메뉴 건너뛰기




Volumn 24, Issue 4, 2013, Pages 209-217

Autophagy: A targetable linchpin of cancer cell metabolism

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE PHOSPHATE; ADENOSINE TRIPHOSPHATE; GLUTAMINE; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MITOGEN ACTIVATED PROTEIN KINASE; MYC PROTEIN; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHOTRANSFERASE; REACTIVE OXYGEN METABOLITE; UNC 51 LIKE KINASE; UNCLASSIFIED DRUG;

EID: 84877905545     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2013.01.008     Document Type: Review
Times cited : (56)

References (88)
  • 1
    • 0000987154 scopus 로고
    • über den Stoffwechsel der Carcinomzelle
    • (in German)
    • Warburg O. über den Stoffwechsel der Carcinomzelle. Klin. Wochenschr. 1925, 4:534-536. (in German).
    • (1925) Klin. Wochenschr. , vol.4 , pp. 534-536
    • Warburg, O.1
  • 2
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 3
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
    • (2008) Cell Metab. , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1
  • 4
    • 84864960912 scopus 로고    scopus 로고
    • Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger
    • Mathew R., White E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 2011, 76:389-396.
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 389-396
    • Mathew, R.1    White, E.2
  • 5
    • 84863661689 scopus 로고    scopus 로고
    • Therapeutic targets in cancer cell metabolism and autophagy
    • Cheong H., et al. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol. 2012, 30:671-678.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 671-678
    • Cheong, H.1
  • 6
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1
  • 7
    • 79551634458 scopus 로고    scopus 로고
    • Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night
    • Mathew R., White E. Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr. Opin. Genet. Dev. 2011, 21:113-119.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 113-119
    • Mathew, R.1    White, E.2
  • 8
    • 1842865745 scopus 로고    scopus 로고
    • Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells
    • Kanzawa T., et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004, 11:448-457.
    • (2004) Cell Death Differ. , vol.11 , pp. 448-457
    • Kanzawa, T.1
  • 9
    • 77953229918 scopus 로고    scopus 로고
    • Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy
    • Wu W.K., et al. Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist. Updat. 2010, 13:87-92.
    • (2010) Drug Resist. Updat. , vol.13 , pp. 87-92
    • Wu, W.K.1
  • 10
    • 79951847989 scopus 로고    scopus 로고
    • Principles and current strategies for targeting autophagy for cancer treatment
    • Amaravadi R.K., et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 2011, 17:654-666.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 654-666
    • Amaravadi, R.K.1
  • 11
    • 12944303650 scopus 로고    scopus 로고
    • Growth factor regulation of autophagy and cell survival in the absence of apoptosis
    • Lum J.J., et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005, 120:237-248.
    • (2005) Cell , vol.120 , pp. 237-248
    • Lum, J.J.1
  • 12
    • 33645112812 scopus 로고    scopus 로고
    • Rapamycin pre-treatment protects against apoptosis
    • Ravikumar B., et al. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet. 2006, 15:1209-1216.
    • (2006) Hum. Mol. Genet. , vol.15 , pp. 1209-1216
    • Ravikumar, B.1
  • 13
    • 66449099090 scopus 로고    scopus 로고
    • Autophagy suppresses tumorigenesis through elimination of p62
    • Mathew R., et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137:1062-1075.
    • (2009) Cell , vol.137 , pp. 1062-1075
    • Mathew, R.1
  • 14
    • 34250183177 scopus 로고    scopus 로고
    • HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
    • Pandey U.B., et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007, 447:859-863.
    • (2007) Nature , vol.447 , pp. 859-863
    • Pandey, U.B.1
  • 15
    • 77149152566 scopus 로고    scopus 로고
    • Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation
    • Manjithaya R., et al. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 2010, 188:537-546.
    • (2010) J. Cell Biol. , vol.188 , pp. 537-546
    • Manjithaya, R.1
  • 16
    • 80053564250 scopus 로고    scopus 로고
    • Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity
    • Kuo T.C., et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat. Cell Biol. 2011, 13:1214-1223.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1214-1223
    • Kuo, T.C.1
  • 17
    • 9144240441 scopus 로고    scopus 로고
    • Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
    • Qu X., et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 2003, 112:1809-1820.
    • (2003) J. Clin. Invest. , vol.112 , pp. 1809-1820
    • Qu, X.1
  • 18
    • 84856003912 scopus 로고    scopus 로고
    • Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome
    • Lazova R., et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin. Cancer Res. 2012, 18:370-379.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 370-379
    • Lazova, R.1
  • 19
    • 79956003662 scopus 로고    scopus 로고
    • Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma
    • Ma X.H., et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin. Cancer Res. 2011, 17:3478-3489.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 3478-3489
    • Ma, X.H.1
  • 20
    • 0036320205 scopus 로고    scopus 로고
    • Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake
    • Edinger A.L., Thompson C.B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell 2002, 13:2276-2288.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 2276-2288
    • Edinger, A.L.1    Thompson, C.B.2
  • 21
    • 20544449673 scopus 로고    scopus 로고
    • The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation
    • Buzzai M., et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 2005, 24:4165-4173.
    • (2005) Oncogene , vol.24 , pp. 4165-4173
    • Buzzai, M.1
  • 22
    • 2542561169 scopus 로고    scopus 로고
    • Akt stimulates aerobic glycolysis in cancer cells
    • Elstrom R.L., et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004, 64:3892-3899.
    • (2004) Cancer Res. , vol.64 , pp. 3892-3899
    • Elstrom, R.L.1
  • 23
    • 26644441651 scopus 로고    scopus 로고
    • ATP citrate lyase inhibition can suppress tumor cell growth
    • Hatzivassiliou G., et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005, 8:311-321.
    • (2005) Cancer Cell , vol.8 , pp. 311-321
    • Hatzivassiliou, G.1
  • 24
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009, 10:307-318.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 25
    • 33747488399 scopus 로고    scopus 로고
    • PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR
    • Bernardi R., et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 2006, 442:779-785.
    • (2006) Nature , vol.442 , pp. 779-785
    • Bernardi, R.1
  • 26
    • 0034654174 scopus 로고    scopus 로고
    • Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics
    • Zhong H., et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60:1541-1545.
    • (2000) Cancer Res. , vol.60 , pp. 1541-1545
    • Zhong, H.1
  • 27
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
    • Kim J.W., et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
    • (2006) Cell Metab. , vol.3 , pp. 177-185
    • Kim, J.W.1
  • 28
    • 35649014840 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1
    • Kim J.W., et al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 2007, 27:7381-7393.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7381-7393
    • Kim, J.W.1
  • 29
    • 0030921103 scopus 로고    scopus 로고
    • C-Myc transactivation of LDH-A: implications for tumor metabolism and growth
    • Shim H., et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:6658-6663.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 6658-6663
    • Shim, H.1
  • 30
    • 15444342958 scopus 로고    scopus 로고
    • Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha
    • Iyer N.V., et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12:149-162.
    • (1998) Genes Dev. , vol.12 , pp. 149-162
    • Iyer, N.V.1
  • 31
    • 57749088701 scopus 로고    scopus 로고
    • Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
    • Wise D.R., et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:18782-18787.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 18782-18787
    • Wise, D.R.1
  • 32
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
    • Guo J.Y., et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011, 25:460-470.
    • (2011) Genes Dev. , vol.25 , pp. 460-470
    • Guo, J.Y.1
  • 33
    • 33846005164 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth
    • Deberardinis R.J., et al. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J. Biol. Chem. 2006, 281:37372-37380.
    • (2006) J. Biol. Chem. , vol.281 , pp. 37372-37380
    • Deberardinis, R.J.1
  • 34
    • 79953306808 scopus 로고    scopus 로고
    • Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival
    • Elgendy M., et al. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 2011, 42:23-35.
    • (2011) Mol. Cell , vol.42 , pp. 23-35
    • Elgendy, M.1
  • 35
    • 84855439046 scopus 로고    scopus 로고
    • Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation
    • Wu S.Y., et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 2011, 13:1171-1182.
    • (2011) Neoplasia , vol.13 , pp. 1171-1182
    • Wu, S.Y.1
  • 36
    • 0030057186 scopus 로고    scopus 로고
    • Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR
    • Portais J.C., et al. Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie 1996, 78:155-164.
    • (1996) Biochimie , vol.78 , pp. 155-164
    • Portais, J.C.1
  • 37
    • 34347402459 scopus 로고    scopus 로고
    • Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
    • Yuneva M., et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 2007, 178:93-105.
    • (2007) J. Cell Biol. , vol.178 , pp. 93-105
    • Yuneva, M.1
  • 38
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen A.R., et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2011, 481:385-388.
    • (2011) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1
  • 39
    • 83755178091 scopus 로고    scopus 로고
    • Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
    • Wise D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19611-19616.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 19611-19616
    • Wise, D.R.1
  • 40
    • 40949126440 scopus 로고    scopus 로고
    • Mitochondrial complex III regulates hypoxic activation of HIF
    • Klimova T., Chandel N.S. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008, 15:660-666.
    • (2008) Cell Death Differ. , vol.15 , pp. 660-666
    • Klimova, T.1    Chandel, N.S.2
  • 41
    • 77953861522 scopus 로고    scopus 로고
    • Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
    • Eng C.H., et al. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 2010, 3:ra31.
    • (2010) Sci. Signal. , vol.3
    • Eng, C.H.1
  • 42
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • Zhang H., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 2008, 283:10892-10903.
    • (2008) J. Biol. Chem. , vol.283 , pp. 10892-10903
    • Zhang, H.1
  • 43
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 44
    • 80052806536 scopus 로고    scopus 로고
    • Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression
    • Noman M.Z., et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res. 2011, 71:5976-5986.
    • (2011) Cancer Res. , vol.71 , pp. 5976-5986
    • Noman, M.Z.1
  • 45
    • 66349121718 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
    • Bellot G., et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 2009, 29:2570-2581.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 2570-2581
    • Bellot, G.1
  • 46
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13:1016-1023.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 47
    • 79959354999 scopus 로고    scopus 로고
    • Mitochondria and the autophagy-inflammation-cell death axis in organismal aging
    • Green D.R., et al. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011, 333:1109-1112.
    • (2011) Science , vol.333 , pp. 1109-1112
    • Green, D.R.1
  • 48
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler S., et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12:119-131.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 119-131
    • Geisler, S.1
  • 49
    • 33846794896 scopus 로고    scopus 로고
    • Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
    • Amaravadi R.K., et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 2007, 117:326-336.
    • (2007) J. Clin. Invest. , vol.117 , pp. 326-336
    • Amaravadi, R.K.1
  • 50
    • 64349123107 scopus 로고    scopus 로고
    • Autophagy mediates the mitotic senescence transition
    • Young A.R., et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 2009, 23:798-803.
    • (2009) Genes Dev. , vol.23 , pp. 798-803
    • Young, A.R.1
  • 51
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung C.H., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 52
    • 18044381192 scopus 로고    scopus 로고
    • Rheb binds and regulates the mTOR kinase
    • Long X., et al. Rheb binds and regulates the mTOR kinase. Curr. Biol. 2005, 15:702-713.
    • (2005) Curr. Biol. , vol.15 , pp. 702-713
    • Long, X.1
  • 53
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D.H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 54
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 55
    • 42649112409 scopus 로고    scopus 로고
    • 2+/CaM signaling to hVps34
    • 2+/CaM signaling to hVps34. Cell Metab. 2008, 7:456-465.
    • (2008) Cell Metab. , vol.7 , pp. 456-465
    • Gulati, P.1
  • 56
    • 34147141941 scopus 로고    scopus 로고
    • A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling
    • Findlay G.M., et al. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem. J. 2007, 403:13-20.
    • (2007) Biochem. J. , vol.403 , pp. 13-20
    • Findlay, G.M.1
  • 57
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley I.G., et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284:12297-12305.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12297-12305
    • Ganley, I.G.1
  • 58
    • 84870546460 scopus 로고    scopus 로고
    • ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth
    • Hart L.S., et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 2012, 122:4621-4634.
    • (2012) J. Clin. Invest. , vol.122 , pp. 4621-4634
    • Hart, L.S.1
  • 59
    • 84871193715 scopus 로고    scopus 로고
    • The autophagy protein LC3A correlates with hypoxia and is a prognostic marker of patient survival in clear cell ovarian cancer
    • Spowart J.E., et al. The autophagy protein LC3A correlates with hypoxia and is a prognostic marker of patient survival in clear cell ovarian cancer. J. Pathol. 2012, 228:437-447.
    • (2012) J. Pathol. , vol.228 , pp. 437-447
    • Spowart, J.E.1
  • 60
    • 33947250696 scopus 로고    scopus 로고
    • The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis
    • Liang J., et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 2007, 9:218-224.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 218-224
    • Liang, J.1
  • 61
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 62
    • 77956994837 scopus 로고    scopus 로고
    • Differential localization of ATM is correlated with activation of distinct downstream signaling pathways
    • Alexander A., Walker C.L. Differential localization of ATM is correlated with activation of distinct downstream signaling pathways. Cell Cycle 2010, 9:3685-3686.
    • (2010) Cell Cycle , vol.9 , pp. 3685-3686
    • Alexander, A.1    Walker, C.L.2
  • 63
    • 20444363122 scopus 로고    scopus 로고
    • The coordinate regulation of the p53 and mTOR pathways in cells
    • Feng Z., et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:8204-8209.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 8204-8209
    • Feng, Z.1
  • 64
    • 77954310492 scopus 로고    scopus 로고
    • The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein
    • Feng Z., Levine A.J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010, 20:427-434.
    • (2010) Trends Cell Biol. , vol.20 , pp. 427-434
    • Feng, Z.1    Levine, A.J.2
  • 65
    • 84857289515 scopus 로고    scopus 로고
    • Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress
    • Singh K., et al. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy 2012, 8:236-251.
    • (2012) Autophagy , vol.8 , pp. 236-251
    • Singh, K.1
  • 66
    • 34248581851 scopus 로고    scopus 로고
    • ER-phagy: selective autophagy of the endoplasmic reticulum
    • Bernales S., et al. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 2007, 3:285-287.
    • (2007) Autophagy , vol.3 , pp. 285-287
    • Bernales, S.1
  • 67
    • 36248949141 scopus 로고    scopus 로고
    • The endoplasmic reticulum and the unfolded protein response
    • Malhotra J.D., Kaufman R.J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 2007, 18:716-731.
    • (2007) Semin. Cell Dev. Biol. , vol.18 , pp. 716-731
    • Malhotra, J.D.1    Kaufman, R.J.2
  • 68
    • 84860468095 scopus 로고    scopus 로고
    • Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling
    • Appenzeller-Herzog C., Hall M.N. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012, 22:274-282.
    • (2012) Trends Cell Biol. , vol.22 , pp. 274-282
    • Appenzeller-Herzog, C.1    Hall, M.N.2
  • 69
    • 79957952535 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning
    • Semenza G.L. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim. Biophys. Acta 2011, 1813:1263-1268.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1263-1268
    • Semenza, G.L.1
  • 70
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 71
    • 84862800709 scopus 로고    scopus 로고
    • Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death
    • Wu H., et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J. Pathol. 2012, 227:189-199.
    • (2012) J. Pathol. , vol.227 , pp. 189-199
    • Wu, H.1
  • 72
    • 79954450327 scopus 로고    scopus 로고
    • 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion
    • Xi H., et al. 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother. Pharmacol. 2011, 67:899-910.
    • (2011) Cancer Chemother. Pharmacol. , vol.67 , pp. 899-910
    • Xi, H.1
  • 73
    • 84867238654 scopus 로고    scopus 로고
    • Autophagy: resetting glutamine-dependent metabolism and oxygen consumption
    • Lin T.C., et al. Autophagy: resetting glutamine-dependent metabolism and oxygen consumption. Autophagy 2012, 8:1477-1493.
    • (2012) Autophagy , vol.8 , pp. 1477-1493
    • Lin, T.C.1
  • 74
    • 79956346329 scopus 로고    scopus 로고
    • Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation
    • Rong Y., et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7826-7831.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7826-7831
    • Rong, Y.1
  • 75
    • 84863535995 scopus 로고    scopus 로고
    • Wip1-dependent regulation of autophagy, obesity, and atherosclerosis
    • Le Guezennec X., et al. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab. 2012, 16:68-80.
    • (2012) Cell Metab. , vol.16 , pp. 68-80
    • Le Guezennec, X.1
  • 76
    • 79954504372 scopus 로고    scopus 로고
    • Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment
    • Martinez-Outschoorn U.E., et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell Biol. 2011, 43:1045-1051.
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 1045-1051
    • Martinez-Outschoorn, U.E.1
  • 77
    • 84860333164 scopus 로고    scopus 로고
    • Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the 'reverse Warburg effect' in positive lymph node tissue
    • Sotgia F., et al. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the 'reverse Warburg effect' in positive lymph node tissue. Cell Cycle 2012, 11:1445-1454.
    • (2012) Cell Cycle , vol.11 , pp. 1445-1454
    • Sotgia, F.1
  • 78
    • 84870886414 scopus 로고    scopus 로고
    • Mitochondria 'fuel' breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells
    • Sotgia F., et al. Mitochondria 'fuel' breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 2012, 11:4390-4401.
    • (2012) Cell Cycle , vol.11 , pp. 4390-4401
    • Sotgia, F.1
  • 79
    • 33645115547 scopus 로고    scopus 로고
    • Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial
    • Sotelo J., et al. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 2006, 144:337-343.
    • (2006) Ann. Intern. Med. , vol.144 , pp. 337-343
    • Sotelo, J.1
  • 80
    • 84861434652 scopus 로고    scopus 로고
    • Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency
    • McAfee Q., et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8253-8258.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 8253-8258
    • McAfee, Q.1
  • 81
    • 84866057244 scopus 로고    scopus 로고
    • Targeting autophagy: the Achilles' heel of cancer
    • Gorski S.M., et al. Targeting autophagy: the Achilles' heel of cancer. Autophagy 2012, 8:1279-1280.
    • (2012) Autophagy , vol.8 , pp. 1279-1280
    • Gorski, S.M.1
  • 82
    • 80052426012 scopus 로고    scopus 로고
    • Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival
    • Frezza C., et al. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE 2011, 6:e24411.
    • (2011) PLoS ONE , vol.6
    • Frezza, C.1
  • 83
    • 84868627011 scopus 로고    scopus 로고
    • MicroRNA regulation of autophagy
    • Frankel L.B., Lund A.H. MicroRNA regulation of autophagy. Carcinogenesis 2012, 33:2018-2025.
    • (2012) Carcinogenesis , vol.33 , pp. 2018-2025
    • Frankel, L.B.1    Lund, A.H.2
  • 84
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue Z., et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:15077-15082.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 15077-15082
    • Yue, Z.1
  • 85
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Liang X.H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1
  • 86
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Komatsu M., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
    • (2007) Cell , vol.131 , pp. 1149-1163
    • Komatsu, M.1
  • 87
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
    • Komatsu M., et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 2005, 169:425-434.
    • (2005) J. Cell Biol. , vol.169 , pp. 425-434
    • Komatsu, M.1
  • 88
    • 33745713171 scopus 로고    scopus 로고
    • Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
    • Degenhardt K., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10:51-64.
    • (2006) Cancer Cell , vol.10 , pp. 51-64
    • Degenhardt, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.