메뉴 건너뛰기




Volumn 10, Issue 6, 2014, Pages 322-337

Autophagy - A key player in cellular and body metabolism

Author keywords

[No Author keywords available]

Indexed keywords

BECLIN 1; GLYCOGEN DEBRANCHING ENZYME; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; LEUCINE TRANSFER RNA LIGASE; PHOSPHATIDYLETHANOLAMINE; PHOSPHATIDYLINOSITOL 3 PHOSPHATE; PROOPIOMELANOCORTIN; PROTEIN SERINE THREONINE KINASE; RHEB PROTEIN; TRANSCRIPTION FACTOR FKHR; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 6;

EID: 84901346313     PISSN: 17595029     EISSN: 17595037     Source Type: Journal    
DOI: 10.1038/nrendo.2014.35     Document Type: Review
Times cited : (769)

References (191)
  • 1
    • 0034537290 scopus 로고    scopus 로고
    • Autophagy as a regulated pathway of cellular degradation
    • Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721 (2000).
    • (2000) Science , vol.290 , pp. 1717-1721
    • Klionsky, D.J.1    Emr, S.D.2
  • 2
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
    • Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425-434 (2005).
    • (2005) J. Cell Biol. , vol.169 , pp. 425-434
    • Komatsu, M.1
  • 4
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280-293 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Mariño, G.2    Levine, B.3
  • 5
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1 Atg13 FIP200 complex required for autophagy
    • Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1 Atg13 FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1
  • 6
    • 65249176304 scopus 로고    scopus 로고
    • ULK Atg13 FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung, C. H. et al. ULK Atg13 FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 7
    • 65249155441 scopus 로고    scopus 로고
    • An Atg1/Atg13 complex with multiple roles in
    • TOR-mediated autophagy regulation
    • Chang, Y. Y. & Neufeld, T. P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell 20, 2004-2014 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2004-2014
    • Chang, Y.Y.1    Neufeld, T.P.2
  • 8
    • 59249089394 scopus 로고    scopus 로고
    • Beclin 1 forms two distinct phosphatidylinositol 3 kinase complexes with mammalian Atg14 and UVRAG
    • Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3 kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360-5372 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5360-5372
    • Itakura, E.1    Kishi, C.2    Inoue, K.3    Mizushima, N.4
  • 9
    • 77957728513 scopus 로고    scopus 로고
    • The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
    • Di Bartolomeo, S. et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191, 155-168 (2010).
    • (2010) J. Cell Biol. , vol.191 , pp. 155-168
    • Di Bartolomeo, S.1
  • 10
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-Association and function through AMBRA1 and TRAF6
    • Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-Association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406-416 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 406-416
    • Nazio, F.1
  • 11
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin 1 and activating VPS34 lipid kinase
    • Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin 1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 741-750
    • Russell, R.C.1
  • 12
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
    • Wang, R. C. et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338, 956-959 (2012).
    • (2012) Science , vol.338 , pp. 956-959
    • Wang, R.C.1
  • 13
    • 84884262668 scopus 로고    scopus 로고
    • EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
    • Wei, Y. et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154, 1269-1284 (2013).
    • (2013) Cell , vol.154 , pp. 1269-1284
    • Wei, Y.1
  • 14
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3 phosphate and dynamically connected to the endoplasmic reticulum
    • Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3 phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008).
    • (2008) J. Cell Biol. , vol.182 , pp. 685-701
    • Axe, E.L.1
  • 15
    • 80051474094 scopus 로고    scopus 로고
    • The WD40 repeat PtdIns(3)P-binding protein EPG 6 regulates progression of omegasomes to autophagosomes
    • Lu, Q. et al. The WD40 repeat PtdIns(3)P-binding protein EPG 6 regulates progression of omegasomes to autophagosomes. Dev. Cell 21, 343-357 (2011).
    • (2011) Dev. Cell , vol.21 , pp. 343-357
    • Lu, Q.1
  • 16
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-Anchored phagophores and positively regulates LC3 lipidation
    • Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-Anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506-522 (2010).
    • (2010) Autophagy , vol.6 , pp. 506-522
    • Polson, H.E.1
  • 17
    • 0032545292 scopus 로고    scopus 로고
    • A new protein conjugation system in human The counterpart of the yeast Apg12p conjugation system essential for autophagy
    • Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273, 33889-33892 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 33889-33892
    • Mizushima, N.1    Sugita, H.2    Yoshimori, T.3    Ohsumi, Y.4
  • 18
    • 0032563798 scopus 로고    scopus 로고
    • A protein conjugation system essential for autophagy
    • Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395-398 (1998).
    • (1998) Nature , vol.395 , pp. 395-398
    • Mizushima, N.1
  • 19
    • 0037166241 scopus 로고    scopus 로고
    • Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
    • Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619-18625 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 18619-18625
    • Kuma, A.1    Mizushima, N.2    Ishihara, N.3    Ohsumi, Y.4
  • 20
    • 43949143804 scopus 로고    scopus 로고
    • The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
    • Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092-2100 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2092-2100
    • Fujita, N.1
  • 21
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728 (2000).
    • (2000) EMBO J. , vol.19 , pp. 5720-5728
    • Kabeya, Y.1
  • 22
    • 4344604111 scopus 로고    scopus 로고
    • HsAtg4B/HsApg4B/autophagin 1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-Associated protein light chain 3 and GABAA receptor-Associated protein-phospholipid conjugates
    • Tanida, I. et al. HsAtg4B/HsApg4B/autophagin 1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-Associated protein light chain 3 and GABAA receptor-Associated protein-phospholipid conjugates. J. Biol. Chem. 279, 36268-36276 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 36268-36276
    • Tanida, I.1
  • 23
    • 0034707036 scopus 로고    scopus 로고
    • A ubiquitin-like system mediates protein lipidation
    • Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488-492 (2000).
    • (2000) Nature , vol.408 , pp. 488-492
    • Ichimura, Y.1
  • 24
    • 53049103308 scopus 로고    scopus 로고
    • Structural basis for sorting mechanism of p62 in selective autophagy
    • Ichimura, Y. et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283, 22847-22857 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 22847-22857
    • Ichimura, Y.1
  • 25
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233 (2011).
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1
  • 26
    • 84869080400 scopus 로고    scopus 로고
    • LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
    • von Muhlinen, N. et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell 48, 329-342 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 329-342
    • Von Muhlinen, N.1
  • 27
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 505-516
    • Kirkin, V.1
  • 28
    • 77950903972 scopus 로고    scopus 로고
    • The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
    • Filimonenko, M. et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 38, 265-279 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 265-279
    • Filimonenko, M.1
  • 29
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946 (2010).
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 30
    • 63449111894 scopus 로고    scopus 로고
    • A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
    • Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311-326 (2009).
    • (2009) Cell Metab. , vol.9 , pp. 311-326
    • Newgard, C.B.1
  • 31
    • 79953737332 scopus 로고    scopus 로고
    • Metabolite profiles and the risk of developing diabetes
    • Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448-453 (2011).
    • (2011) Nat. Med. , vol.17 , pp. 448-453
    • Wang, T.J.1
  • 32
    • 59049087460 scopus 로고    scopus 로고
    • Bidirectional transport of amino acids regulates mTOR and autophagy
    • Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534 (2009).
    • (2009) Cell , vol.136 , pp. 521-534
    • Nicklin, P.1
  • 33
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678-683 (2011).
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1
  • 34
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208 (2012).
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 35
    • 80053586265 scopus 로고    scopus 로고
    • P62 is a key regulator of nutrient sensing in the mTORC1 pathway
    • Durán, A. et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 44, 134-146 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 134-146
    • Durán, A.1
  • 36
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-TRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • Han, J. M. et al. Leucyl-TRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410-424 (2012).
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1
  • 37
    • 84864931233 scopus 로고    scopus 로고
    • Glutaminolysis activates Rag-mTORC1 signaling
    • Durán, R. V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349-358 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 349-358
    • Durán, R.V.1
  • 38
    • 77953861522 scopus 로고    scopus 로고
    • Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
    • Eng, C. H., Yu, K., Lucas, J., White, E. & Abraham, R. T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31 (2010).
    • (2010) Sci. Signal. , vol.3
    • Eng, C.H.1    Yu, K.2    Lucas, J.3    White, E.4    Abraham, R.T.5
  • 39
    • 84864878724 scopus 로고    scopus 로고
    • Modulation of glutamine metabolism by the PI (3)K PKB FOXO network regulates autophagy
    • van der Vos, K. E. et al. Modulation of glutamine metabolism by the PI(3)K PKB FOXO network regulates autophagy. Nat. Cell Biol. 14, 829-837 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 829-837
    • Van Der Vos, K.E.1
  • 41
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell, R. C., Yuan, H. X. & Guan, K. L. Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57 (2013).
    • (2013) Cell Res. , vol.24 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 42
    • 84885455062 scopus 로고    scopus 로고
    • The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression
    • B'Chir, W. et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683-7699 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7683-7699
    • B'Chir, W.1
  • 43
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011).
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 44
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 45
    • 12944303650 scopus 로고    scopus 로고
    • Growth factor regulation of autophagy and cell survival in the absence of apoptosis
    • Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237-248 (2005).
    • (2005) Cell , vol.120 , pp. 237-248
    • Lum, J.J.1
  • 46
    • 24744441497 scopus 로고    scopus 로고
    • Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation
    • Onodera, J. & Ohsumi, Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582-31586 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 31582-31586
    • Onodera, J.1    Ohsumi, Y.2
  • 47
    • 79959952405 scopus 로고    scopus 로고
    • Liver autophagy contributes to the maintenance of blood glucose and amino acid levels
    • Ezaki, J. et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7, 727-736 (2011).
    • (2011) Autophagy , vol.7 , pp. 727-736
    • Ezaki, J.1
  • 48
    • 84873665112 scopus 로고    scopus 로고
    • Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
    • Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679-683 (2013).
    • (2013) Nature , vol.493 , pp. 679-683
    • Efeyan, A.1
  • 49
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: A nutrient and energy sensor that maintains energy homeostasis
    • Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251-262 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 50
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 51
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226 (2008).
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 52
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-Activated protein kinase connects energy sensing to mitophagy
    • Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-Activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 53
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 54
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303 (2013).
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1
  • 55
    • 78650691023 scopus 로고    scopus 로고
    • Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes
    • Hariharan, N. et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 107, 1470-1482 (2010).
    • (2010) Circ. Res. , vol.107 , pp. 1470-1482
    • Hariharan, N.1
  • 57
    • 78049409236 scopus 로고    scopus 로고
    • Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism
    • Jiang, S. et al. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J. Biol. Chem. 285, 34960-34971 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 34960-34971
    • Jiang, S.1
  • 58
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131-1135 (2009).
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 59
    • 84864947432 scopus 로고    scopus 로고
    • Autophagy-lysosomal pathway is involved in lipid degradation in rat liver
    • Skop, V. et al. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver. Physiol. Res. 61, 287-297 (2012).
    • (2012) Physiol. Res. , vol.61 , pp. 287-297
    • Skop, V.1
  • 60
    • 79958030075 scopus 로고    scopus 로고
    • Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
    • Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13, 655-667 (2011).
    • (2011) Cell Metab. , vol.13 , pp. 655-667
    • Ouimet, M.1
  • 61
    • 63349104160 scopus 로고    scopus 로고
    • The MAP1-LC3 conjugation system is involved in lipid droplet formation
    • Shibata, M. et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419-423 (2009).
    • (2009) Biochem. Biophys. Res. Commun. , vol.382 , pp. 419-423
    • Shibata, M.1
  • 62
    • 77649185634 scopus 로고    scopus 로고
    • LC3, a microtubule-Associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation
    • Shibata, M. et al. LC3, a microtubule-Associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem. Biophys. Res. Commun. 393, 274-279 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.393 , pp. 274-279
    • Shibata, M.1
  • 63
    • 77955789211 scopus 로고    scopus 로고
    • Altered lipid content inhibits autophagic vesicular fusion
    • Koga, H., Kaushik, S. & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052-3065 (2010).
    • (2010) FASEB J. , vol.24 , pp. 3052-3065
    • Koga, H.1    Kaushik, S.2    Cuervo, A.M.3
  • 65
    • 58149463600 scopus 로고    scopus 로고
    • Protective role of autophagy in palmitate-induced INS 1 β cell death
    • Choi, S. E. et al. Protective role of autophagy in palmitate-induced INS 1 β cell death. Endocrinology 150, 126-134 (2009).
    • (2009) Endocrinology , vol.150 , pp. 126-134
    • Choi, S.E.1
  • 66
    • 77958484950 scopus 로고    scopus 로고
    • Free fatty acids stimulate autophagy in pancreatic β cells via JNK pathway
    • Komiya, K. et al. Free fatty acids stimulate autophagy in pancreatic β cells via JNK pathway. Biochem. Biophys. Res. Commun. 401, 561-567 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.401 , pp. 561-567
    • Komiya, K.1
  • 67
    • 84870901484 scopus 로고    scopus 로고
    • Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity
    • Shen, S. et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol. Cell 48, 667-680 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 667-680
    • Shen, S.1
  • 68
    • 84860372433 scopus 로고    scopus 로고
    • Induction of autophagy by palmitic acid via protein kinase C mediated signaling pathway independent of mTOR (mammalian target of rapamycin)
    • Tan, S. H. et al. Induction of autophagy by palmitic acid via protein kinase C mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J. Biol. Chem. 287, 14364-14376 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 14364-14376
    • Tan, S.H.1
  • 69
    • 80054788704 scopus 로고    scopus 로고
    • Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes
    • Mei, S. et al. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J. Pharmacol. Exp. Ther. 339, 487-498 (2011).
    • (2011) J. Pharmacol. Exp. Ther. , vol.339 , pp. 487-498
    • Mei, S.1
  • 70
    • 84860482342 scopus 로고    scopus 로고
    • A ceramide-centric view of insulin resistance
    • Chavez, J. A. & Summers, S. A. A ceramide-centric view of insulin resistance. Cell Metab. 15, 585-594 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 585-594
    • Chavez, J.A.1    Summers, S.A.2
  • 71
    • 56249108080 scopus 로고    scopus 로고
    • Ceramide starves cells to death by downregulating nutrient transporter proteins
    • Guenther, G. G. et al. Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc. Natl Acad. Sci. USA 105, 17402-17407 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 17402-17407
    • Guenther, G.G.1
  • 72
    • 2442485884 scopus 로고    scopus 로고
    • Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1
    • Scarlatti, F. et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 279, 18384-18391 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 18384-18391
    • Scarlatti, F.1
  • 73
    • 3042562282 scopus 로고    scopus 로고
    • Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells
    • Daido, S. et al. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res. 64, 4286-4293 (2004).
    • (2004) Cancer Res. , vol.64 , pp. 4286-4293
    • Daido, S.1
  • 74
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of β cell mass in response to high-fat diet
    • Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of β cell mass in response to high-fat diet. Cell Metab. 8, 325-332 (2008).
    • (2008) Cell Metab. , vol.8 , pp. 325-332
    • Ebato, C.1
  • 75
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia
    • Jung, H. S. et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324 (2008).
    • (2008) Cell Metab. , vol.8 , pp. 318-324
    • Jung, H.S.1
  • 76
    • 84856764175 scopus 로고    scopus 로고
    • Autophagy deficiency in β cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice
    • Quan, W. et al. Autophagy deficiency in β cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55, 392-403 (2012).
    • (2012) Diabetologia , vol.55 , pp. 392-403
    • Quan, W.1
  • 77
    • 77950523710 scopus 로고    scopus 로고
    • The regulatory subunits of PI3K, p85α and p85β, interact with XBP 1 and increase its nuclear translocation
    • Park, S. W. et al. The regulatory subunits of PI3K, p85α and p85β, interact with XBP 1 and increase its nuclear translocation. Nat. Med. 16, 429-437 (2010).
    • (2010) Nat. Med. , vol.16 , pp. 429-437
    • Park, S.W.1
  • 78
    • 77950537400 scopus 로고    scopus 로고
    • A regulatory subunit of phosphoinositide 3 kinase increases the nuclear accumulation of X box binding protein 1 to modulate the unfolded protein response
    • Winnay, J. N., Boucher, J., Mori, M. A., Ueki, K. & Kahn, C. R. A regulatory subunit of phosphoinositide 3 kinase increases the nuclear accumulation of X box binding protein 1 to modulate the unfolded protein response. Nat. Med. 16, 438-445 (2010).
    • (2010) Nat. Med. , vol.16 , pp. 438-445
    • Winnay, J.N.1    Boucher, J.2    Mori, M.A.3    Ueki, K.4    Kahn, C.R.5
  • 79
    • 22544444513 scopus 로고    scopus 로고
    • Control of mRNA translation preserves endoplasmic reticulum function in β cells and maintains glucose homeostasis
    • Scheuner, D. et al. Control of mRNA translation preserves endoplasmic reticulum function in β cells and maintains glucose homeostasis. Nat. Med. 11, 757-764 (2005).
    • (2005) Nat. Med. , vol.11 , pp. 757-764
    • Scheuner, D.1
  • 80
    • 84870873590 scopus 로고    scopus 로고
    • Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death
    • Bartolome, A., Guillen, C. & Benito, M. Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death. Autophagy 8, 1757-1768 (2012).
    • (2012) Autophagy , vol.8 , pp. 1757-1768
    • Bartolome, A.1    Guillen, C.2    Benito, M.3
  • 81
    • 84875416620 scopus 로고    scopus 로고
    • Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes
    • Bachar-Wikstrom, E. et al. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 62, 1227-1237 (2013).
    • (2013) Diabetes , vol.62 , pp. 1227-1237
    • Bachar-Wikstrom, E.1
  • 82
    • 0035937174 scopus 로고    scopus 로고
    • Liporegulation in diet-induced obesity The antisteatotic role of hyperleptinemia
    • Lee, Y. et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 276, 5629-5635 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 5629-5635
    • Lee, Y.1
  • 83
    • 59249095218 scopus 로고    scopus 로고
    • Methods for monitoring autophagy using GFP-LC3 transgenic mice
    • Mizushima, N. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol. 452, 13-23 (2009).
    • (2009) Methods Enzymol. , vol.452 , pp. 13-23
    • Mizushima, N.1
  • 84
    • 79551553480 scopus 로고    scopus 로고
    • Dissecting the dynamic turnover of GFP-LC3 in the autolysosome
    • Ni, H. M. et al. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7, 188-204 (2011).
    • (2011) Autophagy , vol.7 , pp. 188-204
    • Ni, H.M.1
  • 85
    • 67349150186 scopus 로고    scopus 로고
    • Autophagy in human type 2 diabetes pancreatic β cells
    • Masini, M. et al. Autophagy in human type 2 diabetes pancreatic β cells. Diabetologia 52, 1083-1086 (2009).
    • (2009) Diabetologia , vol.52 , pp. 1083-1086
    • Masini, M.1
  • 86
    • 0032969276 scopus 로고    scopus 로고
    • Islet amyloid: A long-recognized but underappreciated pathological feature of type 2 diabetes
    • Kahn, S. E., Andrikopoulos, S. & Verchere, C. B. Islet amyloid: A long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48, 241-253 (1999).
    • (1999) Diabetes , vol.48 , pp. 241-253
    • Kahn, S.E.1    Andrikopoulos, S.2    Verchere, C.B.3
  • 87
    • 79954535899 scopus 로고    scopus 로고
    • Islet amyloid polypeptide, islet amyloid, and diabetes mellitus
    • Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91, 795-826 (2011).
    • (2011) Physiol. Rev. , vol.91 , pp. 795-826
    • Westermark, P.1    Andersson, A.2    Westermark, G.T.3
  • 88
    • 79951672803 scopus 로고    scopus 로고
    • Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β cells: Protective role of p62-positive cytoplasmic inclusions
    • Rivera, J. F. et al. Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β cells: Protective role of p62-positive cytoplasmic inclusions. Cell Death Differ. 18, 415-426 (2011).
    • (2011) Cell Death Differ. , vol.18 , pp. 415-426
    • Rivera, J.F.1
  • 89
    • 0024237258 scopus 로고
    • Rates and tissue sites of non insulin and insulin-mediated glucose uptake in humans
    • Baron, A. D., Brechtel, G., Wallace, P. & Edelman, S. V. Rates and tissue sites of non insulin and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255, E769-E774 (1988).
    • (1988) Am. J. Physiol. , vol.255
    • Baron, A.D.1    Brechtel, G.2    Wallace, P.3    Edelman, S.V.4
  • 90
    • 75549085755 scopus 로고    scopus 로고
    • Skeletal muscle insulin resistance is the primary defect in type 2 diabetes
    • DeFronzo, R. A. & Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 (Suppl. 2), S157-S163 (2009).
    • (2009) Diabetes Care , vol.32 , Issue.SUPPL. 2
    • DeFronzo, R.A.1    Tripathy, D.2
  • 91
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83-92 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 83-92
    • Kim, K.H.1
  • 92
    • 70449927247 scopus 로고    scopus 로고
    • Autophagy is required to maintain muscle mass
    • Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507-515 (2009).
    • (2009) Cell Metab. , vol.10 , pp. 507-515
    • Masiero, E.1
  • 93
    • 36448940798 scopus 로고    scopus 로고
    • FoxO3 controls autophagy in skeletal muscle in vivo
    • Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458-471 (2007).
    • (2007) Cell Metab. , vol.6 , pp. 458-471
    • Mammucari, C.1
  • 94
    • 54849404282 scopus 로고    scopus 로고
    • Skeletal muscle is a primary target of SOD1G93A-mediated toxicity
    • Dobrowolny, G. et al. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 8, 425-436 (2008).
    • (2008) Cell Metab. , vol.8 , pp. 425-436
    • Dobrowolny, G.1
  • 95
    • 82855169509 scopus 로고    scopus 로고
    • Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI deficient muscles
    • Grumati, P. et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI deficient muscles. Autophagy 7, 1415-1423 (2011).
    • (2011) Autophagy , vol.7 , pp. 1415-1423
    • Grumati, P.1
  • 96
    • 84863393597 scopus 로고    scopus 로고
    • Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
    • He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515 (2012).
    • (2012) Nature , vol.481 , pp. 511-515
    • He, C.1
  • 97
    • 84885145785 scopus 로고    scopus 로고
    • Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance
    • Lira, V. A. et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 27, 4184-4193 (2013).
    • (2013) FASEB J. , vol.27 , pp. 4184-4193
    • Lira, V.A.1
  • 98
    • 80054870690 scopus 로고    scopus 로고
    • Obesity-Associated insulin resistance in skeletal muscle: Role of lipid accumulation and physical inactivity
    • Eckardt, K., Taube, A. & Eckel, J. Obesity-Associated insulin resistance in skeletal muscle: Role of lipid accumulation and physical inactivity. Rev. Endocr. Metab. Disord. 12, 163-172 (2011).
    • (2011) Rev. Endocr. Metab. Disord. , vol.12 , pp. 163-172
    • Eckardt, K.1    Taube, A.2    Eckel, J.3
  • 99
    • 63849125553 scopus 로고    scopus 로고
    • Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice
    • Turpin, S. M. et al. Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice. J. Physiol. 587, 1593-1605 (2009).
    • (2009) J. Physiol. , vol.587 , pp. 1593-1605
    • Turpin, S.M.1
  • 100
    • 84863116629 scopus 로고    scopus 로고
    • Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
    • Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. USA 109, 2003-2008 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 2003-2008
    • Jaber, N.1
  • 101
    • 84884763666 scopus 로고    scopus 로고
    • Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD
    • Ma, D. et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol. Endocrinol. 27, 1643-1654 (2013).
    • (2013) Mol. Endocrinol. , vol.27 , pp. 1643-1654
    • Ma, D.1
  • 102
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478 (2010).
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 103
    • 71449091240 scopus 로고    scopus 로고
    • Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin
    • Liu, H. Y. et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484-31492 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 31484-31492
    • Liu, H.Y.1
  • 104
    • 84859444880 scopus 로고    scopus 로고
    • Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
    • Hernández-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938-946 (2012).
    • (2012) Gastroenterology , vol.142 , pp. 938-946
    • Hernández-Gea, V.1
  • 106
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339 (2009).
    • (2009) J. Clin. Invest. , vol.119 , pp. 3329-3339
    • Singh, R.1
  • 107
    • 73949124173 scopus 로고    scopus 로고
    • Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
    • Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860-19865 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19860-19865
    • Zhang, Y.1
  • 108
    • 84883488843 scopus 로고    scopus 로고
    • Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development
    • Martinez-Lopez, N. et al. Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep. 14, 795-803 (2013).
    • (2013) EMBO Rep. , vol.14 , pp. 795-803
    • Martinez-Lopez, N.1
  • 109
    • 65649111494 scopus 로고    scopus 로고
    • The origins of brown adipose tissue
    • Enerbäck, S. The origins of brown adipose tissue. N. Engl. J. Med. 360, 2021-2023 (2009).
    • (2009) N. Engl. J. Med. , vol.360 , pp. 2021-2023
    • Enerbäck, S.1
  • 110
    • 79951690345 scopus 로고    scopus 로고
    • Altered autophagy in human adipose tissues in obesity
    • Kovsan, J. et al. Altered autophagy in human adipose tissues in obesity. J. Clin. Endocrinol. Metab. 96, E268-E277 (2011).
    • (2011) J. Clin. Endocrinol. Metab. , vol.96
    • Kovsan, J.1
  • 111
    • 84870170324 scopus 로고    scopus 로고
    • Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression
    • Jansen, H. J. et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 153, 5866-5874 (2012).
    • (2012) Endocrinology , vol.153 , pp. 5866-5874
    • Jansen, H.J.1
  • 112
    • 5644231992 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
    • Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457-461 (2004).
    • (2004) Science , vol.306 , pp. 457-461
    • Ozcan, U.1
  • 113
    • 69549134165 scopus 로고    scopus 로고
    • Autophagy-mediated insulin receptor down-regulation contributes to endoplasmic reticulum stress-induced insulin resistance
    • Zhou, L. et al. Autophagy-mediated insulin receptor down-regulation contributes to endoplasmic reticulum stress-induced insulin resistance. Mol. Pharmacol. 76, 596-603 (2009).
    • (2009) Mol. Pharmacol. , vol.76 , pp. 596-603
    • Zhou, L.1
  • 114
    • 80052712323 scopus 로고    scopus 로고
    • Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β IKKβ)/NF-κB pathway
    • Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. J. Biol. Chem. 286, 32324-32332 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 32324-32332
    • Meng, Q.1    Cai, D.2
  • 115
    • 79960951346 scopus 로고    scopus 로고
    • Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
    • Kaushik, S. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173-183 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 173-183
    • Kaushik, S.1
  • 116
    • 84863229947 scopus 로고    scopus 로고
    • Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
    • Kaushik, S. et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258-265 (2012).
    • (2012) EMBO Rep. , vol.13 , pp. 258-265
    • Kaushik, S.1
  • 117
    • 84856953003 scopus 로고    scopus 로고
    • Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
    • Coupé, B. et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 247-255 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 247-255
    • Coupé, B.1
  • 118
    • 84859416906 scopus 로고    scopus 로고
    • Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response
    • Quan, W. et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 153, 1817-1826 (2012).
    • (2012) Endocrinology , vol.153 , pp. 1817-1826
    • Quan, W.1
  • 119
    • 79954701326 scopus 로고    scopus 로고
    • Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation
    • Harlan, S. M. et al. Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808-812 (2011).
    • (2011) Circ. Res. , vol.108 , pp. 808-812
    • Harlan, S.M.1
  • 120
    • 84876771596 scopus 로고    scopus 로고
    • The immune system as a sensor of the metabolic state
    • Odegaard, J. I. & Chawla, A. The immune system as a sensor of the metabolic state. Immunity 38, 644-654 (2013).
    • (2013) Immunity , vol.38 , pp. 644-654
    • Odegaard, J.I.1    Chawla, A.2
  • 121
    • 84870058819 scopus 로고    scopus 로고
    • Adaptive immunity in obesity and insulin resistance
    • Sell, H., Habich, C. & Eckel, J. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8, 709-716 (2012).
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 709-716
    • Sell, H.1    Habich, C.2    Eckel, J.3
  • 122
    • 79751512463 scopus 로고    scopus 로고
    • The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
    • Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179-188 (2011).
    • (2011) Nat. Med. , vol.17 , pp. 179-188
    • Vandanmagsar, B.1
  • 123
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408-415 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 408-415
    • Wen, H.1
  • 124
    • 80053087484 scopus 로고    scopus 로고
    • Inflammasome is a central player in the induction of obesity and insulin resistance
    • Stienstra, R. et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl Acad. Sci. USA 108, 15324-15329 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 15324-15329
    • Stienstra, R.1
  • 125
    • 84872018875 scopus 로고    scopus 로고
    • Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes
    • Lee, H. M. et al. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62, 194-204 (2013).
    • (2013) Diabetes , vol.62 , pp. 194-204
    • Lee, H.M.1
  • 126
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL 1β production
    • Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL 1β production. Nature 456, 264-268 (2008).
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1
  • 127
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 222-230
    • Nakahira, K.1
  • 128
    • 79953176280 scopus 로고    scopus 로고
    • Autophagy controls IL 1β secretion by targeting pro IL 1β for degradation
    • Harris, J. et al. Autophagy controls IL 1β secretion by targeting pro IL 1β for degradation. J. Biol. Chem. 286, 9587-9597 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 9587-9597
    • Harris, J.1
  • 129
    • 84857195479 scopus 로고    scopus 로고
    • Activation of autophagy by inflammatory signals limits IL 1β production by targeting ubiquitinated inflammasomes for destruction
    • Shi, C. S. et al. Activation of autophagy by inflammatory signals limits IL 1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255-263 (2012).
    • (2012) Nat. Immunol. , vol.13 , pp. 255-263
    • Shi, C.S.1
  • 130
    • 84862791715 scopus 로고    scopus 로고
    • Macrophage autophagy plays a protective role in advanced atherosclerosis
    • Liao, X. et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15, 545-553 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 545-553
    • Liao, X.1
  • 131
    • 84859448447 scopus 로고    scopus 로고
    • Autophagy links inflammasomes to atherosclerotic progression
    • Razani, B. et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 15, 534-454 (2012).
    • (2012) Cell Metab. , vol.15 , pp. 534-454
    • Razani, B.1
  • 132
    • 77951800951 scopus 로고    scopus 로고
    • NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
    • Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361 (2010).
    • (2010) Nature , vol.464 , pp. 1357-1361
    • Duewell, P.1
  • 133
    • 77954974820 scopus 로고    scopus 로고
    • The regulation of autophagy pathway may influence Chinese stature variation: Evidence from elder adults
    • Pan, F. et al. The regulation of autophagy pathway may influence Chinese stature variation: Evidence from elder adults. J. Hum. Genet. 55, 441-447 (2010).
    • (2010) J. Hum. Genet. , vol.55 , pp. 441-447
    • Pan, F.1
  • 134
    • 77954701060 scopus 로고    scopus 로고
    • Pathway-based genome-wide association analysis identified the importance of regulation of autophagy pathway for ultradistal radius BMD
    • Zhang, L. et al. Pathway-based genome-wide association analysis identified the importance of regulation of autophagy pathway for ultradistal radius BMD. J. Bone Miner. Res. 25, 1572-1580 (2010).
    • (2010) J. Bone Miner. Res. , vol.25 , pp. 1572-1580
    • Zhang, L.1
  • 135
    • 83455173649 scopus 로고    scopus 로고
    • Autophagy proteins regulate the secretory component of osteoclastic bone resorption
    • DeSelm, C. J. et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell 21, 966-974 (2011).
    • (2011) Dev. Cell , vol.21 , pp. 966-974
    • DeSelm, C.J.1
  • 136
    • 84879065741 scopus 로고    scopus 로고
    • Suppression of autophagy in osteocytes mimics skeletal aging
    • Onal, M. et al. Suppression of autophagy in osteocytes mimics skeletal aging. J. Biol. Chem. 288, 17432-17440 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 17432-17440
    • Onal, M.1
  • 137
    • 84886819890 scopus 로고    scopus 로고
    • Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation
    • Liu, F. et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J. Bone Miner. Res. 28, 2414-2430 (2013).
    • (2013) J. Bone Miner. Res. , vol.28 , pp. 2414-2430
    • Liu, F.1
  • 138
    • 34547690686 scopus 로고    scopus 로고
    • Endocrine regulation of energy metabolism by the skeleton
    • Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456-469 (2007).
    • (2007) Cell , vol.130 , pp. 456-469
    • Lee, N.K.1
  • 139
    • 34948813665 scopus 로고    scopus 로고
    • Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice
    • Nomiyama, T. et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J. Clin. Invest. 117, 2877-2888 (2007).
    • (2007) J. Clin. Invest. , vol.117 , pp. 2877-2888
    • Nomiyama, T.1
  • 140
    • 74949089660 scopus 로고    scopus 로고
    • FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice
    • Rached, M. T. et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J. Clin. Invest. 120, 357-368 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 357-368
    • Rached, M.T.1
  • 142
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • Mizushima, N. & Levine, B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823-830 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 143
    • 9144240441 scopus 로고    scopus 로고
    • Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
    • Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809-1820 (2003).
    • (2003) J. Clin. Invest. , vol.112 , pp. 1809-1820
    • Qu, X.1
  • 144
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077-15082 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 15077-15082
    • Yue, Z.1    Jin, S.2    Yang, C.3    Levine, A.J.4    Heintz, N.5
  • 145
    • 79951847989 scopus 로고    scopus 로고
    • Principles and current strategies for targeting autophagy for cancer treatment
    • Amaravadi, R. K. et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17, 654-666 (2011).
    • (2011) Clin. Cancer Res. , vol.17 , pp. 654-666
    • Amaravadi, R.K.1
  • 146
    • 79955377420 scopus 로고    scopus 로고
    • Autophagy-deficient mice develop multiple liver tumors
    • Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 795-800
    • Takamura, A.1
  • 147
    • 84883464875 scopus 로고    scopus 로고
    • Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism
    • He, C. et al. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell 154, 1085-1099 (2013).
    • (2013) Cell , vol.154 , pp. 1085-1099
    • He, C.1
  • 148
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
    • Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259-263 (2008).
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1
  • 149
    • 38149098485 scopus 로고    scopus 로고
    • Developmental expression of LC3α and β: Absence of fibronectin or autophagy phenotype in LC3β knockout mice
    • Cann, G. M. et al. Developmental expression of LC3α and β: Absence of fibronectin or autophagy phenotype in LC3β knockout mice. Dev. Dyn. 237, 187-195 (2008).
    • (2008) Dev. Dyn. , vol.237 , pp. 187-195
    • Cann, G.M.1
  • 150
    • 77954988580 scopus 로고    scopus 로고
    • Autophagy is essential for mouse sense of balance
    • Mariño, G. et al. Autophagy is essential for mouse sense of balance. J. Clin. Invest. 120, 2331-2344 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 2331-2344
    • Mariño, G.1
  • 151
    • 84883114523 scopus 로고    scopus 로고
    • Overexpression of Atg5 in mice activates autophagy and extends lifespan
    • Pyo, J. O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300 (2013).
    • (2013) Nat. Commun. , vol.4 , Issue.2300
    • Pyo, J.O.1
  • 152
    • 50249120768 scopus 로고    scopus 로고
    • Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance
    • Tong, Q., Ye, C. P., Jones, J. E., Elmquist, J. K. & Lowell, B. B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998-1000 (2008).
    • (2008) Nat. Neurosci. , vol.11 , pp. 998-1000
    • Tong, Q.1    Ye, C.P.2    Jones, J.E.3    Elmquist, J.K.4    Lowell, B.B.5
  • 153
    • 61949233502 scopus 로고    scopus 로고
    • Autophagy in atherosclerosis: A cell survival and death phenomenon with therapeutic potential
    • Martinet, W. & De Meyer, G. R. Autophagy in atherosclerosis: A cell survival and death phenomenon with therapeutic potential. Circ. Res. 104, 304-317 (2009).
    • (2009) Circ. Res. , vol.104 , pp. 304-317
    • Martinet, W.1    De Meyer, G.R.2
  • 154
    • 84875757691 scopus 로고    scopus 로고
    • De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood
    • Saitsu, H. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445-449 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 445-449
    • Saitsu, H.1
  • 155
    • 84875118055 scopus 로고    scopus 로고
    • A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson's disease
    • Chen, D. et al. A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson's disease. Neurosci. Lett. 538, 49-53 (2013).
    • (2013) Neurosci. Lett. , vol.538 , pp. 49-53
    • Chen, D.1
  • 156
    • 84873060620 scopus 로고    scopus 로고
    • Genetic analysis of the ATG7 gene promoter in sporadic Parkinson's disease
    • Chen, D. et al. Genetic analysis of the ATG7 gene promoter in sporadic Parkinson's disease. Neurosci. Lett. 534, 193-198 (2013).
    • (2013) Neurosci. Lett. , vol.534 , pp. 193-198
    • Chen, D.1
  • 157
    • 77953913051 scopus 로고    scopus 로고
    • Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
    • Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146-1158 (2010).
    • (2010) Cell , vol.141 , pp. 1146-1158
    • Lee, J.H.1
  • 158
    • 64549101639 scopus 로고    scopus 로고
    • Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability
    • Kang, M. R. et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J. Pathol. 217, 702-706 (2009).
    • (2009) J. Pathol. , vol.217 , pp. 702-706
    • Kang, M.R.1
  • 159
    • 84867229697 scopus 로고    scopus 로고
    • A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers
    • Bai, H., Inoue, J., Kawano, T. & Inazawa, J. A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers. Oncogene 31, 4397-4408 (2012).
    • (2012) Oncogene , vol.31 , pp. 4397-4408
    • Bai, H.1    Inoue, J.2    Kawano, T.3    Inazawa, J.4
  • 160
    • 84881545650 scopus 로고    scopus 로고
    • Potentially functional polymorphisms in ATG10 are associated with risk of breast cancer in a Chinese population
    • Qin, Z. et al. Potentially functional polymorphisms in ATG10 are associated with risk of breast cancer in a Chinese population. Gene 527, 491-495 (2013).
    • (2013) Gene , vol.527 , pp. 491-495
    • Qin, Z.1
  • 161
    • 33846627302 scopus 로고    scopus 로고
    • A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
    • Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207-211 (2007).
    • (2007) Nat. Genet. , vol.39 , pp. 207-211
    • Hampe, J.1
  • 162
    • 34347338690 scopus 로고    scopus 로고
    • Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility
    • Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39, 830-832 (2007).
    • (2007) Nat. Genet. , vol.39 , pp. 830-832
    • Parkes, M.1
  • 163
    • 79955790354 scopus 로고    scopus 로고
    • Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease
    • Henckaerts, L. et al. Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease. Inflamm. Bowel Dis. 17, 1392-1397 (2011).
    • (2011) Inflamm. Bowel Dis. , vol.17 , pp. 1392-1397
    • Henckaerts, L.1
  • 164
    • 34248594090 scopus 로고    scopus 로고
    • A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity
    • Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889-894 (2007).
    • (2007) Science , vol.316 , pp. 889-894
    • Frayling, T.M.1
  • 165
    • 34547625955 scopus 로고    scopus 로고
    • Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits
    • Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).
    • (2007) PLoS Genet , vol.3
    • Scuteri, A.1
  • 166
    • 84873735640 scopus 로고    scopus 로고
    • Role for the obesity-related FTO gene in the cellular sensing of amino acids
    • Gulati, P. et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc. Natl Acad. Sci. USA 110, 2557-2562 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 2557-2562
    • Gulati, P.1
  • 167
    • 33846833908 scopus 로고    scopus 로고
    • A quantitative trait locus for body fat on chromosome 1q43 in French Canadians: Linkage and association studies
    • Aissani, B. et al. A quantitative trait locus for body fat on chromosome 1q43 in French Canadians: Linkage and association studies. Obesity (Silver Spring) 14, 1605-1615 (2006).
    • (2006) Obesity (Silver Spring) , vol.14 , pp. 1605-1615
    • Aissani, B.1
  • 168
    • 33644864868 scopus 로고    scopus 로고
    • Linkage analysis of quantitative traits for obesity, diabetes, hypertension, and dyslipidemia on the island of Kosrae, Federated States of Micronesia
    • Shmulewitz, D. et al. Linkage analysis of quantitative traits for obesity, diabetes, hypertension, and dyslipidemia on the island of Kosrae, Federated States of Micronesia. Proc. Natl Acad. Sci. USA 103, 3502-3509 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 3502-3509
    • Shmulewitz, D.1
  • 169
    • 84865451717 scopus 로고    scopus 로고
    • Novel pharmacological modulators of autophagy and therapeutic prospects
    • Bischoff, P., Josset, E. & Dumont, F. J. Novel pharmacological modulators of autophagy and therapeutic prospects. Expert Opin. Ther. Pat. 22, 1053-1079 (2012).
    • (2012) Expert Opin. Ther. Pat. , vol.22 , pp. 1053-1079
    • Bischoff, P.1    Josset, E.2    Dumont, F.J.3
  • 170
    • 84866122688 scopus 로고    scopus 로고
    • Autophagy modulation as a potential therapeutic target for diverse diseases
    • Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709-730 (2012).
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 709-730
    • Rubinsztein, D.C.1    Codogno, P.2    Levine, B.3
  • 171
    • 84875331396 scopus 로고    scopus 로고
    • Duration of rapamycin treatment has differential effects on metabolism in mice
    • Fang, Y. et al. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab. 17, 456-462 (2013).
    • (2013) Cell Metab. , vol.17 , pp. 456-462
    • Fang, Y.1
  • 172
    • 0038585135 scopus 로고    scopus 로고
    • Protective effect of the immunosuppressant sirolimus against aortic atherosclerosis in apo E deficient mice
    • Elloso, M. M. et al. Protective effect of the immunosuppressant sirolimus against aortic atherosclerosis in apo E deficient mice. Am. J. Transplant. 3, 562-569 (2003).
    • (2003) Am. J. Transplant. , vol.3 , pp. 562-569
    • Elloso, M.M.1
  • 173
    • 33846815137 scopus 로고    scopus 로고
    • Selective clearance of macrophages in atherosclerotic plaques by autophagy
    • Verheye, S. et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J. Am. Coll. Cardiol. 49, 706-715 (2007).
    • (2007) J. Am. Coll. Cardiol. , vol.49 , pp. 706-715
    • Verheye, S.1
  • 174
    • 79957965956 scopus 로고    scopus 로고
    • Comparison of everolimus-eluting stent with paclitaxel-eluting stent in long chronic total occlusions
    • Valenti, R. et al. Comparison of everolimus-eluting stent with paclitaxel-eluting stent in long chronic total occlusions. Am. J. Cardiol. 107, 1768-1771 (2011).
    • (2011) Am. J. Cardiol. , vol.107 , pp. 1768-1771
    • Valenti, R.1
  • 175
    • 80053417028 scopus 로고    scopus 로고
    • Metformin inhibits melanoma development through autophagy and apoptosis mechanisms
    • Tomic, T. et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2, e199 (2011).
    • (2011) Cell Death Dis. , vol.2
    • Tomic, T.1
  • 176
    • 36348950449 scopus 로고    scopus 로고
    • Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
    • Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. & Sonenberg, N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804-10812 (2007).
    • (2007) Cancer Res. , vol.67 , pp. 10804-10812
    • Dowling, R.J.1    Zakikhani, M.2    Fantus, I.G.3    Pollak, M.4    Sonenberg, N.5
  • 177
    • 77955287742 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
    • Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390-401 (2010).
    • (2010) Cell Metab. , vol.11 , pp. 390-401
    • Kalender, A.1
  • 178
    • 80053001967 scopus 로고    scopus 로고
    • GLP 1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy
    • Sharma, S., Mells, J. E., Fu, P. P., Saxena, N. K. & Anania, F. A. GLP 1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 6, e25269 (2011).
    • (2011) PLoS ONE , vol.6
    • Sharma, S.1    Mells, J.E.2    Fu, P.P.3    Saxena, N.K.4    Anania, F.A.5
  • 179
    • 0026593085 scopus 로고
    • Treatment with low dose metformin in patients with peripheral vascular disease
    • Montanari, G. et al. Treatment with low dose metformin in patients with peripheral vascular disease. Pharmacol. Res. 25, 63-73 (1992).
    • (1992) Pharmacol. Res. , vol.25 , pp. 63-73
    • Montanari, G.1
  • 180
    • 0032511566 scopus 로고    scopus 로고
    • Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (ukpds 34) uk prospective diabetes study (ukpds) group
    • [No Authors Listed]
    • [No authors listed] Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854-865 (1998).
    • (1998) Lancet , vol.352 , pp. 854-865
  • 181
    • 40749161446 scopus 로고    scopus 로고
    • Exenatide as a treatment for diabetes and obesity: Implications for cardiovascular risk reduction
    • Mafong, D. D. & Henry, R. R. Exenatide as a treatment for diabetes and obesity: Implications for cardiovascular risk reduction. Curr. Atheroscler. Rep. 10, 55-60 (2008).
    • (2008) Curr. Atheroscler. Rep. , vol.10 , pp. 55-60
    • Mafong, D.D.1    Henry, R.R.2
  • 182
    • 79951702236 scopus 로고    scopus 로고
    • Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP 1) receptor agonist exenatide twice daily or other glucose-lowering therapies: A retrospective analysis of the LifeLink database
    • Best, J. H. et al. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP 1) receptor agonist exenatide twice daily or other glucose-lowering therapies: A retrospective analysis of the LifeLink database. Diabetes Care 34, 90-95 (2011).
    • (2011) Diabetes Care , vol.34 , pp. 90-95
    • Best, J.H.1
  • 183
    • 0020639876 scopus 로고
    • Metformin action on lipid metabolism in lesions of experimental aortic atherosclerosis of rabbits
    • Marquié, G. Metformin action on lipid metabolism in lesions of experimental aortic atherosclerosis of rabbits. Atherosclerosis 47, 7-17 (1983).
    • (1983) Atherosclerosis , vol.47 , pp. 7-17
    • Marquié, G.1
  • 184
    • 77951151612 scopus 로고    scopus 로고
    • Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide 1 receptor agonist, exendin 4
    • Arakawa, M. et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide 1 receptor agonist, exendin 4. Diabetes 59, 1030-1037 (2010).
    • (2010) Diabetes , vol.59 , pp. 1030-1037
    • Arakawa, M.1
  • 185
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC 1α
    • Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC 1α. Cell 127, 1109-1122 (2006).
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 186
    • 79953043473 scopus 로고    scopus 로고
    • Caloric restriction and resveratrol promote longevity through the Sirtuin 1 dependent induction of autophagy
    • Morselli, E. et al. Caloric restriction and resveratrol promote longevity through the Sirtuin 1 dependent induction of autophagy. Cell Death Dis. 1, e10 (2010).
    • (2010) Cell Death Dis. , vol.1
    • Morselli, E.1
  • 187
    • 84868285016 scopus 로고    scopus 로고
    • Patent watch: Extra exclusivity for new medical uses
    • Harrison, C. Patent watch: Extra exclusivity for new medical uses. Nat. Rev. Drug Discov. 11, 666 (2012).
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 666
    • Harrison, C.1
  • 188
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201-206 (2013).
    • (2013) Nature , vol.494 , pp. 201-206
    • Shoji-Kawata, S.1
  • 189
    • 84877905545 scopus 로고    scopus 로고
    • Autophagy: A targetable linchpin of cancer cell metabolism
    • Leone, R. D. & Amaravadi, R. K. Autophagy: A targetable linchpin of cancer cell metabolism. Trends Endocrinol. Metab. 24, 209-217 (2013).
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 209-217
    • Leone, R.D.1    Amaravadi, R.K.2
  • 190
    • 79955492012 scopus 로고    scopus 로고
    • Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
    • Inami, Y. et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193, 275-284 (2011).
    • (2011) J. Cell Biol. , vol.193 , pp. 275-284
    • Inami, Y.1
  • 191
    • 66449099090 scopus 로고    scopus 로고
    • Autophagy suppresses tumorigenesis through elimination of p62
    • Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062-1075 (2009).
    • (2009) Cell , vol.137 , pp. 1062-1075
    • Mathew, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.