메뉴 건너뛰기




Volumn 19, Issue 1, 2013, Pages 83-92

Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine

(22)  Kim, Kook Hwan a   Jeong, Yeon Taek a   Oh, Hyunhee b   Kim, Seong Hun a   Cho, Jae Min a   Kim, Yo Na b   Kim, Su Sung b   Kim, Do Hoon a   Hur, Kyu Yeon a   Kim, Hyoung Kyu c   Ko, Taehee c   Han, Jin c   Kim, Hong Lim d   Kim, Jin d   Back, Sung Hoon e   Komatsu, Masaaki f   Chen, Hsiuchen g   Chan, David C g   Konishi, Morichika h   Itoh, Nobuyuki i   more..


Author keywords

[No Author keywords available]

Indexed keywords

AUTOPHAGY RELATED 7; FIBROBLAST GROWTH FACTOR 21; PROTEIN; UNCLASSIFIED DRUG;

EID: 84872057896     PISSN: 10788956     EISSN: 1546170X     Source Type: Journal    
DOI: 10.1038/nm.3014     Document Type: Article
Times cited : (656)

References (60)
  • 1
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27-42 (2008).
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 2
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325-332 (2008).
    • (2008) Cell Metab , vol.8 , pp. 325-332
    • Ebato, C.1
  • 3
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
    • Jung, H.S. et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324 (2008).
    • (2008) Cell Metab , vol.8 , pp. 318-324
    • Jung, H.S.1
  • 4
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131-1135 (2009).
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 5
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339 (2009).
    • (2009) J. Clin. Invest , vol.119 , pp. 3329-3339
    • Singh, R.1
  • 6
    • 73949124173 scopus 로고    scopus 로고
    • Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
    • Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. USA 106, 19860-19865 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 19860-19865
    • Zhang, Y.1
  • 7
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang, L., Li, P., Fu, S., Calay, E.S. & Hotamisligil, G.S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478 (2010).
    • (2010) Cell Metab , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 8
    • 77952409809 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy
    • Wu, J.J. et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY) 1, 425-437 (2009).
    • (2009) Aging (Albany NY) , vol.1 , pp. 425-437
    • Wu, J.J.1
  • 9
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408-415 (2011).
    • (2011) Nat. Immunol , vol.12 , pp. 408-415
    • Wen, H.1
  • 10
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
    • Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425-434 (2005).
    • (2005) J. Cell Biol , vol.169 , pp. 425-434
    • Komatsu, M.1
  • 11
    • 70449927247 scopus 로고    scopus 로고
    • Autophagy is required to maintain muscle mass
    • Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507-515 (2009).
    • (2009) Cell Metab , vol.10 , pp. 507-515
    • Masiero, E.1
  • 12
    • 76249127368 scopus 로고    scopus 로고
    • Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo
    • Mortensen, M. et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl. Acad. Sci. USA 107, 832-837 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 832-837
    • Mortensen, M.1
  • 13
    • 0038025371 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the elderly: Possible role in insulin resistance
    • Petersen, K.F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140-1142 (2003).
    • (2003) Science , vol.300 , pp. 1140-1142
    • Petersen, K.F.1
  • 14
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha, V.K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273 (2003).
    • (2003) Nat. Genet , vol.34 , pp. 267-273
    • Mootha, V.K.1
  • 15
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti, M.E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. USA 100, 8466-8471 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 8466-8471
    • Patti, M.E.1
  • 16
    • 33847611885 scopus 로고    scopus 로고
    • Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle
    • Boushel, R. et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50, 790-796 (2007).
    • (2007) Diabetologia , vol.50 , pp. 790-796
    • Boushel, R.1
  • 17
    • 45549089279 scopus 로고    scopus 로고
    • High-fat diets cause insulin resistance despite an increase in muscle mitochondria
    • Hancock, C.R. et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. USA 105, 7815-7820 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 7815-7820
    • Hancock, C.R.1
  • 18
    • 35548999739 scopus 로고    scopus 로고
    • Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes
    • Pospisilik, J.A. et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131, 476-491 (2007).
    • (2007) Cell , vol.131 , pp. 476-491
    • Pospisilik, J.A.1
  • 19
    • 33749041269 scopus 로고    scopus 로고
    • Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance
    • Wredenberg, A. et al. Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance. Biochem. Biophys. Res.Commun. 350, 202-207 (2006).
    • (2006) Biochem. Biophys. Res.Commun , vol.350 , pp. 202-207
    • Wredenberg, A.1
  • 20
    • 0024237258 scopus 로고
    • Rates and tissue sites of non-insulin-And insulin-mediated glucose uptake in humans
    • Baron, A.D., Brechtel, G., Wallace, P. & Edelman, S.V. Rates and tissue sites of non-insulin-And insulin-mediated glucose uptake in humans. Am. J. Physiol. 255, E769-E774 (1988).
    • (1988) Am. J. Physiol , vol.255
    • Baron, A.D.1    Brechtel, G.2    Wallace, P.3    Edelman, S.V.4
  • 21
    • 84856442945 scopus 로고    scopus 로고
    • A guide to analysis of mouse energy metabolism
    • Tschöp, M. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57-63 (2001).
    • (2001) Nat. Methods , vol.9 , pp. 57-63
    • Tschöp, M.1
  • 22
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 23
    • 0021738430 scopus 로고
    • The role of thyroid hormones in the control of energy expenditure
    • Danforth, E., Jr. & Burger, A. The role of thyroid hormones in the control of energy expenditure. Clin. Endocrinol. Metab. 13, 581-595 (1984).
    • (1984) Clin. Endocrinol. Metab , vol.13 , pp. 581-595
    • Danforth Jr., E.1    Burger, A.2
  • 24
    • 0029073613 scopus 로고
    • Weight-reducing effects of the plasma protein encoded by the obese gene
    • Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543-546 (1995).
    • (1995) Science , vol.269 , pp. 543-546
    • Halaas, J.L.1
  • 25
    • 17944365228 scopus 로고    scopus 로고
    • The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
    • Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941-946 (2001).
    • (2001) Nat. Med , vol.7 , pp. 941-946
    • Yamauchi, T.1
  • 26
    • 36048931015 scopus 로고    scopus 로고
    • Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
    • Handschin, C. et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J. Clin. Invest. 117, 3463-3474 (2007).
    • (2007) J. Clin. Invest , vol.117 , pp. 3463-3474
    • Handschin, C.1
  • 27
    • 54849438574 scopus 로고    scopus 로고
    • FGF21 is an Akt-regulated myokine
    • Izumiya, Y. et al. FGF21 is an Akt-regulated myokine. FEBS Lett. 582, 3805-3810 (2008).
    • (2008) FEBS Lett , vol.582 , pp. 3805-3810
    • Izumiya, Y.1
  • 28
    • 20444435873 scopus 로고    scopus 로고
    • FGF-21 as a novel metabolic regulator
    • Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115, 1627-1635 (2005).
    • (2005) J. Clin. Invest , vol.115 , pp. 1627-1635
    • Kharitonenkov, A.1
  • 29
    • 61649127208 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
    • Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250-259 (2009).
    • (2009) Diabetes , vol.58 , pp. 250-259
    • Xu, J.1
  • 30
    • 57349098220 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 corrects obesity in mice
    • Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018-6027 (2008).
    • (2008) Endocrinology , vol.149 , pp. 6018-6027
    • Coskun, T.1
  • 31
    • 67649823642 scopus 로고    scopus 로고
    • FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
    • Potthoff, M.J. et al. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA 106, 10853-10858 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 10853-10858
    • Potthoff, M.J.1
  • 32
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21
    • Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415-425 (2007).
    • (2007) Cell Metab , vol.5 , pp. 415-425
    • Inagaki, T.1
  • 33
    • 79960726293 scopus 로고    scopus 로고
    • Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
    • Fisher, F.M. et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152, 2996-3004 (2011).
    • (2011) Endocrinology , vol.152 , pp. 2996-3004
    • Fisher, F.M.1
  • 34
    • 80053409251 scopus 로고    scopus 로고
    • Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes
    • Chen, W. et al. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J. Biol. Chem. 286, 34559-34566 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 34559-34566
    • Chen, W.1
  • 35
    • 0037353039 scopus 로고    scopus 로고
    • An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
    • Harding, H.P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 619-633
    • Harding, H.P.1
  • 36
    • 77958472998 scopus 로고    scopus 로고
    • Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response
    • Dey, S. et al. Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J. Biol. Chem. 285, 33165-33174 (2010).
    • (2010) J. Biol. Chem , vol.285 , pp. 33165-33174
    • Dey, S.1
  • 37
    • 77649265091 scopus 로고    scopus 로고
    • The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
    • Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223 (2010).
    • (2010) Nat. Cell Biol , vol.12 , pp. 213-223
    • Komatsu, M.1
  • 38
    • 79955929541 scopus 로고    scopus 로고
    • Transcriptional regulation of activating transcription factor 4 under oxidative stress in retinal pigment epithelial ARPE-19/HPV-16 cells
    • Miyamoto, N. et al. Transcriptional regulation of activating transcription factor 4 under oxidative stress in retinal pigment epithelial ARPE-19/HPV-16 cells. Invest. Ophthalmol. Vis. Sci. 52, 1226-1234 (2011).
    • (2011) Invest. Ophthalmol. Vis. Sci , vol.52 , pp. 1226-1234
    • Miyamoto, N.1
  • 39
    • 64449083860 scopus 로고    scopus 로고
    • Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia
    • Silva, J.M., Wong, A., Carelli, V. & Cortopassi, G.A. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol. Dis. 34, 357-365 (2009).
    • (2009) Neurobiol. Dis , vol.34 , pp. 357-365
    • Silva, J.M.1    Wong, A.2    Carelli, V.3    Cortopassi, G.A.4
  • 40
    • 79954417075 scopus 로고    scopus 로고
    • Parkin is transcriptionally regulated by ATF4: Evidence for an interconnection between mitochondrial stress and ER stress
    • Bouman, L. et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 18, 769-782 (2011).
    • (2011) Cell Death Differ , vol.18 , pp. 769-782
    • Bouman, L.1
  • 41
    • 77951737783 scopus 로고    scopus 로고
    • Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
    • Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280-289 (2010).
    • (2010) Cell , vol.141 , pp. 280-289
    • Chen, H.1
  • 42
    • 77955789211 scopus 로고    scopus 로고
    • Altered lipid content inhibits autophagic vesicular fusion
    • Koga, H., Kaushik, S. & Cuervo, A.M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052-3065 (2010).
    • (2010) FASEB J , vol.24 , pp. 3052-3065
    • Koga, H.1    Kaushik, S.2    Cuervo, A.M.3
  • 43
    • 77957743736 scopus 로고    scopus 로고
    • Mitochondrial myopathy induces a starvation-like response
    • Tyynismaa, H. et al. Mitochondrial myopathy induces a starvation-like response. Hum. Mol. Genet. 19, 3948-3958 (2010).
    • (2010) Hum. Mol. Genet , vol.19 , pp. 3948-3958
    • Tyynismaa, H.1
  • 44
    • 80051667626 scopus 로고    scopus 로고
    • FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: A diagnostic study
    • Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806-818 (2011).
    • (2011) Lancet Neurol , vol.10 , pp. 806-818
    • Suomalainen, A.1
  • 45
    • 78650944949 scopus 로고    scopus 로고
    • The cell-non-Autonomous nature of electron transport chain-mediated longevity
    • Durieux, J., Wolff, S. & Dillin, A. The cell-non-Autonomous nature of electron transport chain-mediated longevity. Cell 144, 79-91 (2011).
    • (2011) Cell , vol.144 , pp. 79-91
    • Durieux, J.1    Wolff, S.2    Dillin, A.3
  • 46
    • 84870302181 scopus 로고    scopus 로고
    • MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity
    • Kusminski, C.M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539-1549 (2012).
    • (2012) Nat. Med , vol.18 , pp. 1539-1549
    • Kusminski, C.M.1
  • 47
    • 0033578604 scopus 로고    scopus 로고
    • Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin
    • Ibrahimi, A. et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J. Biol. Chem. 274, 26761-26766 (1999).
    • (1999) J. Biol. Chem , vol.274 , pp. 26761-26766
    • Ibrahimi, A.1
  • 48
    • 77958456869 scopus 로고    scopus 로고
    • Tissue-specific functions in the fatty acid-binding protein family
    • Storch, J. & Thumser, A.E. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 285, 32679-32683 (2010).
    • (2010) J. Biol. Chem , vol.285 , pp. 32679-32683
    • Storch, J.1    Thumser, A.E.2
  • 49
    • 84863012022 scopus 로고    scopus 로고
    • FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis
    • Fisher, F.M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271-281 (2012).
    • (2012) Genes Dev , vol.26 , pp. 271-281
    • Fisher, F.M.1
  • 50
    • 0033762782 scopus 로고    scopus 로고
    • Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes
    • Silva, J.P. et al. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat. Genet. 26, 336-340 (2000).
    • (2000) Nat. Genet , vol.26 , pp. 336-340
    • Silva, J.P.1
  • 51
    • 84863393597 scopus 로고    scopus 로고
    • Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
    • He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515 (2012).
    • (2012) Nature , vol.481 , pp. 511-515
    • He, C.1
  • 52
    • 63349104160 scopus 로고    scopus 로고
    • The MAP1-LC3 conjugation system is involved in lipid droplet formation
    • Shibata, M. et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res.Commun. 382, 419-423 (2009).
    • (2009) Biochem. Biophys. Res. Commun , vol.382 , pp. 419-423
    • Shibata, M.1
  • 53
    • 18244382304 scopus 로고    scopus 로고
    • Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
    • Donnelly, K.L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343-1351 (2005).
    • (2005) J. Clin. Invest , vol.115 , pp. 1343-1351
    • Donnelly, K.L.1
  • 54
    • 19944430411 scopus 로고    scopus 로고
    • Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP
    • Lin, J. et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120, 261-73 (2005).
    • (2005) Cell , vol.120 , pp. 261-273
    • Lin, J.1
  • 55
    • 33644654777 scopus 로고    scopus 로고
    • Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2
    • Savage, D.B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 116, 817-824 (2006).
    • (2006) J. Clin. Invest , vol.116 , pp. 817-824
    • Savage, D.B.1
  • 56
    • 33745212925 scopus 로고    scopus 로고
    • Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance
    • Gutiérrez-Juárez, R. et al. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J. Clin. Invest. 116, 1686-1695 (2006).
    • (2006) J. Clin. Invest , vol.116 , pp. 1686-1695
    • Gutiérrez-Juárez, R.1
  • 57
    • 34547946930 scopus 로고    scopus 로고
    • Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance
    • Choi, C.S. et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem. 282, 22678-22688 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 22678-22688
    • Choi, C.S.1
  • 58
    • 0034059143 scopus 로고    scopus 로고
    • Selective expression of Cre recombinase in skeletal muscle fibers
    • Bothe, G.W., Haspel, J.A., Smith, C.L., Wiener, H.H. & Burden, S.J. Selective expression of Cre recombinase in skeletal muscle fibers. Genesis 26, 165-166 (2000).
    • (2000) Genesis , vol.26 , pp. 165-166
    • Bothe, G.W.1    Haspel, J.A.2    Smith, C.L.3    Wiener, H.H.4    Burden, S.J.5
  • 59
    • 70349324370 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver
    • Hotta, Y. et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150, 4625-4633 (2009).
    • (2009) Endocrinology , vol.150 , pp. 4625-4633
    • Hotta, Y.1
  • 60
    • 0014311556 scopus 로고
    • Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB)
    • Seligman, A.M., Karnovsky, M.J., Wasserkrug, H.L. & Hanker, J.S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1-14 (1968).
    • (1968) J. Cell Biol , vol.38 , pp. 1-14
    • Seligman, A.M.1    Karnovsky, M.J.2    Wasserkrug, H.L.3    Hanker, J.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.