-
1
-
-
0000987154
-
über den Stoffwechsel der Carcinomzelle
-
(in German)
-
Warburg O. über den Stoffwechsel der Carcinomzelle. Klin. Wochenschr. 1925, 4:534-536. (in German).
-
(1925)
Klin. Wochenschr.
, vol.4
, pp. 534-536
-
-
Warburg, O.1
-
2
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
3
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
4
-
-
84864960912
-
Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger
-
Mathew R., White E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 2011, 76:389-396.
-
(2011)
Cold Spring Harb. Symp. Quant. Biol.
, vol.76
, pp. 389-396
-
-
Mathew, R.1
White, E.2
-
5
-
-
84863661689
-
Therapeutic targets in cancer cell metabolism and autophagy
-
Cheong H., et al. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol. 2012, 30:671-678.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 671-678
-
-
Cheong, H.1
-
6
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
-
7
-
-
79551634458
-
Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night
-
Mathew R., White E. Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr. Opin. Genet. Dev. 2011, 21:113-119.
-
(2011)
Curr. Opin. Genet. Dev.
, vol.21
, pp. 113-119
-
-
Mathew, R.1
White, E.2
-
8
-
-
1842865745
-
Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells
-
Kanzawa T., et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004, 11:448-457.
-
(2004)
Cell Death Differ.
, vol.11
, pp. 448-457
-
-
Kanzawa, T.1
-
9
-
-
77953229918
-
Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy
-
Wu W.K., et al. Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist. Updat. 2010, 13:87-92.
-
(2010)
Drug Resist. Updat.
, vol.13
, pp. 87-92
-
-
Wu, W.K.1
-
10
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
Amaravadi R.K., et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 2011, 17:654-666.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 654-666
-
-
Amaravadi, R.K.1
-
11
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
Lum J.J., et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005, 120:237-248.
-
(2005)
Cell
, vol.120
, pp. 237-248
-
-
Lum, J.J.1
-
12
-
-
33645112812
-
Rapamycin pre-treatment protects against apoptosis
-
Ravikumar B., et al. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet. 2006, 15:1209-1216.
-
(2006)
Hum. Mol. Genet.
, vol.15
, pp. 1209-1216
-
-
Ravikumar, B.1
-
13
-
-
66449099090
-
Autophagy suppresses tumorigenesis through elimination of p62
-
Mathew R., et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137:1062-1075.
-
(2009)
Cell
, vol.137
, pp. 1062-1075
-
-
Mathew, R.1
-
14
-
-
34250183177
-
HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
-
Pandey U.B., et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007, 447:859-863.
-
(2007)
Nature
, vol.447
, pp. 859-863
-
-
Pandey, U.B.1
-
15
-
-
77149152566
-
Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation
-
Manjithaya R., et al. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 2010, 188:537-546.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 537-546
-
-
Manjithaya, R.1
-
16
-
-
80053564250
-
Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity
-
Kuo T.C., et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat. Cell Biol. 2011, 13:1214-1223.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1214-1223
-
-
Kuo, T.C.1
-
17
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X., et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 2003, 112:1809-1820.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
-
18
-
-
84856003912
-
Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome
-
Lazova R., et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin. Cancer Res. 2012, 18:370-379.
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 370-379
-
-
Lazova, R.1
-
19
-
-
79956003662
-
Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma
-
Ma X.H., et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin. Cancer Res. 2011, 17:3478-3489.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 3478-3489
-
-
Ma, X.H.1
-
20
-
-
0036320205
-
Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake
-
Edinger A.L., Thompson C.B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell 2002, 13:2276-2288.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 2276-2288
-
-
Edinger, A.L.1
Thompson, C.B.2
-
21
-
-
20544449673
-
The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation
-
Buzzai M., et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 2005, 24:4165-4173.
-
(2005)
Oncogene
, vol.24
, pp. 4165-4173
-
-
Buzzai, M.1
-
22
-
-
2542561169
-
Akt stimulates aerobic glycolysis in cancer cells
-
Elstrom R.L., et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004, 64:3892-3899.
-
(2004)
Cancer Res.
, vol.64
, pp. 3892-3899
-
-
Elstrom, R.L.1
-
23
-
-
26644441651
-
ATP citrate lyase inhibition can suppress tumor cell growth
-
Hatzivassiliou G., et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005, 8:311-321.
-
(2005)
Cancer Cell
, vol.8
, pp. 311-321
-
-
Hatzivassiliou, G.1
-
24
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009, 10:307-318.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
25
-
-
33747488399
-
PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR
-
Bernardi R., et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 2006, 442:779-785.
-
(2006)
Nature
, vol.442
, pp. 779-785
-
-
Bernardi, R.1
-
26
-
-
0034654174
-
Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics
-
Zhong H., et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60:1541-1545.
-
(2000)
Cancer Res.
, vol.60
, pp. 1541-1545
-
-
Zhong, H.1
-
27
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
-
Kim J.W., et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
-
(2006)
Cell Metab.
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
-
28
-
-
35649014840
-
Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1
-
Kim J.W., et al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 2007, 27:7381-7393.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 7381-7393
-
-
Kim, J.W.1
-
29
-
-
0030921103
-
C-Myc transactivation of LDH-A: implications for tumor metabolism and growth
-
Shim H., et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:6658-6663.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 6658-6663
-
-
Shim, H.1
-
30
-
-
15444342958
-
Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha
-
Iyer N.V., et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12:149-162.
-
(1998)
Genes Dev.
, vol.12
, pp. 149-162
-
-
Iyer, N.V.1
-
31
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise D.R., et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:18782-18787.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
-
32
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo J.Y., et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011, 25:460-470.
-
(2011)
Genes Dev.
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
-
33
-
-
33846005164
-
Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth
-
Deberardinis R.J., et al. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J. Biol. Chem. 2006, 281:37372-37380.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 37372-37380
-
-
Deberardinis, R.J.1
-
34
-
-
79953306808
-
Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival
-
Elgendy M., et al. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 2011, 42:23-35.
-
(2011)
Mol. Cell
, vol.42
, pp. 23-35
-
-
Elgendy, M.1
-
35
-
-
84855439046
-
Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation
-
Wu S.Y., et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 2011, 13:1171-1182.
-
(2011)
Neoplasia
, vol.13
, pp. 1171-1182
-
-
Wu, S.Y.1
-
36
-
-
0030057186
-
Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR
-
Portais J.C., et al. Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie 1996, 78:155-164.
-
(1996)
Biochimie
, vol.78
, pp. 155-164
-
-
Portais, J.C.1
-
37
-
-
34347402459
-
Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
-
Yuneva M., et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 2007, 178:93-105.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 93-105
-
-
Yuneva, M.1
-
38
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen A.R., et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2011, 481:385-388.
-
(2011)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
-
39
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
-
Wise D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19611-19616.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
-
40
-
-
40949126440
-
Mitochondrial complex III regulates hypoxic activation of HIF
-
Klimova T., Chandel N.S. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008, 15:660-666.
-
(2008)
Cell Death Differ.
, vol.15
, pp. 660-666
-
-
Klimova, T.1
Chandel, N.S.2
-
41
-
-
77953861522
-
Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
-
Eng C.H., et al. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 2010, 3:ra31.
-
(2010)
Sci. Signal.
, vol.3
-
-
Eng, C.H.1
-
42
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 2008, 283:10892-10903.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
-
43
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
44
-
-
80052806536
-
Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression
-
Noman M.Z., et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res. 2011, 71:5976-5986.
-
(2011)
Cancer Res.
, vol.71
, pp. 5976-5986
-
-
Noman, M.Z.1
-
45
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G., et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 2009, 29:2570-2581.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
-
46
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13:1016-1023.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
47
-
-
79959354999
-
Mitochondria and the autophagy-inflammation-cell death axis in organismal aging
-
Green D.R., et al. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011, 333:1109-1112.
-
(2011)
Science
, vol.333
, pp. 1109-1112
-
-
Green, D.R.1
-
48
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S., et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
-
49
-
-
33846794896
-
Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
-
Amaravadi R.K., et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 2007, 117:326-336.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 326-336
-
-
Amaravadi, R.K.1
-
50
-
-
64349123107
-
Autophagy mediates the mitotic senescence transition
-
Young A.R., et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 2009, 23:798-803.
-
(2009)
Genes Dev.
, vol.23
, pp. 798-803
-
-
Young, A.R.1
-
51
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
-
52
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X., et al. Rheb binds and regulates the mTOR kinase. Curr. Biol. 2005, 15:702-713.
-
(2005)
Curr. Biol.
, vol.15
, pp. 702-713
-
-
Long, X.1
-
53
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D.H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
-
54
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
55
-
-
42649112409
-
2+/CaM signaling to hVps34
-
2+/CaM signaling to hVps34. Cell Metab. 2008, 7:456-465.
-
(2008)
Cell Metab.
, vol.7
, pp. 456-465
-
-
Gulati, P.1
-
56
-
-
34147141941
-
A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling
-
Findlay G.M., et al. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem. J. 2007, 403:13-20.
-
(2007)
Biochem. J.
, vol.403
, pp. 13-20
-
-
Findlay, G.M.1
-
57
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley I.G., et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284:12297-12305.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
-
58
-
-
84870546460
-
ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth
-
Hart L.S., et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 2012, 122:4621-4634.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 4621-4634
-
-
Hart, L.S.1
-
59
-
-
84871193715
-
The autophagy protein LC3A correlates with hypoxia and is a prognostic marker of patient survival in clear cell ovarian cancer
-
Spowart J.E., et al. The autophagy protein LC3A correlates with hypoxia and is a prognostic marker of patient survival in clear cell ovarian cancer. J. Pathol. 2012, 228:437-447.
-
(2012)
J. Pathol.
, vol.228
, pp. 437-447
-
-
Spowart, J.E.1
-
60
-
-
33947250696
-
The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis
-
Liang J., et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 2007, 9:218-224.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 218-224
-
-
Liang, J.1
-
61
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
62
-
-
77956994837
-
Differential localization of ATM is correlated with activation of distinct downstream signaling pathways
-
Alexander A., Walker C.L. Differential localization of ATM is correlated with activation of distinct downstream signaling pathways. Cell Cycle 2010, 9:3685-3686.
-
(2010)
Cell Cycle
, vol.9
, pp. 3685-3686
-
-
Alexander, A.1
Walker, C.L.2
-
63
-
-
20444363122
-
The coordinate regulation of the p53 and mTOR pathways in cells
-
Feng Z., et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:8204-8209.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 8204-8209
-
-
Feng, Z.1
-
64
-
-
77954310492
-
The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein
-
Feng Z., Levine A.J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010, 20:427-434.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 427-434
-
-
Feng, Z.1
Levine, A.J.2
-
65
-
-
84857289515
-
Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress
-
Singh K., et al. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy 2012, 8:236-251.
-
(2012)
Autophagy
, vol.8
, pp. 236-251
-
-
Singh, K.1
-
66
-
-
34248581851
-
ER-phagy: selective autophagy of the endoplasmic reticulum
-
Bernales S., et al. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 2007, 3:285-287.
-
(2007)
Autophagy
, vol.3
, pp. 285-287
-
-
Bernales, S.1
-
67
-
-
36248949141
-
The endoplasmic reticulum and the unfolded protein response
-
Malhotra J.D., Kaufman R.J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 2007, 18:716-731.
-
(2007)
Semin. Cell Dev. Biol.
, vol.18
, pp. 716-731
-
-
Malhotra, J.D.1
Kaufman, R.J.2
-
68
-
-
84860468095
-
Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling
-
Appenzeller-Herzog C., Hall M.N. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012, 22:274-282.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 274-282
-
-
Appenzeller-Herzog, C.1
Hall, M.N.2
-
69
-
-
79957952535
-
Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning
-
Semenza G.L. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim. Biophys. Acta 2011, 1813:1263-1268.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1263-1268
-
-
Semenza, G.L.1
-
70
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
71
-
-
84862800709
-
Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death
-
Wu H., et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J. Pathol. 2012, 227:189-199.
-
(2012)
J. Pathol.
, vol.227
, pp. 189-199
-
-
Wu, H.1
-
72
-
-
79954450327
-
2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion
-
Xi H., et al. 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother. Pharmacol. 2011, 67:899-910.
-
(2011)
Cancer Chemother. Pharmacol.
, vol.67
, pp. 899-910
-
-
Xi, H.1
-
73
-
-
84867238654
-
Autophagy: resetting glutamine-dependent metabolism and oxygen consumption
-
Lin T.C., et al. Autophagy: resetting glutamine-dependent metabolism and oxygen consumption. Autophagy 2012, 8:1477-1493.
-
(2012)
Autophagy
, vol.8
, pp. 1477-1493
-
-
Lin, T.C.1
-
74
-
-
79956346329
-
Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation
-
Rong Y., et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7826-7831.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 7826-7831
-
-
Rong, Y.1
-
75
-
-
84863535995
-
Wip1-dependent regulation of autophagy, obesity, and atherosclerosis
-
Le Guezennec X., et al. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab. 2012, 16:68-80.
-
(2012)
Cell Metab.
, vol.16
, pp. 68-80
-
-
Le Guezennec, X.1
-
76
-
-
79954504372
-
Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment
-
Martinez-Outschoorn U.E., et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell Biol. 2011, 43:1045-1051.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 1045-1051
-
-
Martinez-Outschoorn, U.E.1
-
77
-
-
84860333164
-
Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the 'reverse Warburg effect' in positive lymph node tissue
-
Sotgia F., et al. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the 'reverse Warburg effect' in positive lymph node tissue. Cell Cycle 2012, 11:1445-1454.
-
(2012)
Cell Cycle
, vol.11
, pp. 1445-1454
-
-
Sotgia, F.1
-
78
-
-
84870886414
-
Mitochondria 'fuel' breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells
-
Sotgia F., et al. Mitochondria 'fuel' breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 2012, 11:4390-4401.
-
(2012)
Cell Cycle
, vol.11
, pp. 4390-4401
-
-
Sotgia, F.1
-
79
-
-
33645115547
-
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial
-
Sotelo J., et al. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 2006, 144:337-343.
-
(2006)
Ann. Intern. Med.
, vol.144
, pp. 337-343
-
-
Sotelo, J.1
-
80
-
-
84861434652
-
Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency
-
McAfee Q., et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8253-8258.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8253-8258
-
-
McAfee, Q.1
-
81
-
-
84866057244
-
Targeting autophagy: the Achilles' heel of cancer
-
Gorski S.M., et al. Targeting autophagy: the Achilles' heel of cancer. Autophagy 2012, 8:1279-1280.
-
(2012)
Autophagy
, vol.8
, pp. 1279-1280
-
-
Gorski, S.M.1
-
82
-
-
80052426012
-
Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival
-
Frezza C., et al. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE 2011, 6:e24411.
-
(2011)
PLoS ONE
, vol.6
-
-
Frezza, C.1
-
83
-
-
84868627011
-
MicroRNA regulation of autophagy
-
Frankel L.B., Lund A.H. MicroRNA regulation of autophagy. Carcinogenesis 2012, 33:2018-2025.
-
(2012)
Carcinogenesis
, vol.33
, pp. 2018-2025
-
-
Frankel, L.B.1
Lund, A.H.2
-
84
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z., et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:15077-15082.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
-
85
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang X.H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
-
86
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
-
87
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M., et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 2005, 169:425-434.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
-
88
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
Degenhardt K., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10:51-64.
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
|