890-9895
-
-
Minami, Y.1
-
82
-
-
79959952405
-
Liver autophagy contributes to the maintenance of blood glucose and amino acid levels
-
Ezaki J., et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 2011, 7:727-736.
-
(2011)
Autophagy
, vol.7
, pp. 727-736
-
-
Ezaki, J.1
-
83
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy A.B., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1107-1115
-
-
Reddy, A.B.1
-
85
-
-
0025064603
-
Rhythms in morphology and function of hepatocytes
-
Uchiyama Y. Rhythms in morphology and function of hepatocytes. J. Gastroenterol. Hepatol. 1990, 5:321-333.
-
(1990)
J. Gastroenterol. Hepatol.
, vol.5
, pp. 321-333
-
-
Uchiyama, Y.1
-
86
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A., et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011, 25:795-800.
-
(2011)
Genes Dev.
, vol.25
, pp. 795-800
-
-
Takamura, A.1
-
87
-
-
77954597127
-
An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis
-
Hidvegi T., et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010, 329:229-232.
-
(2010)
Science
, vol.329
, pp. 229-232
-
-
Hidvegi, T.1
-
88
-
-
71449091240
-
Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin
-
Liu H.Y., et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 2009, 284:31484-31492.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 31484-31492
-
-
Liu, H.Y.1
-
89
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
-
(2010)
Cell Metab.
, vol.11
, pp. 467-478
-
-
Yang, L.1
-
90
-
-
33744755382
-
Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B
-
Ohsaki Y., et al. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol. Biol. Cell 2006, 17:2674-2683.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 2674-2683
-
-
Ohsaki, Y.1
-
91
-
-
34548312474
-
Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels
-
Pan X., Hussain M.M. Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels. J. Biol. Chem. 2007, 282:24707-24719.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24707-24719
-
-
Pan, X.1
Hussain, M.M.2
-
92
-
-
73949124173
-
Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
-
Zhang Y., et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19860-19865.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 19860-19865
-
-
Zhang, Y.1
-
93
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh R., et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 2009, 119:3329-3339.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
-
94
-
-
77951897767
-
Systems biology of mammalian circadian clocks
-
Ukai H., Ueda H.R. Systems biology of mammalian circadian clocks. Annu. Rev. Physiol. 2010, 72:579-603.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 579-603
-
-
Ukai, H.1
Ueda, H.R.2
-
95
-
-
77951889295
-
The mammalian circadian timing system: organization and coordination of central and peripheral clocks
-
Dibner C., et al. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72:517-549.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
-
96
-
-
77951927020
-
Suprachiasmatic nucleus: cell autonomy and network properties
-
Welsh D.K., et al. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 2010, 72:551-577.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
-
97
-
-
33144465537
-
Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock
-
Yin L., et al. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 2006, 311:1002-1005.
-
(2006)
Science
, vol.311
, pp. 1002-1005
-
-
Yin, L.1
-
98
-
-
70349330769
-
Post-translational modifications in circadian rhythms
-
Mehra A., et al. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 2009, 34:483-490.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 483-490
-
-
Mehra, A.1
-
99
-
-
84925879082
-
Role of sleep and sleep loss in hormonal release and metabolism
-
Leproult R., Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr. Dev. 2010, 17:11-21.
-
(2010)
Endocr. Dev.
, vol.17
, pp. 11-21
-
-
Leproult, R.1
Van Cauter, E.2
-
100
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic R.D., et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004, 2:e377.
-
(2004)
PLoS Biol.
, vol.2
-
-
Rudic, R.D.1
-
101
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
102
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G., et al. Autophagy and the integrated stress response. Mol. Cell 2010, 40:280-293.
-
(2010)
Mol. Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
-
103
-
-
77955708390
-
Overview of macroautophagy regulation in mammalian cells
-
Mehrpour M., et al. Overview of macroautophagy regulation in mammalian cells. Cell Res. 2010, 20:748-762.
-
(2010)
Cell Res.
, vol.20
, pp. 748-762
-
-
Mehrpour, M.1
-
104
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
|