메뉴 건너뛰기




Volumn 1830, Issue 5, 2013, Pages 3217-3266

Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes

Author keywords

Catalysis; Electrophile; Enzyme; Glutathione; Redox; Thiol

Indexed keywords

GLUTAREDOXIN; GLUTATHIONE; GLUTATHIONE PEROXIDASE; GLUTATHIONE REDUCTASE; GLUTATHIONE TRANSFERASE; HYDROXYACYLGLUTATHIONE HYDROLASE; LACTOYLGLUTATHIONE LYASE; MEMBRANE ASSOCIATED PROTEIN WITH DIVERGENT FUNCTION IN EICOSANOID AND GLUTATHIONE METABOLISM; MEMBRANE PROTEIN; PEROXIREDOXIN; THIOREDOXIN; UNCLASSIFIED DRUG;

EID: 84875737737     PISSN: 03044165     EISSN: 18728006     Source Type: Journal    
DOI: 10.1016/j.bbagen.2012.09.018     Document Type: Review
Times cited : (835)

References (558)
  • 1
    • 0037077319 scopus 로고    scopus 로고
    • The discovery of glutathione by F. Gowland Hopkins and the beginning of biochemistry at Cambridge University
    • R.D. Simoni, R.L. Hill, and M. Vaughan The discovery of glutathione by F. Gowland Hopkins and the beginning of biochemistry at Cambridge University J. Biol. Chem. 277 2002 e13
    • (2002) J. Biol. Chem. , vol.277 , pp. 13
    • Simoni, R.D.1    Hill, R.L.2    Vaughan, M.3
  • 2
    • 0025147459 scopus 로고
    • Nature's chemicals and synthetic chemicals: Comparative toxicology
    • B.N. Ames, M. Profet, and L.S. Gold Nature's chemicals and synthetic chemicals: comparative toxicology Proc. Natl. Acad. Sci. U. S. A. 87 1990 7782 7786
    • (1990) Proc. Natl. Acad. Sci. U. S. A. , vol.87 , pp. 7782-7786
    • Ames, B.N.1    Profet, M.2    Gold, L.S.3
  • 5
    • 70249124557 scopus 로고    scopus 로고
    • Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes
    • R. Frei, C. Gaucher, S.W. Poulton, and D.E. Canfield Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes Nature 461 2009 250 253
    • (2009) Nature , vol.461 , pp. 250-253
    • Frei, R.1    Gaucher, C.2    Poulton, S.W.3    Canfield, D.E.4
  • 6
    • 0028108347 scopus 로고
    • Activation of molecular oxygen by flavins and flavoproteins
    • V. Massey Activation of molecular oxygen by flavins and flavoproteins J. Biol. Chem. 269 1994 22459 22462
    • (1994) J. Biol. Chem. , vol.269 , pp. 22459-22462
    • Massey, V.1
  • 7
    • 75749136883 scopus 로고    scopus 로고
    • Signaling functions of reactive oxygen species
    • H.J. Forman, M. Maiorino, and F. Ursini Signaling functions of reactive oxygen species Biochemistry 49 2010 835 842
    • (2010) Biochemistry , vol.49 , pp. 835-842
    • Forman, H.J.1    Maiorino, M.2    Ursini, F.3
  • 8
    • 0242608621 scopus 로고    scopus 로고
    • Pathways of oxidative damage
    • J.A. Imlay Pathways of oxidative damage Annu. Rev. Microbiol. 57 2003 395 418
    • (2003) Annu. Rev. Microbiol. , vol.57 , pp. 395-418
    • Imlay, J.A.1
  • 9
    • 50649117912 scopus 로고    scopus 로고
    • Cellular defenses against superoxide and hydrogen peroxide
    • J.A. Imlay Cellular defenses against superoxide and hydrogen peroxide Annu. Rev. Biochem. 77 2008 755 776
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 755-776
    • Imlay, J.A.1
  • 10
    • 0027209389 scopus 로고
    • Strategies of antioxidant defense
    • H. Sies Strategies of antioxidant defense Eur. J. Biochem. 215 1993 213 219
    • (1993) Eur. J. Biochem. , vol.215 , pp. 213-219
    • Sies, H.1
  • 11
    • 79954504166 scopus 로고    scopus 로고
    • Basic principles and emerging concepts in the redox control of transcription factors
    • R. Brigelius-Flohe, and L. Flohe Basic principles and emerging concepts in the redox control of transcription factors Antioxid. Redox Signal. 15 2011 2335 2381
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 2335-2381
    • Brigelius-Flohe, R.1    Flohe, L.2
  • 12
    • 73449129394 scopus 로고    scopus 로고
    • Hydrogen peroxide as a cell-survival signaling molecule
    • G. Groeger, C. Quiney, and T.G. Cotter Hydrogen peroxide as a cell-survival signaling molecule Antioxid. Redox Signal. 11 2009 2655 2671
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 2655-2671
    • Groeger, G.1    Quiney, C.2    Cotter, T.G.3
  • 13
    • 33846794822 scopus 로고    scopus 로고
    • The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology
    • K. Bedard, and K.H. Krause The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology Physiol. Rev. 87 2007 245 313
    • (2007) Physiol. Rev. , vol.87 , pp. 245-313
    • Bedard, K.1    Krause, K.H.2
  • 14
  • 15
    • 33745161382 scopus 로고    scopus 로고
    • Allosteric disulfide bonds
    • B. Schmidt, L. Ho, and P.J. Hogg Allosteric disulfide bonds Biochemistry 45 2006 7429 7433
    • (2006) Biochemistry , vol.45 , pp. 7429-7433
    • Schmidt, B.1    Ho, L.2    Hogg, P.J.3
  • 16
    • 78649793085 scopus 로고    scopus 로고
    • Ribonucleotide reduction - Horizontal transfer of a required function spans all three domains
    • D. Lundin, S. Gribaldo, E. Torrents, B.M. Sjoberg, and A.M. Poole Ribonucleotide reduction - horizontal transfer of a required function spans all three domains BMC Evol. Biol. 10 2010 383
    • (2010) BMC Evol. Biol. , vol.10 , pp. 383
    • Lundin, D.1    Gribaldo, S.2    Torrents, E.3    Sjoberg, B.M.4    Poole, A.M.5
  • 18
    • 70449652177 scopus 로고    scopus 로고
    • Disulphide bond formation in the intermembrane space of mitochondria
    • M. Deponte, and K. Hell Disulphide bond formation in the intermembrane space of mitochondria J. Biochem. 146 2009 599 608
    • (2009) J. Biochem. , vol.146 , pp. 599-608
    • Deponte, M.1    Hell, K.2
  • 20
    • 66749163678 scopus 로고    scopus 로고
    • Disulfide formation in the ER and mitochondria: Two solutions to a common process
    • J. Riemer, N. Bulleid, and J.M. Herrmann Disulfide formation in the ER and mitochondria: two solutions to a common process Science 324 2009 1284 1287
    • (2009) Science , vol.324 , pp. 1284-1287
    • Riemer, J.1    Bulleid, N.2    Herrmann, J.M.3
  • 21
    • 0032703938 scopus 로고    scopus 로고
    • Methylglyoxal in living organisms: Chemistry, biochemistry, toxicology and biological implications
    • M.P. Kalapos Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications Toxicol. Lett. 110 1999 145 175
    • (1999) Toxicol. Lett. , vol.110 , pp. 145-175
    • Kalapos, M.P.1
  • 22
    • 0022423881 scopus 로고
    • Reaction of triosephosphate isomerase with L-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate
    • J.P. Richard Reaction of triosephosphate isomerase with L-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate Biochemistry 24 1985 949 953
    • (1985) Biochemistry , vol.24 , pp. 949-953
    • Richard, J.P.1
  • 23
    • 0027454552 scopus 로고
    • The glyoxalase system in health and disease
    • P.J. Thornalley The glyoxalase system in health and disease Mol. Aspects Med. 14 1993 287 371
    • (1993) Mol. Aspects Med. , vol.14 , pp. 287-371
    • Thornalley, P.J.1
  • 24
    • 0025276041 scopus 로고
    • Stabilization of a reaction intermediate as a catalytic device: Definition of the functional role of the flexible loop in triosephosphate isomerase
    • D.L. Pompliano, A. Peyman, and J.R. Knowles Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase Biochemistry 29 1990 3186 3194
    • (1990) Biochemistry , vol.29 , pp. 3186-3194
    • Pompliano, D.L.1    Peyman, A.2    Knowles, J.R.3
  • 25
    • 0023778433 scopus 로고
    • Modification of the glyoxalase system in human red blood cells by glucose in vitro
    • P.J. Thornalley Modification of the glyoxalase system in human red blood cells by glucose in vitro Biochem. J. 254 1988 751 755
    • (1988) Biochem. J. , vol.254 , pp. 751-755
    • Thornalley, P.J.1
  • 26
    • 0142197447 scopus 로고    scopus 로고
    • Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism
    • R.S. Ronimus, and H.W. Morgan Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism Archaea 1 2003 199 221
    • (2003) Archaea , vol.1 , pp. 199-221
    • Ronimus, R.S.1    Morgan, H.W.2
  • 27
    • 33749509235 scopus 로고    scopus 로고
    • Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: A precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii
    • R.H. White, and H. Xu Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii Biochemistry 45 2006 12366 12379
    • (2006) Biochemistry , vol.45 , pp. 12366-12379
    • White, R.H.1    Xu, H.2
  • 28
    • 0021195497 scopus 로고
    • Metabolism of methylglyoxal in microorganisms
    • R.A. Cooper Metabolism of methylglyoxal in microorganisms Annu. Rev. Microbiol. 38 1984 49 68
    • (1984) Annu. Rev. Microbiol. , vol.38 , pp. 49-68
    • Cooper, R.A.1
  • 29
    • 43449094351 scopus 로고    scopus 로고
    • Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - Role in ageing and disease
    • P.J. Thornalley Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - role in ageing and disease Drug Metabol. Drug Interact. 23 2008 125 150
    • (2008) Drug Metabol. Drug Interact. , vol.23 , pp. 125-150
    • Thornalley, P.J.1
  • 30
    • 79955945922 scopus 로고    scopus 로고
    • Glyoxalase in tumourigenesis and multidrug resistance
    • P.J. Thornalley, and N. Rabbani Glyoxalase in tumourigenesis and multidrug resistance Semin. Cell Dev. Biol. 22 2011 318 325
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 318-325
    • Thornalley, P.J.1    Rabbani, N.2
  • 31
    • 79955956732 scopus 로고    scopus 로고
    • The glyoxalase system of malaria parasites - Implications for cell biology and general glyoxalase research
    • M. Urscher, R. Alisch, and M. Deponte The glyoxalase system of malaria parasites - implications for cell biology and general glyoxalase research Semin. Cell Dev. Biol. 22 2011 262 270
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 262-270
    • Urscher, M.1    Alisch, R.2    Deponte, M.3
  • 33
    • 78650027203 scopus 로고    scopus 로고
    • The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli
    • E. Ozyamak, S.S. Black, C.A. Walker, M.J. Maclean, W. Bartlett, S. Miller, and I.R. Booth The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli Mol. Microbiol. 78 2010 1577 1590
    • (2010) Mol. Microbiol. , vol.78 , pp. 1577-1590
    • Ozyamak, E.1    Black, S.S.2    Walker, C.A.3    Maclean, M.J.4    Bartlett, W.5    Miller, S.6    Booth, I.R.7
  • 35
    • 0024421234 scopus 로고
    • Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal structures at 2 A resolution
    • P.A. Karplus, and G.E. Schulz Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution J. Mol. Biol. 210 1989 163 180
    • (1989) J. Mol. Biol. , vol.210 , pp. 163-180
    • Karplus, P.A.1    Schulz, G.E.2
  • 36
    • 0017879559 scopus 로고
    • The structure of the flavoenzyme glutathione reductase
    • G.E. Schulz, R.H. Schirmer, W. Sachsenheimer, and E.F. Pai The structure of the flavoenzyme glutathione reductase Nature 273 1978 120 124
    • (1978) Nature , vol.273 , pp. 120-124
    • Schulz, G.E.1    Schirmer, R.H.2    Sachsenheimer, W.3    Pai, E.F.4
  • 38
    • 0034704081 scopus 로고    scopus 로고
    • The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited
    • S.M. Kanzok, R.H. Schirmer, I. Turbachova, R. Iozef, and K. Becker The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited J. Biol. Chem. 275 2000 40180 40186
    • (2000) J. Biol. Chem. , vol.275 , pp. 40180-40186
    • Kanzok, S.M.1    Schirmer, R.H.2    Turbachova, I.3    Iozef, R.4    Becker, K.5
  • 40
    • 77949899140 scopus 로고    scopus 로고
    • The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae
    • S.X. Tan, D. Greetham, S. Raeth, C.M. Grant, I.W. Dawes, and G.G. Perrone The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae J. Biol. Chem. 285 2010 6118 6126
    • (2010) J. Biol. Chem. , vol.285 , pp. 6118-6126
    • Tan, S.X.1    Greetham, D.2    Raeth, S.3    Grant, C.M.4    Dawes, I.W.5    Perrone, G.G.6
  • 41
    • 0029948308 scopus 로고    scopus 로고
    • A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth
    • E.G. Muller A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth Mol. Biol. Cell 7 1996 1805 1813
    • (1996) Mol. Biol. Cell , vol.7 , pp. 1805-1813
    • Muller, E.G.1
  • 42
    • 78549246255 scopus 로고    scopus 로고
    • Molecular genetics evidence for the in vivo roles of the two major NADPH-dependent disulfide reductases in the malaria parasite
    • K. Buchholz, E.D. Putrianti, S. Rahlfs, R.H. Schirmer, K. Becker, and K. Matuschewski Molecular genetics evidence for the in vivo roles of the two major NADPH-dependent disulfide reductases in the malaria parasite J. Biol. Chem. 285 2010 37388 37395
    • (2010) J. Biol. Chem. , vol.285 , pp. 37388-37395
    • Buchholz, K.1    Putrianti, E.D.2    Rahlfs, S.3    Schirmer, R.H.4    Becker, K.5    Matuschewski, K.6
  • 44
    • 13444280474 scopus 로고    scopus 로고
    • Dithiol proteins as guardians of the intracellular redox milieu in parasites: Old and new drug targets in trypanosomes and malaria-causing plasmodia
    • R.L. Krauth-Siegel, H. Bauer, and R.H. Schirmer Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia Angew. Chem. Int. Ed Engl. 44 2005 690 715
    • (2005) Angew. Chem. Int. Ed Engl. , vol.44 , pp. 690-715
    • Krauth-Siegel, R.L.1    Bauer, H.2    Schirmer, R.H.3
  • 45
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • F.Q. Schafer, and G.R. Buettner Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple Free Radic. Biol. Med. 30 2001 1191 1212
    • (2001) Free Radic. Biol. Med. , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 46
    • 77954356493 scopus 로고    scopus 로고
    • Fluorescent protein-based redox probes
    • A.J. Meyer, and T.P. Dick Fluorescent protein-based redox probes Antioxid. Redox Signal. 13 2010 621 650
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 621-650
    • Meyer, A.J.1    Dick, T.P.2
  • 48
    • 0024810730 scopus 로고
    • Toxicity of thiols and disulphides: Involvement of free-radical species
    • R. Munday Toxicity of thiols and disulphides: involvement of free-radical species Free Radic. Biol. Med. 7 1989 659 673
    • (1989) Free Radic. Biol. Med. , vol.7 , pp. 659-673
    • Munday, R.1
  • 49
    • 0024264526 scopus 로고
    • Glutathione metabolism and its selective modification
    • A. Meister Glutathione metabolism and its selective modification J. Biol. Chem. 263 1988 17205 17208
    • (1988) J. Biol. Chem. , vol.263 , pp. 17205-17208
    • Meister, A.1
  • 50
    • 84875734421 scopus 로고    scopus 로고
    • Fairytale of the GSH/GSSG redox equilibrium
    • Acta (this issue)
    • L. Flohé, Fairytale of the GSH/GSSG redox equilibrium, Biochim. Biophys. Acta (this issue).
    • Biochim. Biophys.
    • Flohé, L.1
  • 51
    • 0034733820 scopus 로고    scopus 로고
    • Regulating the cellular economy of supply and demand
    • J.S. Hofmeyr, and A. Cornish-Bowden Regulating the cellular economy of supply and demand FEBS Lett. 476 2000 47 51
    • (2000) FEBS Lett. , vol.476 , pp. 47-51
    • Hofmeyr, J.S.1    Cornish-Bowden, A.2
  • 52
    • 78650082704 scopus 로고    scopus 로고
    • Kinetic and thermodynamic aspects of enzyme control and regulation
    • J.M. Rohwer, and J.H. Hofmeyr Kinetic and thermodynamic aspects of enzyme control and regulation J. Phys. Chem. B 114 2010 16280 16289
    • (2010) J. Phys. Chem. B , vol.114 , pp. 16280-16289
    • Rohwer, J.M.1    Hofmeyr, J.H.2
  • 55
    • 64349107040 scopus 로고    scopus 로고
    • Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: The catalytic redox mechanism redux
    • E. Eckers, M. Bien, V. Stroobant, J.M. Herrmann, and M. Deponte Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux Biochemistry 48 2009 1410 1423
    • (2009) Biochemistry , vol.48 , pp. 1410-1423
    • Eckers, E.1    Bien, M.2    Stroobant, V.3    Herrmann, J.M.4    Deponte, M.5
  • 57
    • 71549132149 scopus 로고    scopus 로고
    • Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation
    • F. Hatahet, and L.W. Ruddock Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation Antioxid. Redox Signal. 11 2009 2807 2850
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 2807-2850
    • Hatahet, F.1    Ruddock, L.W.2
  • 59
    • 1542320094 scopus 로고    scopus 로고
    • Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase
    • C. Johansson, C.H. Lillig, and A. Holmgren Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase J. Biol. Chem. 279 2004 7537 7543
    • (2004) J. Biol. Chem. , vol.279 , pp. 7537-7543
    • Johansson, C.1    Lillig, C.H.2    Holmgren, A.3
  • 60
    • 72649102227 scopus 로고    scopus 로고
    • Catalytic mechanisms and specificities of glutathione peroxidases: Variations of a basic scheme
    • S. Toppo, L. Flohe, F. Ursini, S. Vanin, and M. Maiorino Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme Biochim. Biophys. Acta 1790 2009 1486 1500
    • (2009) Biochim. Biophys. Acta , vol.1790 , pp. 1486-1500
    • Toppo, S.1    Flohe, L.2    Ursini, F.3    Vanin, S.4    Maiorino, M.5
  • 64
    • 66349105304 scopus 로고    scopus 로고
    • Antioxidant activity of the yeast mitochondrial one-Cys peroxiredoxin is dependent on thioredoxin reductase and glutathione in vivo
    • D. Greetham, and C.M. Grant Antioxidant activity of the yeast mitochondrial one-Cys peroxiredoxin is dependent on thioredoxin reductase and glutathione in vivo Mol. Cell. Biol. 29 2009 3229 3240
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 3229-3240
    • Greetham, D.1    Grant, C.M.2
  • 65
    • 1642326559 scopus 로고    scopus 로고
    • Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST
    • Y. Manevich, S.I. Feinstein, and A.B. Fisher Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST Proc. Natl. Acad. Sci. U. S. A. 101 2004 3780 3785
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 3780-3785
    • Manevich, Y.1    Feinstein, S.I.2    Fisher, A.B.3
  • 66
    • 77954140186 scopus 로고    scopus 로고
    • Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-CYS peroxiredoxin in Saccharomyces cerevisiae
    • J.R. Pedrajas, C.A. Padilla, B. McDonagh, and J.A. Barcena Glutaredoxin participates in the reduction of peroxides by the mitochondrial 1-CYS peroxiredoxin in Saccharomyces cerevisiae Antioxid. Redox Signal. 13 2010 249 258
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 249-258
    • Pedrajas, J.R.1    Padilla, C.A.2    McDonagh, B.3    Barcena, J.A.4
  • 67
    • 78650992200 scopus 로고    scopus 로고
    • Peroxiredoxins in plants and cyanobacteria
    • K.J. Dietz Peroxiredoxins in plants and cyanobacteria Antioxid. Redox Signal. 15 2011 1129 1159
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 1129-1159
    • Dietz, K.J.1
  • 69
    • 0024269217 scopus 로고
    • Glutathione transferases - Structure and catalytic activity
    • B. Mannervik, and U.H. Danielson Glutathione transferases - structure and catalytic activity CRC Crit. Rev. Biochem. 23 1988 283 337
    • (1988) CRC Crit. Rev. Biochem. , vol.23 , pp. 283-337
    • Mannervik, B.1    Danielson, U.H.2
  • 70
    • 0032955185 scopus 로고    scopus 로고
    • Glutathione S-transferases - A review
    • A.E. Salinas, and M.G. Wong Glutathione S-transferases - a review Curr. Med. Chem. 6 1999 279 309
    • (1999) Curr. Med. Chem. , vol.6 , pp. 279-309
    • Salinas, A.E.1    Wong, M.G.2
  • 71
    • 31344463247 scopus 로고    scopus 로고
    • Plasmodium falciparum glutathione S-transferase - Structural and mechanistic studies on ligand binding and enzyme inhibition
    • N. Hiller, K. Fritz-Wolf, M. Deponte, W. Wende, H. Zimmermann, and K. Becker Plasmodium falciparum glutathione S-transferase - structural and mechanistic studies on ligand binding and enzyme inhibition Protein Sci. 15 2006 281 289
    • (2006) Protein Sci. , vol.15 , pp. 281-289
    • Hiller, N.1    Fritz-Wolf, K.2    Deponte, M.3    Wende, W.4    Zimmermann, H.5    Becker, K.6
  • 72
    • 33845667283 scopus 로고    scopus 로고
    • Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells
    • M.R. Fernando, J.M. Lechner, S. Lofgren, V.N. Gladyshev, and M.F. Lou Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells FASEB J. 20 2006 2645 2647
    • (2006) FASEB J. , vol.20 , pp. 2645-2647
    • Fernando, M.R.1    Lechner, J.M.2    Lofgren, S.3    Gladyshev, V.N.4    Lou, M.F.5
  • 74
    • 0025298551 scopus 로고
    • The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life
    • P.J. Thornalley The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life Biochem. J. 269 1990 1 11
    • (1990) Biochem. J. , vol.269 , pp. 1-11
    • Thornalley, P.J.1
  • 76
    • 49549119156 scopus 로고    scopus 로고
    • Catalysis within the lipid bilayer-structure and mechanism of the MAPEG family of integral membrane proteins
    • D. Martinez Molina, S. Eshaghi, and P. Nordlund Catalysis within the lipid bilayer-structure and mechanism of the MAPEG family of integral membrane proteins Curr. Opin. Struct. Biol. 18 2008 442 449
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 442-449
    • Martinez Molina, D.1    Eshaghi, S.2    Nordlund, P.3
  • 77
    • 30144434095 scopus 로고    scopus 로고
    • Phylogenies of glutathione transferase families
    • W.R. Pearson Phylogenies of glutathione transferase families Methods Enzymol. 401 2005 186 204
    • (2005) Methods Enzymol. , vol.401 , pp. 186-204
    • Pearson, W.R.1
  • 78
    • 27844553842 scopus 로고    scopus 로고
    • Chemical hardness and density functional theory
    • R.G. Pearson Chemical hardness and density functional theory J. Chem. Sci. 117 2005 369 377
    • (2005) J. Chem. Sci. , vol.117 , pp. 369-377
    • Pearson, R.G.1
  • 80
    • 77952563903 scopus 로고    scopus 로고
    • Selenoproteins - What unique properties can arise with selenocysteine in place of cysteine?
    • E.S. Arner Selenoproteins - what unique properties can arise with selenocysteine in place of cysteine? Exp. Cell Res. 316 2010 1296 1303
    • (2010) Exp. Cell Res. , vol.316 , pp. 1296-1303
    • Arner, E.S.1
  • 82
    • 0015234002 scopus 로고
    • Synthesis of cystine in simulated primitive conditions
    • B.N. Khare, and C. Sagan Synthesis of cystine in simulated primitive conditions Nature 232 1971 577 579
    • (1971) Nature , vol.232 , pp. 577-579
    • Khare, B.N.1    Sagan, C.2
  • 83
    • 3142729014 scopus 로고    scopus 로고
    • Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine
    • M.H. Stipanuk Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine Annu. Rev. Nutr. 24 2004 539 577
    • (2004) Annu. Rev. Nutr. , vol.24 , pp. 539-577
    • Stipanuk, M.H.1
  • 84
    • 51949098757 scopus 로고    scopus 로고
    • Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria
    • G.L. Newton, N. Buchmeier, and R.C. Fahey Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria Microbiol. Mol. Biol. Rev. 72 2008 471 494
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 471-494
    • Newton, G.L.1    Buchmeier, N.2    Fahey, R.C.3
  • 85
    • 0034775463 scopus 로고    scopus 로고
    • Novel thiols of prokaryotes
    • R.C. Fahey Novel thiols of prokaryotes Annu. Rev. Microbiol. 55 2001 333 356
    • (2001) Annu. Rev. Microbiol. , vol.55 , pp. 333-356
    • Fahey, R.C.1
  • 86
    • 0024969387 scopus 로고
    • The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium
    • A.R. Sundquist, and R.C. Fahey The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium J. Biol. Chem. 264 1989 719 725
    • (1989) J. Biol. Chem. , vol.264 , pp. 719-725
    • Sundquist, A.R.1    Fahey, R.C.2
  • 87
    • 84965089848 scopus 로고
    • Catalytic oxidation of glutathione and other sulfhydryl compounds by selenite
    • C.C. Tsen, and A.L. Tappel Catalytic oxidation of glutathione and other sulfhydryl compounds by selenite J. Biol. Chem. 233 1958 1230 1232
    • (1958) J. Biol. Chem. , vol.233 , pp. 1230-1232
    • Tsen, C.C.1    Tappel, A.L.2
  • 88
    • 0035400398 scopus 로고    scopus 로고
    • Ovothiol and trypanothione as antioxidants in trypanosomatids
    • M.R. Ariyanayagam, and A.H. Fairlamb Ovothiol and trypanothione as antioxidants in trypanosomatids Mol. Biochem. Parasitol. 115 2001 189 198
    • (2001) Mol. Biochem. Parasitol. , vol.115 , pp. 189-198
    • Ariyanayagam, M.R.1    Fairlamb, A.H.2
  • 89
    • 0022002912 scopus 로고
    • Trypanothione: A novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids
    • A.H. Fairlamb, P. Blackburn, P. Ulrich, B.T. Chait, and A. Cerami Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids Science 227 1985 1485 1487
    • (1985) Science , vol.227 , pp. 1485-1487
    • Fairlamb, A.H.1    Blackburn, P.2    Ulrich, P.3    Chait, B.T.4    Cerami, A.5
  • 91
    • 0016788549 scopus 로고
    • Isolation, characterization, and turnover of glutathionylspermidine from Escherichia coli
    • H. Tabor, and C.W. Tabor Isolation, characterization, and turnover of glutathionylspermidine from Escherichia coli J. Biol. Chem. 250 1975 2648 2654
    • (1975) J. Biol. Chem. , vol.250 , pp. 2648-2654
    • Tabor, H.1    Tabor, C.W.2
  • 95
    • 14544291583 scopus 로고    scopus 로고
    • Biological chemistry of naturally occurring thiols of microbial and marine origin
    • C.E. Hand, and J.F. Honek Biological chemistry of naturally occurring thiols of microbial and marine origin J. Nat. Prod. 68 2005 293 308
    • (2005) J. Nat. Prod. , vol.68 , pp. 293-308
    • Hand, C.E.1    Honek, J.F.2
  • 96
    • 0029905210 scopus 로고    scopus 로고
    • Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis
    • D.M. LeMaster, and D.M. Kushlan Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis J. Am. Chem. Soc. 118 1996 9255 9264
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 9255-9264
    • Lemaster, D.M.1    Kushlan, D.M.2
  • 98
    • 0005259357 scopus 로고
    • Theoretical studies of the reactions of the sulfur-sulfur bond. 1. General heterolytic mechanisms
    • J.A. Pappas Theoretical studies of the reactions of the sulfur-sulfur bond. 1. General heterolytic mechanisms J. Am. Chem. Soc. 99 1977 2926 2930
    • (1977) J. Am. Chem. Soc. , vol.99 , pp. 2926-2930
    • Pappas, J.A.1
  • 99
    • 33847090263 scopus 로고
    • Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles
    • R.E. Rosenfield Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles J. Am. Chem. Soc. 99 1977 4860 4862
    • (1977) J. Am. Chem. Soc. , vol.99 , pp. 4860-4862
    • Rosenfield, R.E.1
  • 100
    • 0012182918 scopus 로고
    • An ab initio MO study on the thiol-disulfide exchange reaction
    • M. Aida, and C. Nagata An ab initio MO study on the thiol-disulfide exchange reaction Chem. Phys. Lett. 112 1984 129 132
    • (1984) Chem. Phys. Lett. , vol.112 , pp. 129-132
    • Aida, M.1    Nagata, C.2
  • 101
    • 0009317788 scopus 로고
    • Mechanisms of reactions of thiolsulfinates (sulfenic anhydrides). I. the thiolsulfinate-sulfinic acid reaction
    • J.L. Kice, C.G. Venier, and L. Heasley Mechanisms of reactions of thiolsulfinates (sulfenic anhydrides). I. The thiolsulfinate-sulfinic acid reaction J. Am. Chem. Soc. 89 1967 3557 3565
    • (1967) J. Am. Chem. Soc. , vol.89 , pp. 3557-3565
    • Kice, J.L.1    Venier, C.G.2    Heasley, L.3
  • 102
    • 33748498047 scopus 로고    scopus 로고
    • Nucleophilic substitution at sulfur: SN2 or addition-elimination?
    • S.M. Bachrach, and D.C. Mulhearn Nucleophilic substitution at sulfur: SN2 or addition-elimination? J. Phys. Chem. 100 1996 3535 3540
    • (1996) J. Phys. Chem. , vol.100 , pp. 3535-3540
    • Bachrach, S.M.1    Mulhearn, D.C.2
  • 103
    • 0000274424 scopus 로고
    • Glutathione reductase from bakers' yeast and beef liver
    • E. Racker Glutathione reductase from bakers' yeast and beef liver J. Biol. Chem. 217 1955 855 865
    • (1955) J. Biol. Chem. , vol.217 , pp. 855-865
    • Racker, E.1
  • 104
    • 0008063501 scopus 로고
    • Glutathione reductase from germinated peas
    • L.W. Mapson, and F.A. Isherwood Glutathione reductase from germinated peas Biochem. J. 86 1963 173 191
    • (1963) Biochem. J. , vol.86 , pp. 173-191
    • Mapson, L.W.1    Isherwood, F.A.2
  • 105
    • 0013812984 scopus 로고
    • On the reaction mechanism of yeast glutathione reductase
    • V. Massey, and C.H. Williams Jr. On the reaction mechanism of yeast glutathione reductase J. Biol. Chem. 240 1965 4470 4480
    • (1965) J. Biol. Chem. , vol.240 , pp. 4470-4480
    • Massey, V.1    Williams Jr., C.H.2
  • 106
    • 0019882046 scopus 로고
    • Three-dimensional structure of glutathione reductase at 2 A resolution
    • R. Thieme, E.F. Pai, R.H. Schirmer, and G.E. Schulz Three-dimensional structure of glutathione reductase at 2 A resolution J. Mol. Biol. 152 1981 763 782
    • (1981) J. Mol. Biol. , vol.152 , pp. 763-782
    • Thieme, R.1    Pai, E.F.2    Schirmer, R.H.3    Schulz, G.E.4
  • 108
    • 0021099182 scopus 로고
    • The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates
    • E.F. Pai, and G.E. Schulz The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates J. Biol. Chem. 258 1983 1752 1757
    • (1983) J. Biol. Chem. , vol.258 , pp. 1752-1757
    • Pai, E.F.1    Schulz, G.E.2
  • 109
    • 0028333861 scopus 로고
    • Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: Comparison with the enzyme from human erythrocytes
    • P.R. Mittl, and G.E. Schulz Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes Protein Sci. 3 1994 799 809
    • (1994) Protein Sci. , vol.3 , pp. 799-809
    • Mittl, P.R.1    Schulz, G.E.2
  • 110
    • 0037427472 scopus 로고    scopus 로고
    • Glutathione reductase of the malarial parasite Plasmodium falciparum: Crystal structure and inhibitor development
    • G.N. Sarma, S.N. Savvides, K. Becker, M. Schirmer, R.H. Schirmer, and P.A. Karplus Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development J. Mol. Biol. 328 2003 893 907
    • (2003) J. Mol. Biol. , vol.328 , pp. 893-907
    • Sarma, G.N.1    Savvides, S.N.2    Becker, K.3    Schirmer, M.4    Schirmer, R.H.5    Karplus, P.A.6
  • 111
    • 34548717039 scopus 로고    scopus 로고
    • Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae
    • J. Yu, and C.Z. Zhou Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae Proteins 68 2007 972 979
    • (2007) Proteins , vol.68 , pp. 972-979
    • Yu, J.1    Zhou, C.Z.2
  • 112
    • 0023644992 scopus 로고
    • Refined structure of glutathione reductase at 1.54 A resolution
    • P.A. Karplus, and G.E. Schulz Refined structure of glutathione reductase at 1.54 A resolution J. Mol. Biol. 195 1987 701 729
    • (1987) J. Mol. Biol. , vol.195 , pp. 701-729
    • Karplus, P.A.1    Schulz, G.E.2
  • 113
    • 0018945849 scopus 로고
    • Gene duplication in glutathione reductase
    • G.E. Schulz Gene duplication in glutathione reductase J. Mol. Biol. 138 1980 335 347
    • (1980) J. Mol. Biol. , vol.138 , pp. 335-347
    • Schulz, G.E.1
  • 114
    • 0029873477 scopus 로고    scopus 로고
    • Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor
    • S.N. Savvides, and P.A. Karplus Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor J. Biol. Chem. 271 1996 8101 8107
    • (1996) J. Biol. Chem. , vol.271 , pp. 8101-8107
    • Savvides, S.N.1    Karplus, P.A.2
  • 115
    • 1542319976 scopus 로고    scopus 로고
    • Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
    • C.E. Outten, and V.C. Culotta Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase J. Biol. Chem. 279 2004 7785 7791
    • (2004) J. Biol. Chem. , vol.279 , pp. 7785-7791
    • Outten, C.E.1    Culotta, V.C.2
  • 116
    • 0021929974 scopus 로고
    • Subcellular localization and modification with ageing of glutathione, glutathione peroxidase and glutathione reductase activities in human fibroblasts
    • F. Mbemba, A. Houbion, M. Raes, and J. Remacle Subcellular localization and modification with ageing of glutathione, glutathione peroxidase and glutathione reductase activities in human fibroblasts Biochim. Biophys. Acta 838 1985 211 220
    • (1985) Biochim. Biophys. Acta , vol.838 , pp. 211-220
    • Mbemba, F.1    Houbion, A.2    Raes, M.3    Remacle, J.4
  • 117
    • 0022784412 scopus 로고
    • Similarities between rat liver mitochondrial and cytosolic glutathione reductases and their apoenzyme accumulation in riboflavin deficiency
    • M. Taniguchi, T. Hara, and H. Honda Similarities between rat liver mitochondrial and cytosolic glutathione reductases and their apoenzyme accumulation in riboflavin deficiency Biochem. Int. 13 1986 447 454
    • (1986) Biochem. Int. , vol.13 , pp. 447-454
    • Taniguchi, M.1    Hara, T.2    Honda, H.3
  • 118
    • 0029347014 scopus 로고
    • Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco
    • G. Creissen, H. Reynolds, Y. Xue, and P. Mullineaux Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco Plant J. 8 1995 167 175
    • (1995) Plant J. , vol.8 , pp. 167-175
    • Creissen, G.1    Reynolds, H.2    Xue, Y.3    Mullineaux, P.4
  • 120
    • 0034673552 scopus 로고    scopus 로고
    • Structural organization of the human glutathione reductase gene: Determination of correct cDNA sequence and identification of a mitochondrial leader sequence
    • M.J. Kelner, and M.A. Montoya Structural organization of the human glutathione reductase gene: determination of correct cDNA sequence and identification of a mitochondrial leader sequence Biochem. Biophys. Res. Commun. 269 2000 366 368
    • (2000) Biochem. Biophys. Res. Commun. , vol.269 , pp. 366-368
    • Kelner, M.J.1    Montoya, M.A.2
  • 123
    • 0024963559 scopus 로고
    • Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase
    • A. Berry, N.S. Scrutton, and R.N. Perham Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase Biochemistry 28 1989 1264 1269
    • (1989) Biochemistry , vol.28 , pp. 1264-1269
    • Berry, A.1    Scrutton, N.S.2    Perham, R.N.3
  • 124
    • 0019176334 scopus 로고
    • Kinetic studies of the mechanism of pyridine nucleotide dependent reduction of yeast glutathione reductase
    • P.W. Huber, and K.G. Brandt Kinetic studies of the mechanism of pyridine nucleotide dependent reduction of yeast glutathione reductase Biochemistry 19 1980 4569 4575
    • (1980) Biochemistry , vol.19 , pp. 4569-4575
    • Huber, P.W.1    Brandt, K.G.2
  • 125
    • 0019883194 scopus 로고
    • Glutathione reductase from yeast. Differential reactivity of the nascent thiols in two-electron reduced enzyme and properties of a monoalkylated derivative
    • L.D. Arscott, C. Thorpe, and C.H. Williams Jr. Glutathione reductase from yeast. Differential reactivity of the nascent thiols in two-electron reduced enzyme and properties of a monoalkylated derivative Biochemistry 20 1981 1513 1520
    • (1981) Biochemistry , vol.20 , pp. 1513-1520
    • Arscott, L.D.1    Thorpe, C.2    Williams Jr., C.H.3
  • 127
    • 0032480796 scopus 로고    scopus 로고
    • Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD +/NADH redox couple: Enzyme forms active in catalysis
    • D.M. Veine, L.D. Arscott, and C.H. Williams Jr. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD +/NADH redox couple: enzyme forms active in catalysis Biochemistry 37 1998 15575 15582
    • (1998) Biochemistry , vol.37 , pp. 15575-15582
    • Veine, D.M.1    Arscott, L.D.2    Williams Jr., C.H.3
  • 128
    • 0015240164 scopus 로고
    • Yeast glutathione reductase. II. Interaction of oxidized and 2-electron reduced enzyme with reduced and oxidized nicotinamide adenine dinucleotide phosphate
    • J.E. Bulger, and K.G. Brandt Yeast glutathione reductase. II. Interaction of oxidized and 2-electron reduced enzyme with reduced and oxidized nicotinamide adenine dinucleotide phosphate J. Biol. Chem. 246 1971 5578 5587
    • (1971) J. Biol. Chem. , vol.246 , pp. 5578-5587
    • Bulger, J.E.1    Brandt, K.G.2
  • 129
    • 0024577448 scopus 로고
    • Human erythrocyte glutathione reductase: PH dependence of kinetic parameters
    • K.K. Wong, and J.S. Blanchard Human erythrocyte glutathione reductase: pH dependence of kinetic parameters Biochemistry 28 1989 3586 3590
    • (1989) Biochemistry , vol.28 , pp. 3586-3590
    • Wong, K.K.1    Blanchard, J.S.2
  • 130
    • 0023733793 scopus 로고
    • Glutathione reductase: Solvent equilibrium and kinetic isotope effects
    • K.K. Wong, M.A. Vanoni, and J.S. Blanchard Glutathione reductase: solvent equilibrium and kinetic isotope effects Biochemistry 27 1988 7091 7096
    • (1988) Biochemistry , vol.27 , pp. 7091-7096
    • Wong, K.K.1    Vanoni, M.A.2    Blanchard, J.S.3
  • 131
    • 0024828321 scopus 로고
    • Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: The role of histidine-439 and tyrosine-99
    • M.P. Deonarain, A. Berry, N.S. Scrutton, and R.N. Perham Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of histidine-439 and tyrosine-99 Biochemistry 28 1989 9602 9607
    • (1989) Biochemistry , vol.28 , pp. 9602-9607
    • Deonarain, M.P.1    Berry, A.2    Scrutton, N.S.3    Perham, R.N.4
  • 132
    • 0034712684 scopus 로고    scopus 로고
    • Mixed disulfide with glutathione as an intermediate in the reaction catalyzed by glutathione reductase from yeast and as a major form of the enzyme in the cell
    • L.D. Arscott, D.M. Veine, and C.H. Williams Jr. Mixed disulfide with glutathione as an intermediate in the reaction catalyzed by glutathione reductase from yeast and as a major form of the enzyme in the cell Biochemistry 39 2000 4711 4721
    • (2000) Biochemistry , vol.39 , pp. 4711-4721
    • Arscott, L.D.1    Veine, D.M.2    Williams Jr., C.H.3
  • 133
    • 0025863168 scopus 로고
    • Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes
    • L. Canepa, A.M. Ferraris, M. Miglino, and G.F. Gaetani Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes Biochim. Biophys. Acta 1074 1991 101 104
    • (1991) Biochim. Biophys. Acta , vol.1074 , pp. 101-104
    • Canepa, L.1    Ferraris, A.M.2    Miglino, M.3    Gaetani, G.F.4
  • 134
    • 0034532221 scopus 로고    scopus 로고
    • Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme
    • C.C. Bohme, L.D. Arscott, K. Becker, R.H. Schirmer, and C.H. Williams Jr. Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme J. Biol. Chem. 275 2000 37317 37323
    • (2000) J. Biol. Chem. , vol.275 , pp. 37317-37323
    • Bohme, C.C.1    Arscott, L.D.2    Becker, K.3    Schirmer, R.H.4    Williams Jr., C.H.5
  • 135
    • 0025329396 scopus 로고
    • Glutathione reductase: Comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes
    • M.A. Vanoni, K.K. Wong, D.P. Ballou, and J.S. Blanchard Glutathione reductase: comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes Biochemistry 29 1990 5790 5796
    • (1990) Biochemistry , vol.29 , pp. 5790-5796
    • Vanoni, M.A.1    Wong, K.K.2    Ballou, D.P.3    Blanchard, J.S.4
  • 136
    • 0021278973 scopus 로고
    • Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119
    • A. Serrano, J. Rivas, and M. Losada Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119 J. Bacteriol. 158 1984 317 324
    • (1984) J. Bacteriol. , vol.158 , pp. 317-324
    • Serrano, A.1    Rivas, J.2    Losada, M.3
  • 137
    • 0018120436 scopus 로고
    • Characterization of glutathione reductase from porcine erythrocytes
    • V. Boggaram, K. Larson, and B. Mannervik Characterization of glutathione reductase from porcine erythrocytes Biochim. Biophys. Acta 527 1978 337 347
    • (1978) Biochim. Biophys. Acta , vol.527 , pp. 337-347
    • Boggaram, V.1    Larson, K.2    Mannervik, B.3
  • 138
    • 0043096998 scopus 로고    scopus 로고
    • Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue
    • P.M. Farber, L.D. Arscott, C.H. Williams Jr., K. Becker, and R.H. Schirmer Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue FEBS Lett. 422 1998 311 314
    • (1998) FEBS Lett. , vol.422 , pp. 311-314
    • Farber, P.M.1    Arscott, L.D.2    Williams Jr., C.H.3    Becker, K.4    Schirmer, R.H.5
  • 139
    • 50049107805 scopus 로고    scopus 로고
    • Catalytic cycle of human glutathione reductase near 1 A resolution
    • D.S. Berkholz, H.R. Faber, S.N. Savvides, and P.A. Karplus Catalytic cycle of human glutathione reductase near 1 A resolution J. Mol. Biol. 382 2008 371 384
    • (2008) J. Mol. Biol. , vol.382 , pp. 371-384
    • Berkholz, D.S.1    Faber, H.R.2    Savvides, S.N.3    Karplus, P.A.4
  • 141
    • 79951896245 scopus 로고    scopus 로고
    • Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans
    • C. Kumsta, M. Thamsen, and U. Jakob Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans Antioxid. Redox Signal. 14 2011 1023 1037
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 1023-1037
    • Kumsta, C.1    Thamsen, M.2    Jakob, U.3
  • 142
  • 143
    • 0026535482 scopus 로고
    • Engineering surface charge. 2. A method for purifying heterodimers of Escherichia coli glutathione reductase
    • M.P. Deonarain, N.S. Scrutton, and R.N. Perham Engineering surface charge. 2. A method for purifying heterodimers of Escherichia coli glutathione reductase Biochemistry 31 1992 1498 1504
    • (1992) Biochemistry , vol.31 , pp. 1498-1504
    • Deonarain, M.P.1    Scrutton, N.S.2    Perham, R.N.3
  • 144
    • 0015893027 scopus 로고
    • A branching reaction mechanism of glutathione reductase
    • B. Mannervik A branching reaction mechanism of glutathione reductase Biochem. Biophys. Res. Commun. 53 1973 1151 1158
    • (1973) Biochem. Biophys. Res. Commun. , vol.53 , pp. 1151-1158
    • Mannervik, B.1
  • 145
    • 0014668080 scopus 로고
    • The reaction mechanism of glutathione reductase from human erythrocytes
    • G.E. Staal, and C. Veeger The reaction mechanism of glutathione reductase from human erythrocytes Biochim. Biophys. Acta 185 1969 49 62
    • (1969) Biochim. Biophys. Acta , vol.185 , pp. 49-62
    • Staal, G.E.1    Veeger, C.2
  • 146
    • 0026451164 scopus 로고
    • Cooperativity induced by a single mutation at the subunit interface of a dimeric enzyme: Glutathione reductase
    • N.S. Scrutton, M.P. Deonarain, A. Berry, and R.N. Perham Cooperativity induced by a single mutation at the subunit interface of a dimeric enzyme: glutathione reductase Science 258 1992 1140 1143
    • (1992) Science , vol.258 , pp. 1140-1143
    • Scrutton, N.S.1    Deonarain, M.P.2    Berry, A.3    Perham, R.N.4
  • 147
    • 0029564958 scopus 로고
    • Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase
    • A. Bashir, R.N. Perham, N.S. Scrutton, and A. Berry Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase Biochem. J. 312 Pt 2 1995 527 533
    • (1995) Biochem. J. , vol.312 , Issue.PART 2 , pp. 527-533
    • Bashir, A.1    Perham, R.N.2    Scrutton, N.S.3    Berry, A.4
  • 148
    • 0030016469 scopus 로고    scopus 로고
    • Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation
    • C.M. Grant, L.P. Collinson, J.H. Roe, and I.W. Dawes Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation Mol. Microbiol. 21 1996 171 179
    • (1996) Mol. Microbiol. , vol.21 , pp. 171-179
    • Grant, C.M.1    Collinson, L.P.2    Roe, J.H.3    Dawes, I.W.4
  • 149
    • 19544391785 scopus 로고    scopus 로고
    • Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae
    • C.E. Outten, R.L. Falk, and V.C. Culotta Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae Biochem. J. 388 2005 93 101
    • (2005) Biochem. J. , vol.388 , pp. 93-101
    • Outten, C.E.1    Falk, R.L.2    Culotta, V.C.3
  • 150
    • 0021913571 scopus 로고
    • Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12
    • C.K. Tuggle, and J.A. Fuchs Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12 J. Bacteriol. 162 1985 448 450
    • (1985) J. Bacteriol. , vol.162 , pp. 448-450
    • Tuggle, C.K.1    Fuchs, J.A.2
  • 151
    • 84855760118 scopus 로고    scopus 로고
    • Dissecting the role of glutathione biosynthesis in Plasmodium falciparum
    • E.M. Patzewitz, E.H. Wong, and S. Muller Dissecting the role of glutathione biosynthesis in Plasmodium falciparum Mol. Microbiol. 83 2012 304 318
    • (2012) Mol. Microbiol. , vol.83 , pp. 304-318
    • Patzewitz, E.M.1    Wong, E.H.2    Muller, S.3
  • 154
    • 0034124460 scopus 로고    scopus 로고
    • Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase
    • D.J. O'Donovan, J.P. Katkin, T. Tamura, C.V. Smith, and S.E. Welty Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase Am. J. Respir. Cell Mol. Biol. 22 2000 732 738
    • (2000) Am. J. Respir. Cell Mol. Biol. , vol.22 , pp. 732-738
    • O'Donovan, D.J.1    Katkin, J.P.2    Tamura, T.3    Smith, C.V.4    Welty, S.E.5
  • 155
    • 57349114005 scopus 로고    scopus 로고
    • Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury
    • K.M. Heyob, L.K. Rogers, and S.E. Welty Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury Am. J. Respir. Cell Mol. Biol. 39 2008 683 688
    • (2008) Am. J. Respir. Cell Mol. Biol. , vol.39 , pp. 683-688
    • Heyob, K.M.1    Rogers, L.K.2    Welty, S.E.3
  • 156
  • 157
    • 0017062372 scopus 로고
    • Familial deficiency of glutathione reductase in human blood cells
    • H. Loos, D. Roos, R. Weening, and J. Houwerzijl Familial deficiency of glutathione reductase in human blood cells Blood 48 1976 53 62
    • (1976) Blood , vol.48 , pp. 53-62
    • Loos, H.1    Roos, D.2    Weening, R.3    Houwerzijl, J.4
  • 160
    • 33747764549 scopus 로고    scopus 로고
    • A fluoro analogue of the menadione derivative 6-[2′-(3′- methyl)-1′,4′-naphthoquinolyl]hexanoic acid is a suicide substrate of glutathione reductase. Crystal structure of the alkylated human enzyme
    • H. Bauer, K. Fritz-Wolf, A. Winzer, S. Kuhner, S. Little, V. Yardley, H. Vezin, B. Palfey, R.H. Schirmer, and E. Davioud-Charvet A fluoro analogue of the menadione derivative 6-[2′-(3′-methyl)-1′,4′- naphthoquinolyl]hexanoic acid is a suicide substrate of glutathione reductase. Crystal structure of the alkylated human enzyme J. Am. Chem. Soc. 128 2006 10784 10794
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 10784-10794
    • Bauer, H.1    Fritz-Wolf, K.2    Winzer, A.3    Kuhner, S.4    Little, S.5    Yardley, V.6    Vezin, H.7    Palfey, B.8    Schirmer, R.H.9    Davioud-Charvet, E.10
  • 165
    • 79953135337 scopus 로고    scopus 로고
    • Linked thioredoxin-glutathione systems in platyhelminth parasites: Alternative pathways for glutathione reduction and deglutathionylation
    • M. Bonilla, A. Denicola, S.M. Marino, V.N. Gladyshev, and G. Salinas Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation J. Biol. Chem. 286 2011 4959 4967
    • (2011) J. Biol. Chem. , vol.286 , pp. 4959-4967
    • Bonilla, M.1    Denicola, A.2    Marino, S.M.3    Gladyshev, V.N.4    Salinas, G.5
  • 166
    • 0001469942 scopus 로고
    • Glutathione-homocystine transhydrogenase
    • E. Racker Glutathione-homocystine transhydrogenase J. Biol. Chem. 217 1955 867 874
    • (1955) J. Biol. Chem. , vol.217 , pp. 867-874
    • Racker, E.1
  • 167
    • 0347932515 scopus 로고
    • Reduction of insulin by extracts of rat liver
    • H.T. Narahara, and R.H. Williams Reduction of insulin by extracts of rat liver J. Biol. Chem. 234 1959 71 77
    • (1959) J. Biol. Chem. , vol.234 , pp. 71-77
    • Narahara, H.T.1    Williams, R.H.2
  • 168
    • 0010638644 scopus 로고
    • Glutathione-insulin transhydrogenase of human liver
    • H.H. Tomizawa, and P.T. Varandani Glutathione-insulin transhydrogenase of human liver J. Biol. Chem. 240 1965 3191 3194
    • (1965) J. Biol. Chem. , vol.240 , pp. 3191-3194
    • Tomizawa, H.H.1    Varandani, P.T.2
  • 169
    • 0014010975 scopus 로고
    • Studies on the specificity and mechanism of action of hepatic glutathione-insulin transhydrogenase
    • H.M. Katzen, and F. Tietze Studies on the specificity and mechanism of action of hepatic glutathione-insulin transhydrogenase J. Biol. Chem. 241 1966 3561 3570
    • (1966) J. Biol. Chem. , vol.241 , pp. 3561-3570
    • Katzen, H.M.1    Tietze, F.2
  • 170
    • 0018790370 scopus 로고
    • How many distinct enzymes are responsible for the several cellular processes involving thiol:protein-disulphide interchange?
    • R.B. Freedman How many distinct enzymes are responsible for the several cellular processes involving thiol:protein-disulphide interchange? FEBS Lett. 97 1979 201 210
    • (1979) FEBS Lett. , vol.97 , pp. 201-210
    • Freedman, R.B.1
  • 171
    • 0018723651 scopus 로고
    • Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide
    • A. Holmgren Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide J. Biol. Chem. 254 1979 9627 9632
    • (1979) J. Biol. Chem. , vol.254 , pp. 9627-9632
    • Holmgren, A.1
  • 172
    • 0014429426 scopus 로고
    • A thiol-disulfide transhydrogenase from yeast
    • S. Nagai, and S. Black A thiol-disulfide transhydrogenase from yeast J. Biol. Chem. 243 1968 1942 1947
    • (1968) J. Biol. Chem. , vol.243 , pp. 1942-1947
    • Nagai, S.1    Black, S.2
  • 173
    • 38849206923 scopus 로고    scopus 로고
    • Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins
    • N. Mesecke, S. Mittler, E. Eckers, J.M. Herrmann, and M. Deponte Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins Biochemistry 47 2008 1452 1463
    • (2008) Biochemistry , vol.47 , pp. 1452-1463
    • Mesecke, N.1    Mittler, S.2    Eckers, E.3    Herrmann, J.M.4    Deponte, M.5
  • 174
    • 0015947802 scopus 로고
    • Mechanism of action of enzymes catalyzing thiol-disulfide interchange. Thioltransferases rather than transhydrogenases
    • P. Askelof, K. Axelsson, S. Eriksson, and B. Mannervik Mechanism of action of enzymes catalyzing thiol-disulfide interchange. Thioltransferases rather than transhydrogenases FEBS Lett. 38 1974 263 267
    • (1974) FEBS Lett. , vol.38 , pp. 263-267
    • Askelof, P.1    Axelsson, K.2    Eriksson, S.3    Mannervik, B.4
  • 175
    • 0017820369 scopus 로고
    • Purification and characterization of cytoplasmic thioltransferase (glutathione:disulfide oxidoreductase) from rat liver
    • K. Axelsson, S. Eriksson, and B. Mannervik Purification and characterization of cytoplasmic thioltransferase (glutathione:disulfide oxidoreductase) from rat liver Biochemistry 17 1978 2978 2984
    • (1978) Biochemistry , vol.17 , pp. 2978-2984
    • Axelsson, K.1    Eriksson, S.2    Mannervik, B.3
  • 177
    • 0018470912 scopus 로고
    • Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase
    • M. Luthman, S. Eriksson, A. Holmgren, and L. Thelander Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside- diphosphate reductase Proc. Natl. Acad. Sci. U. S. A. 76 1979 2158 2162
    • (1979) Proc. Natl. Acad. Sci. U. S. A. , vol.76 , pp. 2158-2162
    • Luthman, M.1    Eriksson, S.2    Holmgren, A.3    Thelander, L.4
  • 178
    • 0020490790 scopus 로고
    • Glutaredoxin from calf thymus. Purification to homogeneity
    • M. Luthman, and A. Holmgren Glutaredoxin from calf thymus. Purification to homogeneity J. Biol. Chem. 257 1982 6686 6690
    • (1982) J. Biol. Chem. , vol.257 , pp. 6686-6690
    • Luthman, M.1    Holmgren, A.2
  • 179
    • 0022636460 scopus 로고
    • Purification and properties of thioltransferase
    • Z.R. Gan, and W.W. Wells Purification and properties of thioltransferase J. Biol. Chem. 261 1986 996 1001
    • (1986) J. Biol. Chem. , vol.261 , pp. 996-1001
    • Gan, Z.R.1    Wells, W.W.2
  • 180
    • 0023181023 scopus 로고
    • Preparation of homogeneous pig liver thioltransferase by a thiol:disulfide mediated pI shift
    • Z.R. Gan, and W.W. Wells Preparation of homogeneous pig liver thioltransferase by a thiol:disulfide mediated pI shift Anal. Biochem. 162 1987 265 273
    • (1987) Anal. Biochem. , vol.162 , pp. 265-273
    • Gan, Z.R.1    Wells, W.W.2
  • 181
    • 0023654910 scopus 로고
    • The primary structure of pig liver thioltransferase
    • Z.R. Gan, and W.W. Wells The primary structure of pig liver thioltransferase J. Biol. Chem. 262 1987 6699 6703
    • (1987) J. Biol. Chem. , vol.262 , pp. 6699-6703
    • Gan, Z.R.1    Wells, W.W.2
  • 182
    • 0024404524 scopus 로고
    • Cloning and sequencing the cDNA encoding pig liver thioltransferase
    • Y.F. Yang, Z.R. Gan, and W.W. Wells Cloning and sequencing the cDNA encoding pig liver thioltransferase Gene 83 1989 339 346
    • (1989) Gene , vol.83 , pp. 339-346
    • Yang, Y.F.1    Gan, Z.R.2    Wells, W.W.3
  • 183
    • 0028892388 scopus 로고
    • Crystal structure of thioltransferase at 2.2 A resolution
    • S.K. Katti, A.H. Robbins, Y. Yang, and W.W. Wells Crystal structure of thioltransferase at 2.2 A resolution Protein Sci. 4 1995 1998 2005
    • (1995) Protein Sci. , vol.4 , pp. 1998-2005
    • Katti, S.K.1    Robbins, A.H.2    Yang, Y.3    Wells, W.W.4
  • 184
    • 0032497928 scopus 로고    scopus 로고
    • Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S,
    • Y. Yang, S. Jao, S. Nanduri, D.W. Starke, J.J. Mieyal, and J. Qin Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity Biochemistry 37 1998 17145 17156
    • (1998) Biochemistry , vol.37 , pp. 17145-17156
    • Yang, Y.1    Jao, S.2    Nanduri, S.3    Starke, D.W.4    Mieyal, J.J.5    Qin, J.6
  • 185
    • 2042476756 scopus 로고
    • Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione
    • A. Holmgren Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione Proc. Natl. Acad. Sci. U. S. A. 73 1976 2275 2279
    • (1976) Proc. Natl. Acad. Sci. U. S. A. , vol.73 , pp. 2275-2279
    • Holmgren, A.1
  • 186
    • 0018786584 scopus 로고
    • Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli
    • A. Holmgren Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli J. Biol. Chem. 254 1979 3664 3671
    • (1979) J. Biol. Chem. , vol.254 , pp. 3664-3671
    • Holmgren, A.1
  • 187
    • 0018786716 scopus 로고
    • Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin
    • A. Holmgren Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin J. Biol. Chem. 254 1979 3672 3678
    • (1979) J. Biol. Chem. , vol.254 , pp. 3672-3678
    • Holmgren, A.1
  • 188
    • 0021106986 scopus 로고
    • The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol
    • J.O. Hoog, H. Jornvall, A. Holmgren, M. Carlquist, and M. Persson The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol Eur. J. Biochem. 136 1983 223 232
    • (1983) Eur. J. Biochem. , vol.136 , pp. 223-232
    • Hoog, J.O.1    Jornvall, H.2    Holmgren, A.3    Carlquist, M.4    Persson, M.5
  • 189
    • 0022486232 scopus 로고
    • Cloning and expression of the glutaredoxin (grx) gene of Escherichia coli
    • J.O. Hoog, H. von Bahr-Lindstrom, H. Jornvall, and A. Holmgren Cloning and expression of the glutaredoxin (grx) gene of Escherichia coli Gene 43 1986 13 21
    • (1986) Gene , vol.43 , pp. 13-21
    • Hoog, J.O.1    Von Bahr-Lindstrom, H.2    Jornvall, H.3    Holmgren, A.4
  • 190
    • 0025742659 scopus 로고
    • Escherichia coli glutaredoxin: Cloning and overexpression, thermodynamic stability of the oxidized and reduced forms, and report of an N-terminal extended species
    • V.A. Sandberg, B. Kren, J.A. Fuchs, and C. Woodward Escherichia coli glutaredoxin: cloning and overexpression, thermodynamic stability of the oxidized and reduced forms, and report of an N-terminal extended species Biochemistry 30 1991 5475 5484
    • (1991) Biochemistry , vol.30 , pp. 5475-5484
    • Sandberg, V.A.1    Kren, B.2    Fuchs, J.A.3    Woodward, C.4
  • 191
    • 0027050496 scopus 로고
    • NMR structure of oxidized Escherichia coli glutaredoxin: Comparison with reduced E. coli glutaredoxin and functionally related proteins
    • T.H. Xia, J.H. Bushweller, P. Sodano, M. Billeter, O. Bjornberg, A. Holmgren, and K. Wuthrich NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins Protein Sci. 1 1992 310 321
    • (1992) Protein Sci. , vol.1 , pp. 310-321
    • Xia, T.H.1    Bushweller, J.H.2    Sodano, P.3    Billeter, M.4    Bjornberg, O.5    Holmgren, A.6    Wuthrich, K.7
  • 192
    • 0028181442 scopus 로고
    • The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin(C14S) and glutathione
    • J.H. Bushweller, M. Billeter, A. Holmgren, and K. Wuthrich The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin(C14S) and glutathione J. Mol. Biol. 235 1994 1585 1597
    • (1994) J. Mol. Biol. , vol.235 , pp. 1585-1597
    • Bushweller, J.H.1    Billeter, M.2    Holmgren, A.3    Wuthrich, K.4
  • 194
    • 42949085825 scopus 로고    scopus 로고
    • The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation
    • N. Rouhier, S.D. Lemaire, and J.P. Jacquot The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation Annu. Rev. Plant Biol. 59 2008 143 166
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 143-166
    • Rouhier, N.1    Lemaire, S.D.2    Jacquot, J.P.3
  • 195
    • 0029165589 scopus 로고
    • Thioredoxin - A fold for all reasons
    • J.L. Martin Thioredoxin - a fold for all reasons Structure 3 1995 245 250
    • (1995) Structure , vol.3 , pp. 245-250
    • Martin, J.L.1
  • 196
    • 34250731291 scopus 로고    scopus 로고
    • Monothiol glutaredoxins: A common domain for multiple functions
    • E. Herrero, and M.A. de la Torre-Ruiz Monothiol glutaredoxins: a common domain for multiple functions Cell. Mol. Life Sci. 64 2007 1518 1530
    • (2007) Cell. Mol. Life Sci. , vol.64 , pp. 1518-1530
    • Herrero, E.1    De La Torre-Ruiz, M.A.2
  • 197
    • 48749085761 scopus 로고    scopus 로고
    • A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance
    • N. Mesecke, A. Spang, M. Deponte, and J.M. Herrmann A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance Mol. Biol. Cell 19 2008 2673 2680
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2673-2680
    • Mesecke, N.1    Spang, A.2    Deponte, M.3    Herrmann, J.M.4
  • 198
    • 48949106599 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway
    • A. Izquierdo, C. Casas, U. Muhlenhoff, C.H. Lillig, and E. Herrero Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway Eukaryot. Cell 7 2008 1415 1426
    • (2008) Eukaryot. Cell , vol.7 , pp. 1415-1426
    • Izquierdo, A.1    Casas, C.2    Muhlenhoff, U.3    Lillig, C.H.4    Herrero, E.5
  • 200
    • 0026799490 scopus 로고
    • Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14-S) and its mixed disulfide with glutathione
    • J.H. Bushweller, F. Aslund, K. Wuthrich, and A. Holmgren Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14-S) and its mixed disulfide with glutathione Biochemistry 31 1992 9288 9293
    • (1992) Biochemistry , vol.31 , pp. 9288-9293
    • Bushweller, J.H.1    Aslund, F.2    Wuthrich, K.3    Holmgren, A.4
  • 201
    • 34047250626 scopus 로고    scopus 로고
    • Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria
    • C. Johansson, K.L. Kavanagh, O. Gileadi, and U. Oppermann Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria J. Biol. Chem. 282 2007 3077 3082
    • (2007) J. Biol. Chem. , vol.282 , pp. 3077-3082
    • Johansson, C.1    Kavanagh, K.L.2    Gileadi, O.3    Oppermann, U.4
  • 202
    • 21644481715 scopus 로고    scopus 로고
    • Molecular mapping of functionalities in the solution structure of reduced Grx4, a monothiol glutaredoxin from Escherichia coli
    • M. Fladvad, M. Bellanda, A.P. Fernandes, S. Mammi, A. Vlamis-Gardikas, A. Holmgren, and M. Sunnerhagen Molecular mapping of functionalities in the solution structure of reduced Grx4, a monothiol glutaredoxin from Escherichia coli J. Biol. Chem. 280 2005 24553 24561
    • (2005) J. Biol. Chem. , vol.280 , pp. 24553-24561
    • Fladvad, M.1    Bellanda, M.2    Fernandes, A.P.3    Mammi, S.4    Vlamis-Gardikas, A.5    Holmgren, A.6    Sunnerhagen, M.7
  • 203
    • 65549160983 scopus 로고    scopus 로고
    • Evolution based on domain combinations: The case of glutaredoxins
    • R. Alves, E. Vilaprinyo, A. Sorribas, and E. Herrero Evolution based on domain combinations: the case of glutaredoxins BMC Evol. Biol. 9 2009 66
    • (2009) BMC Evol. Biol. , vol.9 , pp. 66
    • Alves, R.1    Vilaprinyo, E.2    Sorribas, A.3    Herrero, E.4
  • 205
    • 47349101604 scopus 로고    scopus 로고
    • Glutathionylation-triggered conformational changes of glutaredoxin Grx1 from the yeast Saccharomyces cerevisiae
    • J. Yu, N.N. Zhang, P.D. Yin, P.X. Cui, and C.Z. Zhou Glutathionylation- triggered conformational changes of glutaredoxin Grx1 from the yeast Saccharomyces cerevisiae Proteins 72 2008 1077 1083
    • (2008) Proteins , vol.72 , pp. 1077-1083
    • Yu, J.1    Zhang, N.N.2    Yin, P.D.3    Cui, P.X.4    Zhou, C.Z.5
  • 208
    • 14944367451 scopus 로고    scopus 로고
    • Plasmodium falciparum glutaredoxin-like proteins
    • M. Deponte, K. Becker, and S. Rahlfs Plasmodium falciparum glutaredoxin-like proteins Biol. Chem. 386 2005 33 40
    • (2005) Biol. Chem. , vol.386 , pp. 33-40
    • Deponte, M.1    Becker, K.2    Rahlfs, S.3
  • 209
    • 67650077717 scopus 로고    scopus 로고
    • Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin
    • T. Iwema, A. Picciocchi, D.A. Traore, J.L. Ferrer, F. Chauvat, and L. Jacquamet Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin Biochemistry 48 2009 6041 6043
    • (2009) Biochemistry , vol.48 , pp. 6041-6043
    • Iwema, T.1    Picciocchi, A.2    Traore, D.A.3    Ferrer, J.L.4    Chauvat, F.5    Jacquamet, L.6
  • 211
    • 0036226063 scopus 로고    scopus 로고
    • Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
    • M.T. Rodriguez-Manzaneque, J. Tamarit, G. Belli, J. Ros, and E. Herrero Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes Mol. Biol. Cell 13 2002 1109 1121
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1109-1121
    • Rodriguez-Manzaneque, M.T.1    Tamarit, J.2    Belli, G.3    Ros, J.4    Herrero, E.5
  • 212
    • 0033543666 scopus 로고    scopus 로고
    • Binding specificity and mechanistic insight into glutaredoxin-catalyzed protein disulfide reduction
    • M.J. Berardi, and J.H. Bushweller Binding specificity and mechanistic insight into glutaredoxin-catalyzed protein disulfide reduction J. Mol. Biol. 292 1999 151 161
    • (1999) J. Mol. Biol. , vol.292 , pp. 151-161
    • Berardi, M.J.1    Bushweller, J.H.2
  • 214
    • 33845977309 scopus 로고    scopus 로고
    • Crystal structures of a poxviral glutaredoxin in the oxidized and reduced states show redox-correlated structural changes
    • J.P. Bacik, and B. Hazes Crystal structures of a poxviral glutaredoxin in the oxidized and reduced states show redox-correlated structural changes J. Mol. Biol. 365 2007 1545 1558
    • (2007) J. Mol. Biol. , vol.365 , pp. 1545-1558
    • Bacik, J.P.1    Hazes, B.2
  • 217
    • 55549131538 scopus 로고    scopus 로고
    • Monothiol glutaredoxin-1 is an essential iron-sulfur protein in the mitochondrion of African trypanosomes
    • M.A. Comini, J. Rettig, N. Dirdjaja, E.M. Hanschmann, C. Berndt, and R.L. Krauth-Siegel Monothiol glutaredoxin-1 is an essential iron-sulfur protein in the mitochondrion of African trypanosomes J. Biol. Chem. 283 2008 27785 27798
    • (2008) J. Biol. Chem. , vol.283 , pp. 27785-27798
    • Comini, M.A.1    Rettig, J.2    Dirdjaja, N.3    Hanschmann, E.M.4    Berndt, C.5    Krauth-Siegel, R.L.6
  • 219
    • 0030993412 scopus 로고    scopus 로고
    • Comparison of backbone dynamics of reduced and oxidized Escherichia coli glutaredoxin-1 using 15N NMR relaxation measurements
    • J.J. Kelley III, T.M. Caputo, S.F. Eaton, T.M. Laue, and J.H. Bushweller Comparison of backbone dynamics of reduced and oxidized Escherichia coli glutaredoxin-1 using 15N NMR relaxation measurements Biochemistry 36 1997 5029 5044
    • (1997) Biochemistry , vol.36 , pp. 5029-5044
    • Kelley Iii, J.J.1    Caputo, T.M.2    Eaton, S.F.3    Laue, T.M.4    Bushweller, J.H.5
  • 220
    • 0035131144 scopus 로고    scopus 로고
    • Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
    • C.M. Grant Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions Mol. Microbiol. 39 2001 533 541
    • (2001) Mol. Microbiol. , vol.39 , pp. 533-541
    • Grant, C.M.1
  • 221
    • 0042068217 scopus 로고    scopus 로고
    • Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1
    • J.J. Song, and Y.J. Lee Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1 Biochem. J. 373 2003 845 853
    • (2003) Biochem. J. , vol.373 , pp. 845-853
    • Song, J.J.1    Lee, Y.J.2
  • 222
    • 33745807629 scopus 로고    scopus 로고
    • In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli
    • S. Gon, M.J. Faulkner, and J. Beckwith In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli Antioxid. Redox Signal. 8 2006 735 742
    • (2006) Antioxid. Redox Signal. , vol.8 , pp. 735-742
    • Gon, S.1    Faulkner, M.J.2    Beckwith, J.3
  • 223
    • 0033579499 scopus 로고    scopus 로고
    • Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction
    • J. Shi, A. Vlamis-Gardikas, F. Aslund, A. Holmgren, and B.P. Rosen Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction J. Biol. Chem. 274 1999 36039 36042
    • (1999) J. Biol. Chem. , vol.274 , pp. 36039-36042
    • Shi, J.1    Vlamis-Gardikas, A.2    Aslund, F.3    Holmgren, A.4    Rosen, B.P.5
  • 224
    • 67649800278 scopus 로고    scopus 로고
    • Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian S phase ribonucleotide reductase
    • F. Zahedi Avval, and A. Holmgren Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian S phase ribonucleotide reductase J. Biol. Chem. 284 2009 8233 8240
    • (2009) J. Biol. Chem. , vol.284 , pp. 8233-8240
    • Zahedi Avval, F.1    Holmgren, A.2
  • 226
    • 0031719952 scopus 로고    scopus 로고
    • The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species
    • S. Luikenhuis, G. Perrone, I.W. Dawes, and C.M. Grant The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species Mol. Biol. Cell 9 1998 1081 1091
    • (1998) Mol. Biol. Cell , vol.9 , pp. 1081-1091
    • Luikenhuis, S.1    Perrone, G.2    Dawes, I.W.3    Grant, C.M.4
  • 227
    • 0030947344 scopus 로고    scopus 로고
    • Molecular evidence for an ancient duplication of the entire yeast genome
    • K.H. Wolfe, and D.C. Shields Molecular evidence for an ancient duplication of the entire yeast genome Nature 387 1997 708 713
    • (1997) Nature , vol.387 , pp. 708-713
    • Wolfe, K.H.1    Shields, D.C.2
  • 228
    • 0037096975 scopus 로고    scopus 로고
    • Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments
    • J.R. Pedrajas, P. Porras, E. Martinez-Galisteo, C.A. Padilla, A. Miranda-Vizuete, and J.A. Barcena Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments Biochem. J. 364 2002 617 623
    • (2002) Biochem. J. , vol.364 , pp. 617-623
    • Pedrajas, J.R.1    Porras, P.2    Martinez-Galisteo, E.3    Padilla, C.A.4    Miranda-Vizuete, A.5    Barcena, J.A.6
  • 230
    • 76849107684 scopus 로고    scopus 로고
    • Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution
    • P. Porras, B. McDonagh, J.R. Pedrajas, J.A. Barcena, and C.A. Padilla Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution Biochim. Biophys. Acta 1804 2010 839 845
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 839-845
    • Porras, P.1    McDonagh, B.2    Pedrajas, J.R.3    Barcena, J.A.4    Padilla, C.A.5
  • 231
    • 33745210793 scopus 로고    scopus 로고
    • One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae
    • P. Porras, C.A. Padilla, M. Krayl, W. Voos, and J.A. Barcena One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae J. Biol. Chem. 281 2006 16551 16562
    • (2006) J. Biol. Chem. , vol.281 , pp. 16551-16562
    • Porras, P.1    Padilla, C.A.2    Krayl, M.3    Voos, W.4    Barcena, J.A.5
  • 233
    • 33847637126 scopus 로고    scopus 로고
    • Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast
    • S. Camier, E. Ma, C. Leroy, A. Pruvost, M. Toledano, and M.C. Marsolier-Kergoat Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast Free Radic. Biol. Med. 42 2007 1008 1016
    • (2007) Free Radic. Biol. Med. , vol.42 , pp. 1008-1016
    • Camier, S.1    Ma, E.2    Leroy, C.3    Pruvost, A.4    Toledano, M.5    Marsolier-Kergoat, M.C.6
  • 234
    • 0038266122 scopus 로고    scopus 로고
    • Role of yeast glutaredoxins as glutathione S-transferases
    • E.J. Collinson, and C.M. Grant Role of yeast glutaredoxins as glutathione S-transferases J. Biol. Chem. 278 2003 22492 22497
    • (2003) J. Biol. Chem. , vol.278 , pp. 22492-22497
    • Collinson, E.J.1    Grant, C.M.2
  • 235
    • 10644242480 scopus 로고    scopus 로고
    • Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins
    • M.M. Molina, G. Belli, M.A. de la Torre, M.T. Rodriguez-Manzaneque, and E. Herrero Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins J. Biol. Chem. 279 2004 51923 51930
    • (2004) J. Biol. Chem. , vol.279 , pp. 51923-51930
    • Molina, M.M.1    Belli, G.2    De La Torre, M.A.3    Rodriguez-Manzaneque, M.T.4    Herrero, E.5
  • 236
    • 0942268722 scopus 로고    scopus 로고
    • Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin
    • R. Lopreiato, S. Facchin, G. Sartori, G. Arrigoni, S. Casonato, M. Ruzzene, L.A. Pinna, and G. Carignani Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin Biochem. J. 377 2004 395 405
    • (2004) Biochem. J. , vol.377 , pp. 395-405
    • Lopreiato, R.1    Facchin, S.2    Sartori, G.3    Arrigoni, G.4    Casonato, S.5    Ruzzene, M.6    Pinna, L.A.7    Carignani, G.8
  • 237
    • 0040932016 scopus 로고    scopus 로고
    • Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae
    • M.T. Rodriguez-Manzaneque, J. Ros, E. Cabiscol, A. Sorribas, and E. Herrero Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae Mol. Cell. Biol. 19 1999 8180 8190
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8180-8190
    • Rodriguez-Manzaneque, M.T.1    Ros, J.2    Cabiscol, E.3    Sorribas, A.4    Herrero, E.5
  • 238
    • 0038491193 scopus 로고    scopus 로고
    • Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin
    • J. Tamarit, G. Belli, E. Cabiscol, E. Herrero, and J. Ros Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin J. Biol. Chem. 278 2003 25745 25751
    • (2003) J. Biol. Chem. , vol.278 , pp. 25745-25751
    • Tamarit, J.1    Belli, G.2    Cabiscol, E.3    Herrero, E.4    Ros, J.5
  • 239
    • 68949128587 scopus 로고    scopus 로고
    • Function and biogenesis of iron-sulphur proteins
    • R. Lill Function and biogenesis of iron-sulphur proteins Nature 460 2009 831 838
    • (2009) Nature , vol.460 , pp. 831-838
    • Lill, R.1
  • 240
    • 0037053377 scopus 로고    scopus 로고
    • Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae
    • D. Shenton, G. Perrone, K.A. Quinn, I.W. Dawes, and C.M. Grant Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae J. Biol. Chem. 277 2002 16853 16859
    • (2002) J. Biol. Chem. , vol.277 , pp. 16853-16859
    • Shenton, D.1    Perrone, G.2    Quinn, K.A.3    Dawes, I.W.4    Grant, C.M.5
  • 243
    • 76349122676 scopus 로고    scopus 로고
    • Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast
    • K.D. Kim, W.H. Chung, H.J. Kim, K.C. Lee, and J.H. Roe Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast Biochem. Biophys. Res. Commun. 392 2010 467 472
    • (2010) Biochem. Biophys. Res. Commun. , vol.392 , pp. 467-472
    • Kim, K.D.1    Chung, W.H.2    Kim, H.J.3    Lee, K.C.4    Roe, J.H.5
  • 244
    • 33751529756 scopus 로고    scopus 로고
    • Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
    • N. Pujol-Carrion, G. Belli, E. Herrero, A. Nogues, and M.A. de la Torre-Ruiz Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae J. Cell Sci. 119 2006 4554 4564
    • (2006) J. Cell Sci. , vol.119 , pp. 4554-4564
    • Pujol-Carrion, N.1    Belli, G.2    Herrero, E.3    Nogues, A.4    De La Torre-Ruiz, M.A.5
  • 245
    • 33745872884 scopus 로고    scopus 로고
    • Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
    • L. Ojeda, G. Keller, U. Muhlenhoff, J.C. Rutherford, R. Lill, and D.R. Winge Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae J. Biol. Chem. 281 2006 17661 17669
    • (2006) J. Biol. Chem. , vol.281 , pp. 17661-17669
    • Ojeda, L.1    Keller, G.2    Muhlenhoff, U.3    Rutherford, J.C.4    Lill, R.5    Winge, D.R.6
  • 246
    • 67749116417 scopus 로고    scopus 로고
    • Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1
    • A. Mercier, and S. Labbe Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1 J. Biol. Chem. 284 2009 20249 20262
    • (2009) J. Biol. Chem. , vol.284 , pp. 20249-20262
    • Mercier, A.1    Labbe, S.2
  • 247
    • 55949099272 scopus 로고    scopus 로고
    • Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily
    • C. Peggion, R. Lopreiato, E. Casanova, M. Ruzzene, S. Facchin, L.A. Pinna, G. Carignani, and G. Sartori Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily FEBS J. 275 2008 5919 5933
    • (2008) FEBS J. , vol.275 , pp. 5919-5933
    • Peggion, C.1    Lopreiato, R.2    Casanova, E.3    Ruzzene, M.4    Facchin, S.5    Pinna, L.A.6    Carignani, G.7    Sartori, G.8
  • 248
    • 0034695550 scopus 로고    scopus 로고
    • Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain
    • S. Witte, M. Villalba, K. Bi, Y. Liu, N. Isakov, and A. Altman Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interacting protein with a thioredoxin homology domain J. Biol. Chem. 275 2000 1902 1909
    • (2000) J. Biol. Chem. , vol.275 , pp. 1902-1909
    • Witte, S.1    Villalba, M.2    Bi, K.3    Liu, Y.4    Isakov, N.5    Altman, A.6
  • 249
    • 0030895581 scopus 로고    scopus 로고
    • Cloning, overexpression, and characterization of glutaredoxin 2, an atypical glutaredoxin from Escherichia coli
    • A. Vlamis-Gardikas, F. Aslund, G. Spyrou, T. Bergman, and A. Holmgren Cloning, overexpression, and characterization of glutaredoxin 2, an atypical glutaredoxin from Escherichia coli J. Biol. Chem. 272 1997 11236 11243
    • (1997) J. Biol. Chem. , vol.272 , pp. 11236-11243
    • Vlamis-Gardikas, A.1    Aslund, F.2    Spyrou, G.3    Bergman, T.4    Holmgren, A.5
  • 250
    • 0028061437 scopus 로고
    • Two additional glutaredoxins exist in Escherichia coli: Glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant
    • F. Aslund, B. Ehn, A. Miranda-Vizuete, C. Pueyo, and A. Holmgren Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant Proc. Natl. Acad. Sci. U. S. A. 91 1994 9813 9817
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 9813-9817
    • Aslund, F.1    Ehn, B.2    Miranda-Vizuete, A.3    Pueyo, C.4    Holmgren, A.5
  • 252
    • 51349142890 scopus 로고    scopus 로고
    • Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: Implications for intracellular roles
    • M.M. Gallogly, D.W. Starke, A.K. Leonberg, S.M. Ospina, and J.J. Mieyal Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles Biochemistry 47 2008 11144 11157
    • (2008) Biochemistry , vol.47 , pp. 11144-11157
    • Gallogly, M.M.1    Starke, D.W.2    Leonberg, A.K.3    Ospina, S.M.4    Mieyal, J.J.5
  • 253
    • 0024326913 scopus 로고
    • Glutaredoxin from rabbit bone marrow. Purification, characterization, and amino acid sequence determined by tandem mass spectrometry
    • S. Hopper, R.S. Johnson, J.E. Vath, and K. Biemann Glutaredoxin from rabbit bone marrow. Purification, characterization, and amino acid sequence determined by tandem mass spectrometry J. Biol. Chem. 264 1989 20438 20447
    • (1989) J. Biol. Chem. , vol.264 , pp. 20438-20447
    • Hopper, S.1    Johnson, R.S.2    Vath, J.E.3    Biemann, K.4
  • 255
    • 0025887464 scopus 로고
    • Thioltransferase in human red blood cells: Kinetics and equilibrium
    • J.J. Mieyal, D.W. Starke, S.A. Gravina, and B.A. Hocevar Thioltransferase in human red blood cells: kinetics and equilibrium Biochemistry 30 1991 8883 8891
    • (1991) Biochemistry , vol.30 , pp. 8883-8891
    • Mieyal, J.J.1    Starke, D.W.2    Gravina, S.A.3    Hocevar, B.A.4
  • 256
    • 0035813229 scopus 로고    scopus 로고
    • Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain
    • S. Rahlfs, M. Fischer, and K. Becker Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain J. Biol. Chem. 276 2001 37133 37140
    • (2001) J. Biol. Chem. , vol.276 , pp. 37133-37140
    • Rahlfs, S.1    Fischer, M.2    Becker, K.3
  • 257
    • 0037196446 scopus 로고    scopus 로고
    • Exploring the active site of plant glutaredoxin by site-directed mutagenesis
    • N. Rouhier, E. Gelhaye, and J.P. Jacquot Exploring the active site of plant glutaredoxin by site-directed mutagenesis FEBS Lett. 511 2002 145 149
    • (2002) FEBS Lett. , vol.511 , pp. 145-149
    • Rouhier, N.1    Gelhaye, E.2    Jacquot, J.P.3
  • 259
    • 44049097906 scopus 로고    scopus 로고
    • Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii reveals the unique properties of a chloroplastic CGFS-type glutaredoxin
    • M. Zaffagnini, L. Michelet, V. Massot, P. Trost, and S.D. Lemaire Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii reveals the unique properties of a chloroplastic CGFS-type glutaredoxin J. Biol. Chem. 283 2008 8868 8876
    • (2008) J. Biol. Chem. , vol.283 , pp. 8868-8876
    • Zaffagnini, M.1    Michelet, L.2    Massot, V.3    Trost, P.4    Lemaire, S.D.5
  • 260
    • 37349126094 scopus 로고    scopus 로고
    • Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1
    • M. Filser, M.A. Comini, M.M. Molina-Navarro, N. Dirdjaja, E. Herrero, and R.L. Krauth-Siegel Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1 Biol. Chem. 389 2008 21 32
    • (2008) Biol. Chem. , vol.389 , pp. 21-32
    • Filser, M.1    Comini, M.A.2    Molina-Navarro, M.M.3    Dirdjaja, N.4    Herrero, E.5    Krauth-Siegel, R.L.6
  • 261
    • 77952955260 scopus 로고    scopus 로고
    • Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: Kinetics and specificity in deglutathionylation reactions
    • X.H. Gao, M. Zaffagnini, M. Bedhomme, L. Michelet, C. Cassier-Chauvat, P. Decottignies, and S.D. Lemaire Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: kinetics and specificity in deglutathionylation reactions FEBS Lett. 584 2010 2242 2248
    • (2010) FEBS Lett. , vol.584 , pp. 2242-2248
    • Gao, X.H.1    Zaffagnini, M.2    Bedhomme, M.3    Michelet, L.4    Cassier-Chauvat, C.5    Decottignies, P.6    Lemaire, S.D.7
  • 262
    • 0027238801 scopus 로고
    • Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase
    • S.A. Gravina, and J.J. Mieyal Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase Biochemistry 32 1993 3368 3376
    • (1993) Biochemistry , vol.32 , pp. 3368-3376
    • Gravina, S.A.1    Mieyal, J.J.2
  • 263
    • 0025788552 scopus 로고
    • Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis
    • Y.F. Yang, and W.W. Wells Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis J. Biol. Chem. 266 1991 12759 12765
    • (1991) J. Biol. Chem. , vol.266 , pp. 12759-12765
    • Yang, Y.F.1    Wells, W.W.2
  • 264
    • 0025914519 scopus 로고
    • Catalytic mechanism of thioltransferase
    • Y.F. Yang, and W.W. Wells Catalytic mechanism of thioltransferase J. Biol. Chem. 266 1991 12766 12771
    • (1991) J. Biol. Chem. , vol.266 , pp. 12766-12771
    • Yang, Y.F.1    Wells, W.W.2
  • 265
    • 0031000775 scopus 로고    scopus 로고
    • PH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis
    • U. Srinivasan, P.A. Mieyal, and J.J. Mieyal pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis Biochemistry 36 1997 3199 3206
    • (1997) Biochemistry , vol.36 , pp. 3199-3206
    • Srinivasan, U.1    Mieyal, P.A.2    Mieyal, J.J.3
  • 267
    • 33750621913 scopus 로고    scopus 로고
    • Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione
    • M.J. Peltoniemi, A.R. Karala, J.K. Jurvansuu, V.L. Kinnula, and L.W. Ruddock Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione J. Biol. Chem. 281 2006 33107 33114
    • (2006) J. Biol. Chem. , vol.281 , pp. 33107-33114
    • Peltoniemi, M.J.1    Karala, A.R.2    Jurvansuu, J.K.3    Kinnula, V.L.4    Ruddock, L.W.5
  • 268
    • 0030695902 scopus 로고    scopus 로고
    • Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria
    • F. Aslund, K.D. Berndt, and A. Holmgren Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria J. Biol. Chem. 272 1997 30780 30786
    • (1997) J. Biol. Chem. , vol.272 , pp. 30780-30786
    • Aslund, F.1    Berndt, K.D.2    Holmgren, A.3
  • 270
    • 34548844721 scopus 로고    scopus 로고
    • Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia
    • Y.S. Ho, Y. Xiong, D.S. Ho, J. Gao, B.H. Chua, H. Pai, and J.J. Mieyal Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia Free Radic. Biol. Med. 43 2007 1299 1312
    • (2007) Free Radic. Biol. Med. , vol.43 , pp. 1299-1312
    • Ho, Y.S.1    Xiong, Y.2    Ho, D.S.3    Gao, J.4    Chua, B.H.5    Pai, H.6    Mieyal, J.J.7
  • 271
    • 78649629122 scopus 로고    scopus 로고
    • Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse
    • J.R. Godoy, M. Funke, W. Ackermann, P. Haunhorst, S. Oesteritz, F. Capani, H.P. Elsasser, and C.H. Lillig Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse Biochim. Biophys. Acta 1810 2011 2 92
    • (2011) Biochim. Biophys. Acta , vol.1810 , pp. 2-92
    • Godoy, J.R.1    Funke, M.2    Ackermann, W.3    Haunhorst, P.4    Oesteritz, S.5    Capani, F.6    Elsasser, H.P.7    Lillig, C.H.8
  • 272
    • 0028037601 scopus 로고
    • Possible differences in the regenerative roles played by thioltransferase and thioredoxin for oxidatively damaged proteins
    • S. Yoshitake, H. Nanri, M.R. Fernando, and S. Minakami Possible differences in the regenerative roles played by thioltransferase and thioredoxin for oxidatively damaged proteins J. Biochem. 116 1994 42 46
    • (1994) J. Biochem. , vol.116 , pp. 42-46
    • Yoshitake, S.1    Nanri, H.2    Fernando, M.R.3    Minakami, S.4
  • 273
    • 0033515479 scopus 로고    scopus 로고
    • Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase
    • S. Mohr, H. Hallak, A. de Boitte, E.G. Lapetina, and B. Brune Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase J. Biol. Chem. 274 1999 9427 9430
    • (1999) J. Biol. Chem. , vol.274 , pp. 9427-9430
    • Mohr, S.1    Hallak, H.2    De Boitte, A.3    Lapetina, E.G.4    Brune, B.5
  • 274
    • 2542486403 scopus 로고    scopus 로고
    • Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue
    • S. Reddy, A.D. Jones, C.E. Cross, P.S. Wong, and A. Van Der Vliet Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue Biochem. J. 347 Pt 3 2000 821 827
    • (2000) Biochem. J. , vol.347 , Issue.PART 3 , pp. 821-827
    • Reddy, S.1    Jones, A.D.2    Cross, C.E.3    Wong, P.S.4    Van Der Vliet, A.5
  • 275
    • 0030008246 scopus 로고    scopus 로고
    • The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation
    • E. Cabiscol, and R.L. Levine The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation Proc. Natl. Acad. Sci. U. S. A. 93 1996 4170 4174
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 4170-4174
    • Cabiscol, E.1    Levine, R.L.2
  • 276
    • 36349016509 scopus 로고    scopus 로고
    • Mitochondrial complex II in the post-ischemic heart: Oxidative injury and the role of protein S-glutathionylation
    • Y.R. Chen, C.L. Chen, D.R. Pfeiffer, and J.L. Zweier Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation J. Biol. Chem. 282 2007 32640 32654
    • (2007) J. Biol. Chem. , vol.282 , pp. 32640-32654
    • Chen, Y.R.1    Chen, C.L.2    Pfeiffer, D.R.3    Zweier, J.L.4
  • 277
    • 0037490142 scopus 로고    scopus 로고
    • Reversible glutathionylation of complex i increases mitochondrial superoxide formation
    • E.R. Taylor, F. Hurrell, R.J. Shannon, T.K. Lin, J. Hirst, and M.P. Murphy Reversible glutathionylation of complex I increases mitochondrial superoxide formation J. Biol. Chem. 278 2003 19603 19610
    • (2003) J. Biol. Chem. , vol.278 , pp. 19603-19610
    • Taylor, E.R.1    Hurrell, F.2    Shannon, R.J.3    Lin, T.K.4    Hirst, J.5    Murphy, M.P.6
  • 279
    • 0038303229 scopus 로고    scopus 로고
    • Stable and controllable RNA interference: Investigating the physiological function of glutathionylated actin
    • J. Wang, E. Tekle, H. Oubrahim, J.J. Mieyal, E.R. Stadtman, and P.B. Chock Stable and controllable RNA interference: investigating the physiological function of glutathionylated actin Proc. Natl. Acad. Sci. U. S. A. 100 2003 5103 5106
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 5103-5106
    • Wang, J.1    Tekle, E.2    Oubrahim, H.3    Mieyal, J.J.4    Stadtman, E.R.5    Chock, P.B.6
  • 282
    • 33846003833 scopus 로고    scopus 로고
    • Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1
    • P. Aracena-Parks, S.A. Goonasekera, C.P. Gilman, R.T. Dirksen, C. Hidalgo, and S.L. Hamilton Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1 J. Biol. Chem. 281 2006 40354 40368
    • (2006) J. Biol. Chem. , vol.281 , pp. 40354-40368
    • Aracena-Parks, P.1    Goonasekera, S.A.2    Gilman, C.P.3    Dirksen, R.T.4    Hidalgo, C.5    Hamilton, S.L.6
  • 283
    • 77952776083 scopus 로고    scopus 로고
    • Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis
    • C.S. Queiroga, A.S. Almeida, C. Martel, C. Brenner, P.M. Alves, and H.L. Vieira Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis J. Biol. Chem. 285 2010 17077 17088
    • (2010) J. Biol. Chem. , vol.285 , pp. 17077-17088
    • Queiroga, C.S.1    Almeida, A.S.2    Martel, C.3    Brenner, C.4    Alves, P.M.5    Vieira, H.L.6
  • 284
    • 78649668520 scopus 로고    scopus 로고
    • Oxidative stress inhibits vascular K(ATP) channels by S-glutathionylation
    • Y. Yang, W. Shi, N. Cui, Z. Wu, and C. Jiang Oxidative stress inhibits vascular K(ATP) channels by S-glutathionylation J. Biol. Chem. 285 2010 38641 38648
    • (2010) J. Biol. Chem. , vol.285 , pp. 38641-38648
    • Yang, Y.1    Shi, W.2    Cui, N.3    Wu, Z.4    Jiang, C.5
  • 286
    • 0037044782 scopus 로고    scopus 로고
    • Regulation of cAMP-dependent protein kinase activity by glutathionylation
    • K.M. Humphries, C. Juliano, and S.S. Taylor Regulation of cAMP-dependent protein kinase activity by glutathionylation J. Biol. Chem. 277 2002 43505 43511
    • (2002) J. Biol. Chem. , vol.277 , pp. 43505-43511
    • Humphries, K.M.1    Juliano, C.2    Taylor, S.S.3
  • 287
    • 77953023996 scopus 로고    scopus 로고
    • Inactivation of Ca2 +/calmodulin-dependent protein kinase i by S-glutathionylation of the active-site cysteine residue
    • T. Kambe, T. Song, T. Takata, N. Hatano, Y. Miyamoto, N. Nozaki, Y. Naito, H. Tokumitsu, and Y. Watanabe Inactivation of Ca2 +/calmodulin-dependent protein kinase I by S-glutathionylation of the active-site cysteine residue FEBS Lett. 584 2010 2478 2484
    • (2010) FEBS Lett. , vol.584 , pp. 2478-2484
    • Kambe, T.1    Song, T.2    Takata, T.3    Hatano, N.4    Miyamoto, Y.5    Nozaki, N.6    Naito, Y.7    Tokumitsu, H.8    Watanabe, Y.9
  • 288
    • 0036291166 scopus 로고    scopus 로고
    • Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation
    • R.K. Rao, and L.W. Clayton Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation Biochem. Biophys. Res. Commun. 293 2002 610 616
    • (2002) Biochem. Biophys. Res. Commun. , vol.293 , pp. 610-616
    • Rao, R.K.1    Clayton, L.W.2
  • 290
    • 0034702868 scopus 로고    scopus 로고
    • Oxidant-induced S-glutathiolation inactivates protein kinase C-alpha (PKC-alpha): A potential mechanism of PKC isozyme regulation
    • N.E. Ward, J.R. Stewart, C.G. Ioannides, and C.A. O'Brian Oxidant-induced S-glutathiolation inactivates protein kinase C-alpha (PKC-alpha): a potential mechanism of PKC isozyme regulation Biochemistry 39 2000 10319 10329
    • (2000) Biochemistry , vol.39 , pp. 10319-10329
    • Ward, N.E.1    Stewart, J.R.2    Ioannides, C.G.3    O'Brian, C.A.4
  • 291
    • 0031973308 scopus 로고    scopus 로고
    • Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor i
    • S. Bandyopadhyay, D.W. Starke, J.J. Mieyal, and R.M. Gronostajski Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I J. Biol. Chem. 273 1998 392 397
    • (1998) J. Biol. Chem. , vol.273 , pp. 392-397
    • Bandyopadhyay, S.1    Starke, D.W.2    Mieyal, J.J.3    Gronostajski, R.M.4
  • 292
    • 3142663363 scopus 로고    scopus 로고
    • S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells
    • T. Adachi, D.R. Pimentel, T. Heibeck, X. Hou, Y.J. Lee, B. Jiang, Y. Ido, and R.A. Cohen S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells J. Biol. Chem. 279 2004 29857 29862
    • (2004) J. Biol. Chem. , vol.279 , pp. 29857-29862
    • Adachi, T.1    Pimentel, D.R.2    Heibeck, T.3    Hou, X.4    Lee, Y.J.5    Jiang, B.6    Ido, Y.7    Cohen, R.A.8
  • 294
    • 34547128886 scopus 로고    scopus 로고
    • Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB
    • S. Qanungo, D.W. Starke, H.V. Pai, J.J. Mieyal, and A.L. Nieminen Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB J. Biol. Chem. 282 2007 18427 18436
    • (2007) J. Biol. Chem. , vol.282 , pp. 18427-18436
    • Qanungo, S.1    Starke, D.W.2    Pai, H.V.3    Mieyal, J.J.4    Nieminen, A.L.5
  • 295
    • 0038636003 scopus 로고    scopus 로고
    • Glutathione pathways in the brain
    • R. Dringen, and J. Hirrlinger Glutathione pathways in the brain Biol. Chem. 384 2003 505 516
    • (2003) Biol. Chem. , vol.384 , pp. 505-516
    • Dringen, R.1    Hirrlinger, J.2
  • 296
    • 45249088541 scopus 로고    scopus 로고
    • Redox signal integration: From stimulus to networks and genes
    • K.J. Dietz Redox signal integration: from stimulus to networks and genes Physiol. Plant. 133 2008 459 468
    • (2008) Physiol. Plant. , vol.133 , pp. 459-468
    • Dietz, K.J.1
  • 298
    • 70449174079 scopus 로고
    • Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown
    • G.C. Mills Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown J. Biol. Chem. 229 1957 189 197
    • (1957) J. Biol. Chem. , vol.229 , pp. 189-197
    • Mills, G.C.1
  • 299
    • 0001127562 scopus 로고
    • Purification and enzymatic identity of mitochondrial contraction-factors i and II
    • D. Neubert, A.B. Wojtczak, and A.L. Lehninger Purification and enzymatic identity of mitochondrial contraction-factors I and II Proc. Natl. Acad. Sci. U. S. A. 48 1962 1651 1658
    • (1962) Proc. Natl. Acad. Sci. U. S. A. , vol.48 , pp. 1651-1658
    • Neubert, D.1    Wojtczak, A.B.2    Lehninger, A.L.3
  • 301
    • 0015357040 scopus 로고
    • Glutathione peroxidase VI: The reaction of glutahione peroxidase with various hydroperoxides
    • W.A. Gunzler, H. Vergin, I. Muller, and L. Flohe Glutathione peroxidase VI: the reaction of glutahione peroxidase with various hydroperoxides Hoppe Seylers Z. Physiol. Chem. 353 1972 1001 1004
    • (1972) Hoppe Seylers Z. Physiol. Chem. , vol.353 , pp. 1001-1004
    • Gunzler, W.A.1    Vergin, H.2    Muller, I.3    Flohe, L.4
  • 302
    • 0015880169 scopus 로고
    • Glutathione peroxidase: A selenoenzyme
    • L. Flohe, W.A. Gunzler, and H.H. Schock Glutathione peroxidase: a selenoenzyme FEBS Lett. 32 1973 132 134
    • (1973) FEBS Lett. , vol.32 , pp. 132-134
    • Flohe, L.1    Gunzler, W.A.2    Schock, H.H.3
  • 303
    • 0018801438 scopus 로고
    • Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2.8 A resolution
    • R. Ladenstein, O. Epp, K. Bartels, A. Jones, R. Huber, and A. Wendel Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2.8 A resolution J. Mol. Biol. 134 1979 199 218
    • (1979) J. Mol. Biol. , vol.134 , pp. 199-218
    • Ladenstein, R.1    Epp, O.2    Bartels, K.3    Jones, A.4    Huber, R.5    Wendel, A.6
  • 304
    • 0020775636 scopus 로고
    • The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution
    • O. Epp, R. Ladenstein, and A. Wendel The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution Eur. J. Biochem. 133 1983 51 69
    • (1983) Eur. J. Biochem. , vol.133 , pp. 51-69
    • Epp, O.1    Ladenstein, R.2    Wendel, A.3
  • 305
    • 0017889205 scopus 로고
    • Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine
    • J.W. Forstrom, J.J. Zakowski, and A.L. Tappel Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine Biochemistry 17 1978 2639 2644
    • (1978) Biochemistry , vol.17 , pp. 2639-2644
    • Forstrom, J.W.1    Zakowski, J.J.2    Tappel, A.L.3
  • 307
    • 0022730806 scopus 로고
    • The structure of the mouse glutathione peroxidase gene: The selenocysteine in the active site is encoded by the 'termination' codon, TGA
    • I. Chambers, J. Frampton, P. Goldfarb, N. Affara, W. McBain, and P.R. Harrison The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA EMBO J. 5 1986 1221 1227
    • (1986) EMBO J. , vol.5 , pp. 1221-1227
    • Chambers, I.1    Frampton, J.2    Goldfarb, P.3    Affara, N.4    McBain, W.5    Harrison, P.R.6
  • 308
    • 0020065662 scopus 로고
    • Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides
    • F. Ursini, M. Maiorino, M. Valente, L. Ferri, and C. Gregolin Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides Biochim. Biophys. Acta 710 1982 197 211
    • (1982) Biochim. Biophys. Acta , vol.710 , pp. 197-211
    • Ursini, F.1    Maiorino, M.2    Valente, M.3    Ferri, L.4    Gregolin, C.5
  • 309
    • 0021803196 scopus 로고
    • The selenoenzyme phospholipid hydroperoxide glutathione peroxidase
    • F. Ursini, M. Maiorino, and C. Gregolin The selenoenzyme phospholipid hydroperoxide glutathione peroxidase Biochim. Biophys. Acta 839 1985 62 70
    • (1985) Biochim. Biophys. Acta , vol.839 , pp. 62-70
    • Ursini, F.1    Maiorino, M.2    Gregolin, C.3
  • 310
    • 0026587399 scopus 로고
    • Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase
    • C. Rocher, J.L. Lalanne, and J. Chaudiere Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase Eur. J. Biochem. 205 1992 955 960
    • (1992) Eur. J. Biochem. , vol.205 , pp. 955-960
    • Rocher, C.1    Lalanne, J.L.2    Chaudiere, J.3
  • 311
    • 46449103532 scopus 로고    scopus 로고
    • Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily
    • S. Toppo, S. Vanin, V. Bosello, and S.C. Tosatto Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily Antioxid. Redox Signal. 10 2008 1501 1514
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 1501-1514
    • Toppo, S.1    Vanin, S.2    Bosello, V.3    Tosatto, S.C.4
  • 313
    • 29744463864 scopus 로고    scopus 로고
    • GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae
    • T. Tanaka, S. Izawa, and Y. Inoue GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae J. Biol. Chem. 280 2005 42078 42087
    • (2005) J. Biol. Chem. , vol.280 , pp. 42078-42087
    • Tanaka, T.1    Izawa, S.2    Inoue, Y.3
  • 314
    • 34547402111 scopus 로고    scopus 로고
    • Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei
    • T. Schlecker, M.A. Comini, J. Melchers, T. Ruppert, and R.L. Krauth-Siegel Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei Biochem. J. 405 2007 445 454
    • (2007) Biochem. J. , vol.405 , pp. 445-454
    • Schlecker, T.1    Comini, M.A.2    Melchers, J.3    Ruppert, T.4    Krauth-Siegel, R.L.5
  • 315
    • 0037066696 scopus 로고    scopus 로고
    • A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase
    • B.G. Jung, K.O. Lee, S.S. Lee, Y.H. Chi, H.H. Jang, S.S. Kang, K. Lee, D. Lim, S.C. Yoon, D.J. Yun, Y. Inoue, M.J. Cho, and S.Y. Lee A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase J. Biol. Chem. 277 2002 12572 12578
    • (2002) J. Biol. Chem. , vol.277 , pp. 12572-12578
    • Jung, B.G.1    Lee, K.O.2    Lee, S.S.3    Chi, Y.H.4    Jang, H.H.5    Kang, S.S.6    Lee, K.7    Lim, D.8    Yoon, S.C.9    Yun, D.J.10    Inoue, Y.11    Cho, M.J.12    Lee, S.Y.13
  • 316
    • 34250346950 scopus 로고    scopus 로고
    • Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: Insights into redox-driven conformational changes
    • C.S. Koh, C. Didierjean, N. Navrot, S. Panjikar, G. Mulliert, N. Rouhier, J.P. Jacquot, A. Aubry, O. Shawkataly, and C. Corbier Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: insights into redox-driven conformational changes J. Mol. Biol. 370 2007 512 529
    • (2007) J. Mol. Biol. , vol.370 , pp. 512-529
    • Koh, C.S.1    Didierjean, C.2    Navrot, N.3    Panjikar, S.4    Mulliert, G.5    Rouhier, N.6    Jacquot, J.P.7    Aubry, A.8    Shawkataly, O.9    Corbier, C.10
  • 317
    • 34547746722 scopus 로고    scopus 로고
    • Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4)
    • P. Scheerer, A. Borchert, N. Krauss, H. Wessner, C. Gerth, W. Hohne, and H. Kuhn Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4) Biochemistry 46 2007 9041 9049
    • (2007) Biochemistry , vol.46 , pp. 9041-9049
    • Scheerer, P.1    Borchert, A.2    Krauss, N.3    Wessner, H.4    Gerth, C.5    Hohne, W.6    Kuhn, H.7
  • 319
    • 0027536023 scopus 로고
    • Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI
    • F.F. Chu, J.H. Doroshow, and R.S. Esworthy Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI J. Biol. Chem. 268 1993 2571 2576
    • (1993) J. Biol. Chem. , vol.268 , pp. 2571-2576
    • Chu, F.F.1    Doroshow, J.H.2    Esworthy, R.S.3
  • 320
    • 0023186348 scopus 로고
    • Purification and characterization of human plasma glutathione peroxidase: A selenoglycoprotein distinct from the known cellular enzyme
    • K. Takahashi, N. Avissar, J. Whitin, and H. Cohen Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme Arch. Biochem. Biophys. 256 1987 677 686
    • (1987) Arch. Biochem. Biophys. , vol.256 , pp. 677-686
    • Takahashi, K.1    Avissar, N.2    Whitin, J.3    Cohen, H.4
  • 322
    • 33845631208 scopus 로고    scopus 로고
    • Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses
    • N. Navrot, V. Collin, J. Gualberto, E. Gelhaye, M. Hirasawa, P. Rey, D.B. Knaff, E. Issakidis, J.P. Jacquot, and N. Rouhier Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses Plant Physiol. 142 2006 1364 1379
    • (2006) Plant Physiol. , vol.142 , pp. 1364-1379
    • Navrot, N.1    Collin, V.2    Gualberto, J.3    Gelhaye, E.4    Hirasawa, M.5    Rey, P.6    Knaff, D.B.7    Issakidis, E.8    Jacquot, J.P.9    Rouhier, N.10
  • 323
    • 17644393919 scopus 로고    scopus 로고
    • Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei
    • T. Schlecker, A. Schmidt, N. Dirdjaja, F. Voncken, C. Clayton, and R.L. Krauth-Siegel Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei J. Biol. Chem. 280 2005 14385 14394
    • (2005) J. Biol. Chem. , vol.280 , pp. 14385-14394
    • Schlecker, T.1    Schmidt, A.2    Dirdjaja, N.3    Voncken, F.4    Clayton, C.5    Krauth-Siegel, R.L.6
  • 325
    • 0034852563 scopus 로고    scopus 로고
    • Glutathione peroxidase-1 gene knockout on body antioxidant defense in mice
    • X.G. Lei Glutathione peroxidase-1 gene knockout on body antioxidant defense in mice Biofactors 14 2001 93 99
    • (2001) Biofactors , vol.14 , pp. 93-99
    • Lei, X.G.1
  • 326
    • 0031879339 scopus 로고    scopus 로고
    • Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine
    • R.S. Esworthy, K.M. Swiderek, Y.S. Ho, and F.F. Chu Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine Biochim. Biophys. Acta 1381 1998 213 226
    • (1998) Biochim. Biophys. Acta , vol.1381 , pp. 213-226
    • Esworthy, R.S.1    Swiderek, K.M.2    Ho, Y.S.3    Chu, F.F.4
  • 328
    • 0141706719 scopus 로고    scopus 로고
    • Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants
    • M. Maiorino, M. Scapin, F. Ursini, M. Biasolo, V. Bosello, and L. Flohe Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants J. Biol. Chem. 278 2003 34286 34290
    • (2003) J. Biol. Chem. , vol.278 , pp. 34286-34290
    • Maiorino, M.1    Scapin, M.2    Ursini, F.3    Biasolo, M.4    Bosello, V.5    Flohe, L.6
  • 329
    • 0028825467 scopus 로고
    • Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites
    • T.R. Pushpa-Rekha, A.L. Burdsall, L.M. Oleksa, G.M. Chisolm, and D.M. Driscoll Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites J. Biol. Chem. 270 1995 26993 26999
    • (1995) J. Biol. Chem. , vol.270 , pp. 26993-26999
    • Pushpa-Rekha, T.R.1    Burdsall, A.L.2    Oleksa, L.M.3    Chisolm, G.M.4    Driscoll, D.M.5
  • 330
    • 16244380159 scopus 로고    scopus 로고
    • Chopped, trapped or tacked - Protein translocation into the IMS of mitochondria
    • J.M. Herrmann, and K. Hell Chopped, trapped or tacked - protein translocation into the IMS of mitochondria Trends Biochem. Sci. 30 2005 205 211
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 205-211
    • Herrmann, J.M.1    Hell, K.2
  • 331
    • 0028205403 scopus 로고
    • Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria
    • C. Godeas, G. Sandri, and E. Panfili Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria Biochim. Biophys. Acta 1191 1994 147 150
    • (1994) Biochim. Biophys. Acta , vol.1191 , pp. 147-150
    • Godeas, C.1    Sandri, G.2    Panfili, E.3
  • 332
  • 335
    • 0034306791 scopus 로고    scopus 로고
    • Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis
    • K. Nomura, H. Imai, T. Koumura, T. Kobayashi, and Y. Nakagawa Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis Biochem. J. 351 2000 183 193
    • (2000) Biochem. J. , vol.351 , pp. 183-193
    • Nomura, K.1    Imai, H.2    Koumura, T.3    Kobayashi, T.4    Nakagawa, Y.5
  • 339
    • 71449113005 scopus 로고    scopus 로고
    • Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions
    • H. Liang, S.E. Yoo, R. Na, C.A. Walter, A. Richardson, and Q. Ran Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions J. Biol. Chem. 284 2009 30836 30844
    • (2009) J. Biol. Chem. , vol.284 , pp. 30836-30844
    • Liang, H.1    Yoo, S.E.2    Na, R.3    Walter, C.A.4    Richardson, A.5    Ran, Q.6
  • 342
    • 0028072911 scopus 로고
    • Thioredoxin-dependent peroxide reductase from yeast
    • H.Z. Chae, S.J. Chung, and S.G. Rhee Thioredoxin-dependent peroxide reductase from yeast J. Biol. Chem. 269 1994 27670 27678
    • (1994) J. Biol. Chem. , vol.269 , pp. 27670-27678
    • Chae, H.Z.1    Chung, S.J.2    Rhee, S.G.3
  • 343
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
    • S.G. Rhee, H.Z. Chae, and K. Kim Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling Free Radic. Biol. Med. 38 2005 1543 1552
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 1543-1552
    • Rhee, S.G.1    Chae, H.Z.2    Kim, K.3
  • 344
    • 38749134528 scopus 로고    scopus 로고
    • Peroxiredoxin systems of protozoal parasites
    • M. Deponte, S. Rahlfs, and K. Becker Peroxiredoxin systems of protozoal parasites Subcell. Biochem. 44 2007 219 229
    • (2007) Subcell. Biochem. , vol.44 , pp. 219-229
    • Deponte, M.1    Rahlfs, S.2    Becker, K.3
  • 345
    • 38749094500 scopus 로고    scopus 로고
    • The catalytic mechanism of peroxiredoxins
    • L.B. Poole The catalytic mechanism of peroxiredoxins Subcell. Biochem. 44 2007 61 81
    • (2007) Subcell. Biochem. , vol.44 , pp. 61-81
    • Poole, L.B.1
  • 346
    • 38749122130 scopus 로고    scopus 로고
    • Structural survey of the peroxiredoxins
    • P.A. Karplus, and A. Hall Structural survey of the peroxiredoxins Subcell. Biochem. 44 2007 41 60
    • (2007) Subcell. Biochem. , vol.44 , pp. 41-60
    • Karplus, P.A.1    Hall, A.2
  • 348
    • 13444274373 scopus 로고    scopus 로고
    • Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx
    • M. Deponte, and K. Becker Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx Mol. Biochem. Parasitol. 140 2005 87 96
    • (2005) Mol. Biochem. Parasitol. , vol.140 , pp. 87-96
    • Deponte, M.1    Becker, K.2
  • 349
    • 0037134534 scopus 로고    scopus 로고
    • Glutaredoxin-dependent peroxiredoxin from poplar: Protein-protein interaction and catalytic mechanism
    • N. Rouhier, E. Gelhaye, and J.P. Jacquot Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism J. Biol. Chem. 277 2002 13609 13614
    • (2002) J. Biol. Chem. , vol.277 , pp. 13609-13614
    • Rouhier, N.1    Gelhaye, E.2    Jacquot, J.P.3
  • 350
    • 0037931788 scopus 로고    scopus 로고
    • Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity
    • F. Pauwels, B. Vergauwen, F. Vanrobaeys, B. Devreese, and J.J. Van Beeumen Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity J. Biol. Chem. 278 2003 16658 16666
    • (2003) J. Biol. Chem. , vol.278 , pp. 16658-16666
    • Pauwels, F.1    Vergauwen, B.2    Vanrobaeys, F.3    Devreese, B.4    Van Beeumen, J.J.5
  • 351
    • 80054771975 scopus 로고    scopus 로고
    • Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin
    • S.A. Reeves, D. Parsonage, K.J. Nelson, and L.B. Poole Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin Biochemistry 50 2011 8970 8981
    • (2011) Biochemistry , vol.50 , pp. 8970-8981
    • Reeves, S.A.1    Parsonage, D.2    Nelson, K.J.3    Poole, L.B.4
  • 352
    • 79953219814 scopus 로고    scopus 로고
    • A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum
    • D. Richard, R. Bartfai, J. Volz, S.A. Ralph, S. Muller, H.G. Stunnenberg, and A.F. Cowman A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum J. Biol. Chem. 286 2011 11746 11755
    • (2011) J. Biol. Chem. , vol.286 , pp. 11746-11755
    • Richard, D.1    Bartfai, R.2    Volz, J.3    Ralph, S.A.4    Muller, S.5    Stunnenberg, H.G.6    Cowman, A.F.7
  • 354
    • 30744437425 scopus 로고    scopus 로고
    • Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes
    • L.A. Ralat, Y. Manevich, A.B. Fisher, and R.F. Colman Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes Biochemistry 45 2006 360 372
    • (2006) Biochemistry , vol.45 , pp. 360-372
    • Ralat, L.A.1    Manevich, Y.2    Fisher, A.B.3    Colman, R.F.4
  • 355
    • 0033597885 scopus 로고    scopus 로고
    • Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase
    • A.B. Fisher, C. Dodia, Y. Manevich, J.W. Chen, and S.I. Feinstein Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase J. Biol. Chem. 274 1999 21326 21334
    • (1999) J. Biol. Chem. , vol.274 , pp. 21326-21334
    • Fisher, A.B.1    Dodia, C.2    Manevich, Y.3    Chen, J.W.4    Feinstein, S.I.5
  • 356
    • 0031945918 scopus 로고    scopus 로고
    • Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution
    • H.J. Choi, S.W. Kang, C.H. Yang, S.G. Rhee, and S.E. Ryu Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution Nat. Struct. Biol. 5 1998 400 406
    • (1998) Nat. Struct. Biol. , vol.5 , pp. 400-406
    • Choi, H.J.1    Kang, S.W.2    Yang, C.H.3    Rhee, S.G.4    Ryu, S.E.5
  • 357
    • 0038532262 scopus 로고    scopus 로고
    • The tetrameric structure of Haemophilus influenza hybrid Prx5 reveals interactions between electron donor and acceptor proteins
    • S.J. Kim, J.R. Woo, Y.S. Hwang, D.G. Jeong, D.H. Shin, K. Kim, and S.E. Ryu The tetrameric structure of Haemophilus influenza hybrid Prx5 reveals interactions between electron donor and acceptor proteins J. Biol. Chem. 278 2003 10790 10798
    • (2003) J. Biol. Chem. , vol.278 , pp. 10790-10798
    • Kim, S.J.1    Woo, J.R.2    Hwang, Y.S.3    Jeong, D.G.4    Shin, D.H.5    Kim, K.6    Ryu, S.E.7
  • 362
    • 1842425714 scopus 로고    scopus 로고
    • Physiological characterization of Haemophilus influenzae Rd deficient in its glutathione-dependent peroxidase PGdx
    • F. Pauwels, B. Vergauwen, and J.J. Van Beeumen Physiological characterization of Haemophilus influenzae Rd deficient in its glutathione-dependent peroxidase PGdx J. Biol. Chem. 279 2004 12163 12170
    • (2004) J. Biol. Chem. , vol.279 , pp. 12163-12170
    • Pauwels, F.1    Vergauwen, B.2    Van Beeumen, J.J.3
  • 364
    • 0001740246 scopus 로고
    • The destruction of lactic aldehyde and methylglyoxal by animal organs
    • C. Neuberg The destruction of lactic aldehyde and methylglyoxal by animal organs Biochem. Z. 49 1913 502 506
    • (1913) Biochem. Z. , vol.49 , pp. 502-506
    • Neuberg, C.1
  • 365
    • 0345190644 scopus 로고
    • The glyoxalase activity of the red blood cell: The function of glutathione
    • M. Jowett, and J.H. Quastel The glyoxalase activity of the red blood cell: the function of glutathione Biochem. J. 27 1933 486 498
    • (1933) Biochem. J. , vol.27 , pp. 486-498
    • Jowett, M.1    Quastel, J.H.2
  • 366
    • 0000718614 scopus 로고
    • Beitrag zur enzymatischen Umwandlung von synthetischem Methylglyoxal in Milchsäure
    • K. Lohmann Beitrag zur enzymatischen Umwandlung von synthetischem Methylglyoxal in Milchsäure Biochem. Z. 254 1932 332 354
    • (1932) Biochem. Z. , vol.254 , pp. 332-354
    • Lohmann, K.1
  • 367
    • 0001739947 scopus 로고
    • The mechanism of action of glyoxalase
    • E. Racker The mechanism of action of glyoxalase J. Biol. Chem. 190 1951 685 696
    • (1951) J. Biol. Chem. , vol.190 , pp. 685-696
    • Racker, E.1
  • 368
    • 0016773981 scopus 로고
    • Effects of pH and thiols on the kinetics of yeast glyoxalase I. An evaluation of the random pathway mechanism
    • D.L. Vander Jagt, E. Daub, J.A. Krohn, and L.P. Han Effects of pH and thiols on the kinetics of yeast glyoxalase I. An evaluation of the random pathway mechanism Biochemistry 14 1975 3669 3675
    • (1975) Biochemistry , vol.14 , pp. 3669-3675
    • Vander Jagt, D.L.1    Daub, E.2    Krohn, J.A.3    Han, L.P.4
  • 369
    • 0015525329 scopus 로고
    • Kinetic evaluation of substrate specificity in the glyoxalase-I-catalyzed disproportionation of -ketoaldehydes
    • D.L. Vander Jagt, L.P. Han, and C.H. Lehman Kinetic evaluation of substrate specificity in the glyoxalase-I-catalyzed disproportionation of -ketoaldehydes Biochemistry 11 1972 3735 3740
    • (1972) Biochemistry , vol.11 , pp. 3735-3740
    • Vander Jagt, D.L.1    Han, L.P.2    Lehman, C.H.3
  • 370
    • 35348993113 scopus 로고    scopus 로고
    • Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase i
    • M. Deponte, N. Sturm, S. Mittler, M. Harner, H. Mack, and K. Becker Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I J. Biol. Chem. 282 2007 28419 28430
    • (2007) J. Biol. Chem. , vol.282 , pp. 28419-28430
    • Deponte, M.1    Sturm, N.2    Mittler, S.3    Harner, M.4    Mack, H.5    Becker, K.6
  • 371
    • 0015937958 scopus 로고
    • The stereochemical configuration of the lactoyl group of S-lactoylglutathionine formed by the action of glyoxalase i from porcine erythrocytes and yeast
    • K. Ekwall, and B. Mannervik The stereochemical configuration of the lactoyl group of S-lactoylglutathionine formed by the action of glyoxalase I from porcine erythrocytes and yeast Biochim. Biophys. Acta 297 1973 297 299
    • (1973) Biochim. Biophys. Acta , vol.297 , pp. 297-299
    • Ekwall, K.1    Mannervik, B.2
  • 372
    • 0015791813 scopus 로고
    • Purification and characterization of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from human liver
    • L. Uotila Purification and characterization of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from human liver Biochemistry 12 1973 3944 3951
    • (1973) Biochemistry , vol.12 , pp. 3944-3951
    • Uotila, L.1
  • 374
    • 0026716957 scopus 로고
    • Isomerization of (R)- and (S)-glutathiolactaldehydes by glyoxalase I: The case for dichotomous stereochemical behavior in a single active site
    • J.A. Landro, E.J. Brush, and J.W. Kozarich Isomerization of (R)- and (S)-glutathiolactaldehydes by glyoxalase I: the case for dichotomous stereochemical behavior in a single active site Biochemistry 31 1992 6069 6077
    • (1992) Biochemistry , vol.31 , pp. 6069-6077
    • Landro, J.A.1    Brush, E.J.2    Kozarich, J.W.3
  • 375
    • 0028281741 scopus 로고
    • Stereospecificity of substrate usage by glyoxalase 1: Nuclear magnetic resonance studies of kinetics and hemithioacetal substrate conformation
    • C. Rae, S.I. O'Donoghue, W.A. Bubb, and P.W. Kuchel Stereospecificity of substrate usage by glyoxalase 1: nuclear magnetic resonance studies of kinetics and hemithioacetal substrate conformation Biochemistry 33 1994 3548 3559
    • (1994) Biochemistry , vol.33 , pp. 3548-3559
    • Rae, C.1    O'Donoghue, S.I.2    Bubb, W.A.3    Kuchel, P.W.4
  • 376
    • 0030927104 scopus 로고    scopus 로고
    • Crystal structure of human glyoxalase i - Evidence for gene duplication and 3D domain swapping
    • A.D. Cameron, B. Olin, M. Ridderstrom, B. Mannervik, and T.A. Jones Crystal structure of human glyoxalase I - evidence for gene duplication and 3D domain swapping EMBO J. 16 1997 3386 3395
    • (1997) EMBO J. , vol.16 , pp. 3386-3395
    • Cameron, A.D.1    Olin, B.2    Ridderstrom, M.3    Mannervik, B.4    Jones, T.A.5
  • 377
    • 0033200323 scopus 로고    scopus 로고
    • Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue
    • A.D. Cameron, M. Ridderstrom, B. Olin, and B. Mannervik Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue Structure 7 1999 1067 1078
    • (1999) Structure , vol.7 , pp. 1067-1078
    • Cameron, A.D.1    Ridderstrom, M.2    Olin, B.3    Mannervik, B.4
  • 380
    • 0033550054 scopus 로고    scopus 로고
    • Reaction mechanism of glyoxalase i explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue
    • A.D. Cameron, M. Ridderstrom, B. Olin, M.J. Kavarana, D.J. Creighton, and B. Mannervik Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue Biochemistry 38 1999 13480 13490
    • (1999) Biochemistry , vol.38 , pp. 13480-13490
    • Cameron, A.D.1    Ridderstrom, M.2    Olin, B.3    Kavarana, M.J.4    Creighton, D.J.5    Mannervik, B.6
  • 381
    • 0033486132 scopus 로고    scopus 로고
    • Heterologous expression, purification, and kinetic comparison of the cytoplasmic and mitochondrial glyoxalase II enzymes, Glo2p and Glo4p, from Saccharomyces cerevisiae
    • A. Bito, M. Haider, P. Briza, P. Strasser, and M. Breitenbach Heterologous expression, purification, and kinetic comparison of the cytoplasmic and mitochondrial glyoxalase II enzymes, Glo2p and Glo4p, from Saccharomyces cerevisiae Protein Expr. Purif. 17 1999 456 464
    • (1999) Protein Expr. Purif. , vol.17 , pp. 456-464
    • Bito, A.1    Haider, M.2    Briza, P.3    Strasser, P.4    Breitenbach, M.5
  • 382
    • 0030761248 scopus 로고    scopus 로고
    • Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins
    • A. Bito, M. Haider, I. Hadler, and M. Breitenbach Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins J. Biol. Chem. 272 1997 21509 21519
    • (1997) J. Biol. Chem. , vol.272 , pp. 21509-21519
    • Bito, A.1    Haider, M.2    Hadler, I.3    Breitenbach, M.4
  • 383
    • 0035910575 scopus 로고    scopus 로고
    • Yeast glyoxalase i is a monomeric enzyme with two active sites
    • E.M. Frickel, P. Jemth, M. Widersten, and B. Mannervik Yeast glyoxalase I is a monomeric enzyme with two active sites J. Biol. Chem. 276 2001 1845 1849
    • (2001) J. Biol. Chem. , vol.276 , pp. 1845-1849
    • Frickel, E.M.1    Jemth, P.2    Widersten, M.3    Mannervik, B.4
  • 384
    • 0021112010 scopus 로고
    • The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae
    • M.J. Penninckx, C.J. Jaspers, and M.J. Legrain The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae J. Biol. Chem. 258 1983 6030 6036
    • (1983) J. Biol. Chem. , vol.258 , pp. 6030-6036
    • Penninckx, M.J.1    Jaspers, C.J.2    Legrain, M.J.3
  • 385
    • 0030608678 scopus 로고    scopus 로고
    • Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity
    • M.W. Crowder, M.K. Maiti, L. Banovic, and C.A. Makaroff Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity FEBS Lett. 418 1997 351 354
    • (1997) FEBS Lett. , vol.418 , pp. 351-354
    • Crowder, M.W.1    Maiti, M.K.2    Banovic, L.3    Makaroff, C.A.4
  • 386
    • 70149087322 scopus 로고    scopus 로고
    • Arabidopsis thaliana mitochondrial glyoxalase 2-1 exhibits beta-lactamase activity
    • P. Limphong, G. Nimako, P.W. Thomas, W. Fast, C.A. Makaroff, and M.W. Crowder Arabidopsis thaliana mitochondrial glyoxalase 2-1 exhibits beta-lactamase activity Biochemistry 48 2009 8491 8493
    • (2009) Biochemistry , vol.48 , pp. 8491-8493
    • Limphong, P.1    Nimako, G.2    Thomas, P.W.3    Fast, W.4    Makaroff, C.A.5    Crowder, M.W.6
  • 388
    • 0031044657 scopus 로고    scopus 로고
    • Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana
    • M. Ridderstrom, and B. Mannervik Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana Biochem. J. 322 Pt 2 1997 449 454
    • (1997) Biochem. J. , vol.322 , Issue.PART 2 , pp. 449-454
    • Ridderstrom, M.1    Mannervik, B.2
  • 390
    • 33645052721 scopus 로고    scopus 로고
    • Specificity of the trypanothione-dependent Leishmania major glyoxalase I: Structure and biochemical comparison with the human enzyme
    • A. Ariza, T.J. Vickers, N. Greig, K.A. Armour, M.J. Dixon, I.M. Eggleston, A.H. Fairlamb, and C.S. Bond Specificity of the trypanothione- dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme Mol. Microbiol. 59 2006 1239 1248
    • (2006) Mol. Microbiol. , vol.59 , pp. 1239-1248
    • Ariza, A.1    Vickers, T.J.2    Greig, N.3    Armour, K.A.4    Dixon, M.J.5    Eggleston, I.M.6    Fairlamb, A.H.7    Bond, C.S.8
  • 391
    • 33845190312 scopus 로고    scopus 로고
    • Trypanothione-dependent glyoxalase i in Trypanosoma cruzi
    • N. Greig, S. Wyllie, T.J. Vickers, and A.H. Fairlamb Trypanothione- dependent glyoxalase I in Trypanosoma cruzi Biochem. J. 400 2006 217 223
    • (2006) Biochem. J. , vol.400 , pp. 217-223
    • Greig, N.1    Wyllie, S.2    Vickers, T.J.3    Fairlamb, A.H.4
  • 392
    • 2542450775 scopus 로고    scopus 로고
    • Glyoxalase II of African trypanosomes is trypanothione-dependent
    • T. Irsch, and R.L. Krauth-Siegel Glyoxalase II of African trypanosomes is trypanothione-dependent J. Biol. Chem. 279 2004 22209 22217
    • (2004) J. Biol. Chem. , vol.279 , pp. 22209-22217
    • Irsch, T.1    Krauth-Siegel, R.L.2
  • 393
    • 37849007277 scopus 로고    scopus 로고
    • Catalysis and structural properties of Leishmania infantum glyoxalase II: Trypanothione specificity and phylogeny
    • M.S. Silva, L. Barata, A.E. Ferreira, S. Romao, A.M. Tomas, A.P. Freire, and C. Cordeiro Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny Biochemistry 47 2008 195 204
    • (2008) Biochemistry , vol.47 , pp. 195-204
    • Silva, M.S.1    Barata, L.2    Ferreira, A.E.3    Romao, S.4    Tomas, A.M.5    Freire, A.P.6    Cordeiro, C.7
  • 394
    • 4444278762 scopus 로고    scopus 로고
    • A trypanothione-dependent glyoxalase i with a prokaryotic ancestry in Leishmania major
    • T.J. Vickers, N. Greig, and A.H. Fairlamb A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major Proc. Natl. Acad. Sci. U. S. A. 101 2004 13186 13191
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 13186-13191
    • Vickers, T.J.1    Greig, N.2    Fairlamb, A.H.3
  • 395
    • 0034649338 scopus 로고    scopus 로고
    • Mechanistic diversity in a metalloenzyme superfamily
    • R.N. Armstrong Mechanistic diversity in a metalloenzyme superfamily Biochemistry 39 2000 13625 13632
    • (2000) Biochemistry , vol.39 , pp. 13625-13632
    • Armstrong, R.N.1
  • 396
    • 0032463747 scopus 로고    scopus 로고
    • All in the family: Structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly
    • M. Bergdoll, L.D. Eltis, A.D. Cameron, P. Dumas, and J.T. Bolin All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly Protein Sci. 7 1998 1661 1670
    • (1998) Protein Sci. , vol.7 , pp. 1661-1670
    • Bergdoll, M.1    Eltis, L.D.2    Cameron, A.D.3    Dumas, P.4    Bolin, J.T.5
  • 397
    • 0034254431 scopus 로고    scopus 로고
    • Determination of the structure of Escherichia coli glyoxalase i suggests a structural basis for differential metal activation
    • M.M. He, S.L. Clugston, J.F. Honek, and B.W. Matthews Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation Biochemistry 39 2000 8719 8727
    • (2000) Biochemistry , vol.39 , pp. 8719-8727
    • He, M.M.1    Clugston, S.L.2    Honek, J.F.3    Matthews, B.W.4
  • 398
    • 0242710739 scopus 로고    scopus 로고
    • Glyoxalase i of the malarial parasite Plasmodium falciparum: Evidence for subunit fusion
    • R. Iozef, S. Rahlfs, T. Chang, H. Schirmer, and K. Becker Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion FEBS Lett. 554 2003 284 288
    • (2003) FEBS Lett. , vol.554 , pp. 284-288
    • Iozef, R.1    Rahlfs, S.2    Chang, T.3    Schirmer, H.4    Becker, K.5
  • 399
    • 84863482769 scopus 로고    scopus 로고
    • Tight-binding inhibitors efficiently inactivate both reaction centers of monomeric Plasmodium falciparum glyoxalase 1
    • M. Urscher, S.S. More, R. Alisch, R. Vince, and M. Deponte Tight-binding inhibitors efficiently inactivate both reaction centers of monomeric Plasmodium falciparum glyoxalase 1 FEBS J. 279 2012 2568 2578
    • (2012) FEBS J. , vol.279 , pp. 2568-2578
    • Urscher, M.1    More, S.S.2    Alisch, R.3    Vince, R.4    Deponte, M.5
  • 400
    • 77950267914 scopus 로고    scopus 로고
    • Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases
    • M. Urscher, J.M. Przyborski, M. Imoto, and M. Deponte Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases Mol. Microbiol. 76 2010 92 103
    • (2010) Mol. Microbiol. , vol.76 , pp. 92-103
    • Urscher, M.1    Przyborski, J.M.2    Imoto, M.3    Deponte, M.4
  • 401
    • 0032555495 scopus 로고    scopus 로고
    • Involvement of an active-site Zn2 + ligand in the catalytic mechanism of human glyoxalase i
    • M. Ridderstrom, A.D. Cameron, T.A. Jones, and B. Mannervik Involvement of an active-site Zn2 + ligand in the catalytic mechanism of human glyoxalase I J. Biol. Chem. 273 1998 21623 21628
    • (1998) J. Biol. Chem. , vol.273 , pp. 21623-21628
    • Ridderstrom, M.1    Cameron, A.D.2    Jones, T.A.3    Mannervik, B.4
  • 402
    • 0942301191 scopus 로고    scopus 로고
    • Investigation of metal binding and activation of Escherichia coli glyoxalase I: Kinetic, thermodynamic and mutagenesis studies
    • S.L. Clugston, R. Yajima, and J.F. Honek Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies Biochem. J. 377 2004 309 316
    • (2004) Biochem. J. , vol.377 , pp. 309-316
    • Clugston, S.L.1    Yajima, R.2    Honek, J.F.3
  • 403
    • 9444245016 scopus 로고    scopus 로고
    • Distinct classes of glyoxalase I: Metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes
    • N. Sukdeo, S.L. Clugston, E. Daub, and J.F. Honek Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes Biochem. J. 384 2004 111 117
    • (2004) Biochem. J. , vol.384 , pp. 111-117
    • Sukdeo, N.1    Clugston, S.L.2    Daub, E.3    Honek, J.F.4
  • 404
    • 0027513983 scopus 로고
    • A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies
    • R.E. Allen, T.W. Lo, and P.J. Thornalley A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies J. Protein Chem. 12 1993 111 119
    • (1993) J. Protein Chem. , vol.12 , pp. 111-119
    • Allen, R.E.1    Lo, T.W.2    Thornalley, P.J.3
  • 405
    • 0018340995 scopus 로고
    • Purification of glyoxalase i from human erythrocytes by the use of affinity chromatography and separation of the three isoenzymes
    • A.C. Aronsson, G. Tibbelin, and B. Mannervik Purification of glyoxalase I from human erythrocytes by the use of affinity chromatography and separation of the three isoenzymes Anal. Biochem. 92 1979 390 393
    • (1979) Anal. Biochem. , vol.92 , pp. 390-393
    • Aronsson, A.C.1    Tibbelin, G.2    Mannervik, B.3
  • 406
    • 0018765408 scopus 로고
    • Isolation and kinetic analysis of the multiple forms of glyoxalase-I from human erythrocytes
    • C.M. Schimandle, and D.L. Vander Jagt Isolation and kinetic analysis of the multiple forms of glyoxalase-I from human erythrocytes Arch. Biochem. Biophys. 195 1979 261 268
    • (1979) Arch. Biochem. Biophys. , vol.195 , pp. 261-268
    • Schimandle, C.M.1    Vander Jagt, D.L.2
  • 407
    • 0035264182 scopus 로고    scopus 로고
    • Brief history of glyoxalase i and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations
    • D.J. Creighton, and D.S. Hamilton Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations Arch. Biochem. Biophys. 387 2001 1 10
    • (2001) Arch. Biochem. Biophys. , vol.387 , pp. 1-10
    • Creighton, D.J.1    Hamilton, D.S.2
  • 408
    • 84962467996 scopus 로고    scopus 로고
    • Catalytic mechanism of glyoxalase I: A theoretical study
    • F. Himo, and P.E. Siegbahn Catalytic mechanism of glyoxalase I: a theoretical study J. Am. Chem. Soc. 123 2001 10280 10289
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 10280-10289
    • Himo, F.1    Siegbahn, P.E.2
  • 409
    • 0034835345 scopus 로고    scopus 로고
    • Active site structure and mechanism of human glyoxalase i - An ab initio theoretical study
    • U. Richter, and M. Krauss Active site structure and mechanism of human glyoxalase I - an ab initio theoretical study J. Am. Chem. Soc. 123 2001 6973 6982
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 6973-6982
    • Richter, U.1    Krauss, M.2
  • 410
    • 0029053976 scopus 로고
    • Evidence for a (triosephosphate isomerase-like) "catalytic loop" near the active site of glyoxalase i
    • Y. Lan, T. Lu, P.S. Lovett, and D.J. Creighton Evidence for a (triosephosphate isomerase-like) "catalytic loop" near the active site of glyoxalase I J. Biol. Chem. 270 1995 12957 12960
    • (1995) J. Biol. Chem. , vol.270 , pp. 12957-12960
    • Lan, Y.1    Lu, T.2    Lovett, P.S.3    Creighton, D.J.4
  • 412
    • 57649116071 scopus 로고    scopus 로고
    • 15N-1H HSQC NMR evidence for distinct specificity of two active sites in Escherichia coli glyoxalase i
    • Z. Su, N. Sukdeo, and J.F. Honek 15N-1H HSQC NMR evidence for distinct specificity of two active sites in Escherichia coli glyoxalase I Biochemistry 47 2008 13232 13241
    • (2008) Biochemistry , vol.47 , pp. 13232-13241
    • Su, Z.1    Sukdeo, N.2    Honek, J.F.3
  • 413
    • 34848851672 scopus 로고    scopus 로고
    • Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: New insights into metal ion selectivity
    • V.A. Campos-Bermudez, N.R. Leite, R. Krog, A.J. Costa-Filho, F.C. Soncini, G. Oliva, and A.J. Vila Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity Biochemistry 46 2007 11069 11079
    • (2007) Biochemistry , vol.46 , pp. 11069-11079
    • Campos-Bermudez, V.A.1    Leite, N.R.2    Krog, R.3    Costa-Filho, A.J.4    Soncini, F.C.5    Oliva, G.6    Vila, A.J.7
  • 414
    • 0035839131 scopus 로고    scopus 로고
    • Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold
    • H. Daiyasu, K. Osaka, Y. Ishino, and H. Toh Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold FEBS Lett. 503 2001 1 6
    • (2001) FEBS Lett. , vol.503 , pp. 1-6
    • Daiyasu, H.1    Osaka, K.2    Ishino, Y.3    Toh, H.4
  • 416
    • 33847139045 scopus 로고    scopus 로고
    • Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme
    • J. O'Young, N. Sukdeo, and J.F. Honek Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme Arch. Biochem. Biophys. 459 2007 20 26
    • (2007) Arch. Biochem. Biophys. , vol.459 , pp. 20-26
    • O'Young, J.1    Sukdeo, N.2    Honek, J.F.3
  • 417
    • 70349814275 scopus 로고    scopus 로고
    • Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis
    • M. Urscher, and M. Deponte Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis Biol. Chem. 390 2009 1171 1183
    • (2009) Biol. Chem. , vol.390 , pp. 1171-1183
    • Urscher, M.1    Deponte, M.2
  • 418
    • 0035895931 scopus 로고    scopus 로고
    • Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis
    • T.M. Zang, D.A. Hollman, P.A. Crawford, M.W. Crowder, and C.A. Makaroff Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis J. Biol. Chem. 276 2001 4788 4795
    • (2001) J. Biol. Chem. , vol.276 , pp. 4788-4795
    • Zang, T.M.1    Hollman, D.A.2    Crawford, P.A.3    Crowder, M.W.4    Makaroff, C.A.5
  • 419
    • 0141928715 scopus 로고    scopus 로고
    • Flexible metal binding of the metallo-beta-lactamase domain: Glyoxalase II incorporates iron, manganese, and zinc in vivo
    • O. Schilling, N. Wenzel, M. Naylor, A. Vogel, M. Crowder, C. Makaroff, and W. Meyer-Klaucke Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo Biochemistry 42 2003 11777 11786
    • (2003) Biochemistry , vol.42 , pp. 11777-11786
    • Schilling, O.1    Wenzel, N.2    Naylor, M.3    Vogel, A.4    Crowder, M.5    Makaroff, C.6    Meyer-Klaucke, W.7
  • 420
    • 0027336727 scopus 로고
    • Purification and characterisation of glyoxalase II from human red blood cells
    • R.E. Allen, T.W. Lo, and P.J. Thornalley Purification and characterisation of glyoxalase II from human red blood cells Eur. J. Biochem. 213 1993 1261 1267
    • (1993) Eur. J. Biochem. , vol.213 , pp. 1261-1267
    • Allen, R.E.1    Lo, T.W.2    Thornalley, P.J.3
  • 421
    • 56549120525 scopus 로고    scopus 로고
    • Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes
    • A. Wendler, T. Irsch, N. Rabbani, P.J. Thornalley, and R.L. Krauth-Siegel Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes Mol. Biochem. Parasitol. 163 2009 19 27
    • (2009) Mol. Biochem. Parasitol. , vol.163 , pp. 19-27
    • Wendler, A.1    Irsch, T.2    Rabbani, N.3    Thornalley, P.J.4    Krauth-Siegel, R.L.5
  • 422
    • 3142543755 scopus 로고    scopus 로고
    • The Human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II
    • P.A. Cordell, T.S. Futers, P.J. Grant, and R.J. Pease The Human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II J. Biol. Chem. 279 2004 28653 28661
    • (2004) J. Biol. Chem. , vol.279 , pp. 28653-28661
    • Cordell, P.A.1    Futers, T.S.2    Grant, P.J.3    Pease, R.J.4
  • 423
    • 14944354773 scopus 로고    scopus 로고
    • Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts
    • M. Akoachere, R. Iozef, S. Rahlfs, M. Deponte, B. Mannervik, D.J. Creighton, H. Schirmer, and K. Becker Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts Biol. Chem. 386 2005 41 52
    • (2005) Biol. Chem. , vol.386 , pp. 41-52
    • Akoachere, M.1    Iozef, R.2    Rahlfs, S.3    Deponte, M.4    Mannervik, B.5    Creighton, D.J.6    Schirmer, H.7    Becker, K.8
  • 424
    • 0024419592 scopus 로고
    • Isolation of glyoxalase II from two different compartments of rat liver mitochondria. Kinetic and immunochemical characterization of the enzymes
    • V. Talesa, L. Uotila, M. Koivusalo, G. Principato, E. Giovannini, and G. Rosi Isolation of glyoxalase II from two different compartments of rat liver mitochondria. Kinetic and immunochemical characterization of the enzymes Biochim. Biophys. Acta 993 1989 7 11
    • (1989) Biochim. Biophys. Acta , vol.993 , pp. 7-11
    • Talesa, V.1    Uotila, L.2    Koivusalo, M.3    Principato, G.4    Giovannini, E.5    Rosi, G.6
  • 425
    • 0017366999 scopus 로고
    • Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome
    • F.R. Opperdoes, and P. Borst Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome FEBS Lett. 80 1977 360 364
    • (1977) FEBS Lett. , vol.80 , pp. 360-364
    • Opperdoes, F.R.1    Borst, P.2
  • 426
    • 0034730564 scopus 로고    scopus 로고
    • The active-site residue tyr-175 in human glyoxalase II contributes to binding of glutathione derivatives
    • M. Ridderstrom, P. Jemth, A.D. Cameron, and B. Mannervik The active-site residue tyr-175 in human glyoxalase II contributes to binding of glutathione derivatives Biochim. Biophys. Acta 1481 2000 344 348
    • (2000) Biochim. Biophys. Acta , vol.1481 , pp. 344-348
    • Ridderstrom, M.1    Jemth, P.2    Cameron, A.D.3    Mannervik, B.4
  • 427
    • 58149492560 scopus 로고    scopus 로고
    • Reaction mechanism of the binuclear zinc enzyme glyoxalase II - A theoretical study
    • S.L. Chen, W.H. Fang, and F. Himo Reaction mechanism of the binuclear zinc enzyme glyoxalase II - a theoretical study J. Inorg. Biochem. 103 2009 274 281
    • (2009) J. Inorg. Biochem. , vol.103 , pp. 274-281
    • Chen, S.L.1    Fang, W.H.2    Himo, F.3
  • 428
    • 0024207748 scopus 로고
    • Diffusion-dependent rates for the hydrolysis reaction catalyzed by glyoxalase II from rat erythrocytes
    • M.K. Guha, D.L. Vander Jagt, and D.J. Creighton Diffusion-dependent rates for the hydrolysis reaction catalyzed by glyoxalase II from rat erythrocytes Biochemistry 27 1988 8818 8822
    • (1988) Biochemistry , vol.27 , pp. 8818-8822
    • Guha, M.K.1    Vander Jagt, D.L.2    Creighton, D.J.3
  • 429
    • 0029860016 scopus 로고    scopus 로고
    • Identification of the structural gene for glyoxalase i from Saccharomyces cerevisiae
    • Y. Inoue, and A. Kimura Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae J. Biol. Chem. 271 1996 25958 25965
    • (1996) J. Biol. Chem. , vol.271 , pp. 25958-25965
    • Inoue, Y.1    Kimura, A.2
  • 430
    • 79955965088 scopus 로고    scopus 로고
    • Glyoxalase system in yeasts: Structure, function, and physiology
    • Y. Inoue, K. Maeta, and W. Nomura Glyoxalase system in yeasts: structure, function, and physiology Semin. Cell Dev. Biol. 22 2011 278 284
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 278-284
    • Inoue, Y.1    Maeta, K.2    Nomura, W.3
  • 431
    • 0031963196 scopus 로고    scopus 로고
    • The role of glyoxalase i in the detoxification of methylglyoxal and in the activation of the KefB K + efflux system in Escherichia coli
    • M.J. MacLean, L.S. Ness, G.P. Ferguson, and I.R. Booth The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K + efflux system in Escherichia coli Mol. Microbiol. 27 1998 563 571
    • (1998) Mol. Microbiol. , vol.27 , pp. 563-571
    • Maclean, M.J.1    Ness, L.S.2    Ferguson, G.P.3    Booth, I.R.4
  • 435
    • 33748752328 scopus 로고    scopus 로고
    • Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family
    • Y. Xu, and X. Chen Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family J. Biol. Chem. 281 2006 26702 26713
    • (2006) J. Biol. Chem. , vol.281 , pp. 26702-26713
    • Xu, Y.1    Chen, X.2
  • 436
    • 0014665769 scopus 로고
    • Glyoxalase inhibitors as potential anticancer agents
    • R. Vince, and W.B. Wadd Glyoxalase inhibitors as potential anticancer agents Biochem. Biophys. Res. Commun. 35 1969 593 598
    • (1969) Biochem. Biophys. Res. Commun. , vol.35 , pp. 593-598
    • Vince, R.1    Wadd, W.B.2
  • 437
    • 68549094438 scopus 로고    scopus 로고
    • Inhibition of glyoxalase I: The first low-nanomolar tight-binding inhibitors
    • S.S. More, and R. Vince Inhibition of glyoxalase I: the first low-nanomolar tight-binding inhibitors J. Med. Chem. 52 2009 4650 4656
    • (2009) J. Med. Chem. , vol.52 , pp. 4650-4656
    • More, S.S.1    Vince, R.2
  • 438
    • 69849099059 scopus 로고    scopus 로고
    • Glyoxalase i gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification
    • S.C. Chauhan, and R. Madhubala Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification PLoS One 4 2009 e6805
    • (2009) PLoS One , vol.4 , pp. 6805
    • Chauhan, S.C.1    Madhubala, R.2
  • 440
    • 0016275313 scopus 로고
    • Glutathione S-transferases. the first enzymatic step in mercapturic acid formation
    • W.H. Habig, M.J. Pabst, and W.B. Jakoby Glutathione S-transferases. The first enzymatic step in mercapturic acid formation J. Biol. Chem. 249 1974 7130 7139
    • (1974) J. Biol. Chem. , vol.249 , pp. 7130-7139
    • Habig, W.H.1    Pabst, M.J.2    Jakoby, W.B.3
  • 441
    • 0017380842 scopus 로고
    • Glutathione peroxidase activity of glutathione-s-transferases purified from rat liver
    • J.R. Prohaska, and H.E. Ganther Glutathione peroxidase activity of glutathione-s-transferases purified from rat liver Biochem. Biophys. Res. Commun. 76 1976 437 445
    • (1976) Biochem. Biophys. Res. Commun. , vol.76 , pp. 437-445
    • Prohaska, J.R.1    Ganther, H.E.2
  • 442
    • 0011852385 scopus 로고
    • Relationship between the soluble glutathione-dependent delta 5-3-ketosteroid isomerase and the glutathione S-transferases of the liver
    • A.M. Benson, P. Talalay, J.H. Keen, and W.B. Jakoby Relationship between the soluble glutathione-dependent delta 5-3-ketosteroid isomerase and the glutathione S-transferases of the liver Proc. Natl. Acad. Sci. U. S. A. 74 1977 158 162
    • (1977) Proc. Natl. Acad. Sci. U. S. A. , vol.74 , pp. 158-162
    • Benson, A.M.1    Talalay, P.2    Keen, J.H.3    Jakoby, W.B.4
  • 443
    • 0018803683 scopus 로고
    • Purification and characterisation of prostaglandin endoperoxide D-isomerase, a cytoplasmic, glutathione-requiring enzyme
    • E. Christ-Hazelhof, and D.H. Nugteren Purification and characterisation of prostaglandin endoperoxide D-isomerase, a cytoplasmic, glutathione-requiring enzyme Biochim. Biophys. Acta 572 1979 43 51
    • (1979) Biochim. Biophys. Acta , vol.572 , pp. 43-51
    • Christ-Hazelhof, E.1    Nugteren, D.H.2
  • 444
    • 0018320433 scopus 로고
    • Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases
    • A. Wahllander, S. Soboll, H. Sies, I. Linke, and M. Muller Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases FEBS Lett. 97 1979 138 140
    • (1979) FEBS Lett. , vol.97 , pp. 138-140
    • Wahllander, A.1    Soboll, S.2    Sies, H.3    Linke, I.4    Muller, M.5
  • 445
    • 0018878263 scopus 로고
    • Resolution, purification and some properties of three glutathione transferases from rat liver mitochondria
    • P. Kraus Resolution, purification and some properties of three glutathione transferases from rat liver mitochondria Hoppe Seylers Z. Physiol. Chem. 361 1980 9 15
    • (1980) Hoppe Seylers Z. Physiol. Chem. , vol.361 , pp. 9-15
    • Kraus, P.1
  • 446
    • 0025916806 scopus 로고
    • A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes
    • J.M. Harris, D.J. Meyer, B. Coles, and B. Ketterer A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes Biochem. J. 278 Pt 1 1991 137 141
    • (1991) Biochem. J. , vol.278 , Issue.PART 1 , pp. 137-141
    • Harris, J.M.1    Meyer, D.J.2    Coles, B.3    Ketterer, B.4
  • 447
    • 0029854518 scopus 로고    scopus 로고
    • Glutathione S-transferase class Kappa: Characterization by the cloning of rat mitochondrial GST and identification of a human homologue
    • S.E. Pemble, A.F. Wardle, and J.B. Taylor Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue Biochem. J. 319 Pt 3 1996 749 754
    • (1996) Biochem. J. , vol.319 , Issue.PART 3 , pp. 749-754
    • Pemble, S.E.1    Wardle, A.F.2    Taylor, J.B.3
  • 450
    • 0024431381 scopus 로고
    • Purification and some properties of glutathione S-transferase from Escherichia coli B
    • M. Iizuka, Y. Inoue, K. Murata, and A. Kimura Purification and some properties of glutathione S-transferase from Escherichia coli B J. Bacteriol. 171 1989 6039 6042
    • (1989) J. Bacteriol. , vol.171 , pp. 6039-6042
    • Iizuka, M.1    Inoue, Y.2    Murata, K.3    Kimura, A.4
  • 451
    • 0023806075 scopus 로고
    • Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase
    • D.B. Smith, and K.S. Johnson Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase Gene 67 1988 31 40
    • (1988) Gene , vol.67 , pp. 31-40
    • Smith, D.B.1    Johnson, K.S.2
  • 452
    • 0020479521 scopus 로고
    • Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol
    • B. Mannervik, and H. Jensson Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol J. Biol. Chem. 257 1982 9909 9912
    • (1982) J. Biol. Chem. , vol.257 , pp. 9909-9912
    • Mannervik, B.1    Jensson, H.2
  • 453
    • 0025816448 scopus 로고
    • The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution
    • P. Reinemer, H.W. Dirr, R. Ladenstein, J. Schaffer, O. Gallay, and R. Huber The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution EMBO J. 10 1991 1997 2005
    • (1991) EMBO J. , vol.10 , pp. 1997-2005
    • Reinemer, P.1    Dirr, H.W.2    Ladenstein, R.3    Schaffer, J.4    Gallay, O.5    Huber, R.6
  • 454
    • 0026460365 scopus 로고
    • The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution
    • X. Ji, P. Zhang, R.N. Armstrong, and G.L. Gilliland The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution Biochemistry 31 1992 10169 10184
    • (1992) Biochemistry , vol.31 , pp. 10169-10184
    • Ji, X.1    Zhang, P.2    Armstrong, R.N.3    Gilliland, G.L.4
  • 456
    • 0345832239 scopus 로고    scopus 로고
    • Parallel evolutionary pathways for glutathione transferases: Structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1
    • J.E. Ladner, J.F. Parsons, C.L. Rife, G.L. Gilliland, and R.N. Armstrong Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1 Biochemistry 43 2004 352 361
    • (2004) Biochemistry , vol.43 , pp. 352-361
    • Ladner, J.E.1    Parsons, J.F.2    Rife, C.L.3    Gilliland, G.L.4    Armstrong, R.N.5
  • 457
    • 0017369176 scopus 로고
    • Prostaglandin endoperoxide e isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme
    • N. Ogino, T. Miyamoto, S. Yamamoto, and O. Hayaishi Prostaglandin endoperoxide E isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme J. Biol. Chem. 252 1977 890 895
    • (1977) J. Biol. Chem. , vol.252 , pp. 890-895
    • Ogino, N.1    Miyamoto, T.2    Yamamoto, S.3    Hayaishi, O.4
  • 458
    • 0016811885 scopus 로고
    • Assay and properties of glutathione-S-benzo(a)pyrene-4,5-oxide transferase
    • N. Nemoto, and H. Gelboin Assay and properties of glutathione-S-benzo(a) pyrene-4,5-oxide transferase Arch. Biochem. Biophys. 170 1975 739 742
    • (1975) Arch. Biochem. Biophys. , vol.170 , pp. 739-742
    • Nemoto, N.1    Gelboin, H.2
  • 459
    • 0018787711 scopus 로고
    • The identification, solubilization, and characterization of microsome-associated glutathione S-transferases
    • T. Friedberg, P. Bentley, P. Stasiecki, H.R. Glatt, D. Raphael, and F. Oesch The identification, solubilization, and characterization of microsome-associated glutathione S-transferases J. Biol. Chem. 254 1979 12028 12033
    • (1979) J. Biol. Chem. , vol.254 , pp. 12028-12033
    • Friedberg, T.1    Bentley, P.2    Stasiecki, P.3    Glatt, H.R.4    Raphael, D.5    Oesch, F.6
  • 460
    • 0020209472 scopus 로고
    • Microsomal glutathione S-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B and C
    • R. Morgenstern, C. Guthenberg, and J.W. Depierre Microsomal glutathione S-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B and C Eur. J. Biochem. 128 1982 243 248
    • (1982) Eur. J. Biochem. , vol.128 , pp. 243-248
    • Morgenstern, R.1    Guthenberg, C.2    Depierre, J.W.3
  • 461
    • 0022350225 scopus 로고
    • Microsomal glutathione transferase. Primary structure
    • R. Morgenstern, J.W. DePierre, and H. Jornvall Microsomal glutathione transferase. Primary structure J. Biol. Chem. 260 1985 13976 13983
    • (1985) J. Biol. Chem. , vol.260 , pp. 13976-13983
    • Morgenstern, R.1    Depierre, J.W.2    Jornvall, H.3
  • 462
    • 0022312870 scopus 로고
    • Isolation and characterization of leukotriene C4 synthetase of rat basophilic leukemia cells
    • T. Yoshimoto, R.J. Soberman, R.A. Lewis, and K.F. Austen Isolation and characterization of leukotriene C4 synthetase of rat basophilic leukemia cells Proc. Natl. Acad. Sci. U. S. A. 82 1985 8399 8403
    • (1985) Proc. Natl. Acad. Sci. U. S. A. , vol.82 , pp. 8399-8403
    • Yoshimoto, T.1    Soberman, R.J.2    Lewis, R.A.3    Austen, K.F.4
  • 463
    • 0027958828 scopus 로고
    • Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4
    • B.K. Lam, J.F. Penrose, G.J. Freeman, and K.F. Austen Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4 Proc. Natl. Acad. Sci. U. S. A. 91 1994 7663 7667
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 7663-7667
    • Lam, B.K.1    Penrose, J.F.2    Freeman, G.J.3    Austen, K.F.4
  • 466
    • 0033011878 scopus 로고    scopus 로고
    • Common structural features of MAPEG - A widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism
    • P.J. Jakobsson, R. Morgenstern, J. Mancini, A. Ford-Hutchinson, and B. Persson Common structural features of MAPEG - a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism Protein Sci. 8 1999 689 692
    • (1999) Protein Sci. , vol.8 , pp. 689-692
    • Jakobsson, P.J.1    Morgenstern, R.2    Mancini, J.3    Ford-Hutchinson, A.4    Persson, B.5
  • 467
    • 0033594963 scopus 로고    scopus 로고
    • Identification of human prostaglandin e synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target
    • P.J. Jakobsson, S. Thoren, R. Morgenstern, and B. Samuelsson Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target Proc. Natl. Acad. Sci. U. S. A. 96 1999 7220 7225
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 7220-7225
    • Jakobsson, P.J.1    Thoren, S.2    Morgenstern, R.3    Samuelsson, B.4
  • 468
    • 0031554721 scopus 로고    scopus 로고
    • The 3.0 A projection structure of microsomal glutathione transferase as determined by electron crystallography of p 21212 two-dimensional crystals
    • H. Hebert, I. Schmidt-Krey, R. Morgenstern, K. Murata, T. Hirai, K. Mitsuoka, and Y. Fujiyoshi The 3.0 A projection structure of microsomal glutathione transferase as determined by electron crystallography of p 21212 two-dimensional crystals J. Mol. Biol. 271 1997 751 758
    • (1997) J. Mol. Biol. , vol.271 , pp. 751-758
    • Hebert, H.1    Schmidt-Krey, I.2    Morgenstern, R.3    Murata, K.4    Hirai, T.5    Mitsuoka, K.6    Fujiyoshi, Y.7
  • 470
    • 34547631962 scopus 로고    scopus 로고
    • Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis
    • H. Ago, Y. Kanaoka, D. Irikura, B.K. Lam, T. Shimamura, K.F. Austen, and M. Miyano Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis Nature 448 2007 609 612
    • (2007) Nature , vol.448 , pp. 609-612
    • Ago, H.1    Kanaoka, Y.2    Irikura, D.3    Lam, B.K.4    Shimamura, T.5    Austen, K.F.6    Miyano, M.7
  • 473
    • 0037163126 scopus 로고    scopus 로고
    • Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana
    • D.P. Dixon, B.G. Davis, and R. Edwards Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana J. Biol. Chem. 277 2002 30859 30869
    • (2002) J. Biol. Chem. , vol.277 , pp. 30859-30869
    • Dixon, D.P.1    Davis, B.G.2    Edwards, R.3
  • 475
    • 1942533492 scopus 로고    scopus 로고
    • Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization
    • F. Morel, C. Rauch, E. Petit, A. Piton, N. Theret, B. Coles, and A. Guillouzo Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization J. Biol. Chem. 279 2004 16246 16253
    • (2004) J. Biol. Chem. , vol.279 , pp. 16246-16253
    • Morel, F.1    Rauch, C.2    Petit, E.3    Piton, A.4    Theret, N.5    Coles, B.6    Guillouzo, A.7
  • 476
    • 0035890484 scopus 로고    scopus 로고
    • Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily
    • D. Sheehan, G. Meade, V.M. Foley, and C.A. Dowd Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily Biochem. J. 360 2001 1 16
    • (2001) Biochem. J. , vol.360 , pp. 1-16
    • Sheehan, D.1    Meade, G.2    Foley, V.M.3    Dowd, C.A.4
  • 477
    • 30144444156 scopus 로고    scopus 로고
    • Glutathione S-transferase from malarial parasites: Structural and functional aspects
    • M. Deponte, and K. Becker Glutathione S-transferase from malarial parasites: structural and functional aspects Methods Enzymol. 401 2005 241 253
    • (2005) Methods Enzymol. , vol.401 , pp. 241-253
    • Deponte, M.1    Becker, K.2
  • 478
    • 84863884120 scopus 로고    scopus 로고
    • Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation
    • P.K. Fyfe, G.D. Westrop, A.M. Silva, G.H. Coombs, and W.N. Hunter Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation Proc. Natl. Acad. Sci. U. S. A. 109 2012 11693 11698
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 11693-11698
    • Fyfe, P.K.1    Westrop, G.D.2    Silva, A.M.3    Coombs, G.H.4    Hunter, W.N.5
  • 479
    • 84857048168 scopus 로고    scopus 로고
    • Distribution of glutathione transferases in Gram-positive bacteria and Archaea
    • N. Allocati, L. Federici, M. Masulli, and C. Di Ilio Distribution of glutathione transferases in Gram-positive bacteria and Archaea Biochimie 94 2012 588 596
    • (2012) Biochimie , vol.94 , pp. 588-596
    • Allocati, N.1    Federici, L.2    Masulli, M.3    Di Ilio, C.4
  • 480
    • 77954947303 scopus 로고    scopus 로고
    • S-Glutathionyl-(chloro)hydroquinone reductases: A novel class of glutathione transferases
    • L. Xun, S.M. Belchik, R. Xun, Y. Huang, H. Zhou, E. Sanchez, C. Kang, and P.G. Board S-Glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases Biochem. J. 428 2010 419 427
    • (2010) Biochem. J. , vol.428 , pp. 419-427
    • Xun, L.1    Belchik, S.M.2    Xun, R.3    Huang, Y.4    Zhou, H.5    Sanchez, E.6    Kang, C.7    Board, P.G.8
  • 481
    • 0027788045 scopus 로고
    • Snapshots along the reaction coordinate of an SNAr reaction catalyzed by glutathione transferase
    • X. Ji, R.N. Armstrong, and G.L. Gilliland Snapshots along the reaction coordinate of an SNAr reaction catalyzed by glutathione transferase Biochemistry 32 1993 12949 12954
    • (1993) Biochemistry , vol.32 , pp. 12949-12954
    • Ji, X.1    Armstrong, R.N.2    Gilliland, G.L.3
  • 482
    • 0028218381 scopus 로고
    • Structure and function of the xenobiotic substrate binding site of a glutathione S-transferase as revealed by X-ray crystallographic analysis of product complexes with the diastereomers of 9-(S-glutathionyl)-10-hydroxy-9,10- dihydrophenanthrene
    • X. Ji, W.W. Johnson, M.A. Sesay, L. Dickert, S.M. Prasad, H.L. Ammon, R.N. Armstrong, and G.L. Gilliland Structure and function of the xenobiotic substrate binding site of a glutathione S-transferase as revealed by X-ray crystallographic analysis of product complexes with the diastereomers of 9-(S-glutathionyl)-10-hydroxy-9,10-dihydrophenanthrene Biochemistry 33 1994 1043 1052
    • (1994) Biochemistry , vol.33 , pp. 1043-1052
    • Ji, X.1    Johnson, W.W.2    Sesay, M.A.3    Dickert, L.4    Prasad, S.M.5    Ammon, H.L.6    Armstrong, R.N.7    Gilliland, G.L.8
  • 483
    • 1942521481 scopus 로고    scopus 로고
    • Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases
    • A. Robinson, G.A. Huttley, H.S. Booth, and P.G. Board Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases Biochem. J. 379 2004 541 552
    • (2004) Biochem. J. , vol.379 , pp. 541-552
    • Robinson, A.1    Huttley, G.A.2    Booth, H.S.3    Board, P.G.4
  • 489
  • 490
    • 84858674451 scopus 로고    scopus 로고
    • Observation of two modes of inhibition of human microsomal prostaglandin e synthase 1 by the cyclopentenone 15-deoxy-Delta(12,14)-prostaglandin J(2)
    • E.B. Prage, R. Morgenstern, P.J. Jakobsson, D.F. Stec, M.W. Voehler, and R.N. Armstrong Observation of two modes of inhibition of human microsomal prostaglandin E synthase 1 by the cyclopentenone 15-deoxy-Delta(12,14)- prostaglandin J(2) Biochemistry 51 2012 2348 2356
    • (2012) Biochemistry , vol.51 , pp. 2348-2356
    • Prage, E.B.1    Morgenstern, R.2    Jakobsson, P.J.3    Stec, D.F.4    Voehler, M.W.5    Armstrong, R.N.6
  • 491
    • 77951570774 scopus 로고    scopus 로고
    • Understanding microscopic binding of human microsomal prostaglandin e synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: Insights from computational alanine scanning and site-directed mutagenesis
    • A. Hamza, M. Tong, M.D. AbdulHameed, J. Liu, A.C. Goren, H.H. Tai, and C.G. Zhan Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: insights from computational alanine scanning and site-directed mutagenesis J. Phys. Chem. B 114 2010 5605 5616
    • (2010) J. Phys. Chem. B , vol.114 , pp. 5605-5616
    • Hamza, A.1    Tong, M.2    Abdulhameed, M.D.3    Liu, J.4    Goren, A.C.5    Tai, H.H.6    Zhan, C.G.7
  • 492
    • 0031439569 scopus 로고    scopus 로고
    • Zeta, a novel class of glutathione transferases in a range of species from plants to humans
    • P.G. Board, R.T. Baker, G. Chelvanayagam, and L.S. Jermiin Zeta, a novel class of glutathione transferases in a range of species from plants to humans Biochem. J. 328 Pt 3 1997 929 935
    • (1997) Biochem. J. , vol.328 , Issue.PART 3 , pp. 929-935
    • Board, P.G.1    Baker, R.T.2    Chelvanayagam, G.3    Jermiin, L.S.4
  • 493
    • 0040942636 scopus 로고    scopus 로고
    • Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue
    • J.M. Fernandez-Canon, and M.A. Penalva Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue J. Biol. Chem. 273 1998 329 337
    • (1998) J. Biol. Chem. , vol.273 , pp. 329-337
    • Fernandez-Canon, J.M.1    Penalva, M.A.2
  • 494
    • 0035980083 scopus 로고    scopus 로고
    • Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones
    • A.S. Johansson, and B. Mannervik Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones J. Biol. Chem. 276 2001 33061 33065
    • (2001) J. Biol. Chem. , vol.276 , pp. 33061-33065
    • Johansson, A.S.1    Mannervik, B.2
  • 496
    • 18044367744 scopus 로고    scopus 로고
    • Crystal structure and possible catalytic mechanism of microsomal prostaglandin e synthase type 2 (mPGES-2)
    • T. Yamada, J. Komoto, K. Watanabe, Y. Ohmiya, and F. Takusagawa Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2) J. Mol. Biol. 348 2005 1163 1176
    • (2005) J. Mol. Biol. , vol.348 , pp. 1163-1176
    • Yamada, T.1    Komoto, J.2    Watanabe, K.3    Ohmiya, Y.4    Takusagawa, F.5
  • 497
    • 0016268812 scopus 로고
    • Glutathione S-transferase A. A novel kinetic mechanism in which the major reaction pathway depends on substrate concentration
    • M.J. Pabst, W.H. Habig, and W.B. Jakoby Glutathione S-transferase A. A novel kinetic mechanism in which the major reaction pathway depends on substrate concentration J. Biol. Chem. 249 1974 7140 7147
    • (1974) J. Biol. Chem. , vol.249 , pp. 7140-7147
    • Pabst, M.J.1    Habig, W.H.2    Jakoby, W.B.3
  • 498
    • 0015861560 scopus 로고
    • The mechanism of the reaction between glutathione and 1-menaphthyl sulphate catalysed by a glutathione S-transferase from rat liver
    • B. Gillham The mechanism of the reaction between glutathione and 1-menaphthyl sulphate catalysed by a glutathione S-transferase from rat liver Biochem. J. 135 1973 797 804
    • (1973) Biochem. J. , vol.135 , pp. 797-804
    • Gillham, B.1
  • 499
    • 0018377040 scopus 로고
    • Multiple inhibition of glutathione S-transferase A from rat liver by glutathione derivatives: Kinetic analysis supporting a steady-state random sequential mechanism
    • I. Jakobson, M. Warholm, and B. Mannervik Multiple inhibition of glutathione S-transferase A from rat liver by glutathione derivatives: kinetic analysis supporting a steady-state random sequential mechanism Biochem. J. 177 1979 861 868
    • (1979) Biochem. J. , vol.177 , pp. 861-868
    • Jakobson, I.1    Warholm, M.2    Mannervik, B.3
  • 500
    • 0018787013 scopus 로고
    • The binding of substrates and a product of the enzymatic reaction to glutathione S-transferase A
    • I. Jakobson, M. Warholm, and B. Mannervik The binding of substrates and a product of the enzymatic reaction to glutathione S-transferase A J. Biol. Chem. 254 1979 7085 7089
    • (1979) J. Biol. Chem. , vol.254 , pp. 7085-7089
    • Jakobson, I.1    Warholm, M.2    Mannervik, B.3
  • 501
    • 0023857692 scopus 로고
    • Dissection of the catalytic mechanism of isozyme 4-4 of glutathione S-transferase with alternative substrates
    • W.J. Chen, G.F. Graminski, and R.N. Armstrong Dissection of the catalytic mechanism of isozyme 4-4 of glutathione S-transferase with alternative substrates Biochemistry 27 1988 647 654
    • (1988) Biochemistry , vol.27 , pp. 647-654
    • Chen, W.J.1    Graminski, G.F.2    Armstrong, R.N.3
  • 502
    • 0021363229 scopus 로고
    • Kinetic studies and active site-binding properties of glutathione S-transferase using spin-labeled glutathione, a product analogue
    • V.L. Schramm, R. McCluskey, F.A. Emig, and G. Litwack Kinetic studies and active site-binding properties of glutathione S-transferase using spin-labeled glutathione, a product analogue J. Biol. Chem. 259 1984 714 722
    • (1984) J. Biol. Chem. , vol.259 , pp. 714-722
    • Schramm, V.L.1    McCluskey, R.2    Emig, F.A.3    Litwack, G.4
  • 503
    • 78651071342 scopus 로고    scopus 로고
    • Site-directed mutagenesis of mouse glutathione transferase P1-1 unlocks masked cooperativity, introduces a novel mechanism for 'ping pong' kinetic behaviour, and provides further structural evidence for participation of a water molecule in proton abstraction from glutathione
    • G. McManus, M. Costa, A. Canals, M. Coll, and T.J. Mantle Site-directed mutagenesis of mouse glutathione transferase P1-1 unlocks masked cooperativity, introduces a novel mechanism for 'ping pong' kinetic behaviour, and provides further structural evidence for participation of a water molecule in proton abstraction from glutathione FEBS J. 278 2011 273 281
    • (2011) FEBS J. , vol.278 , pp. 273-281
    • McManus, G.1    Costa, M.2    Canals, A.3    Coll, M.4    Mantle, T.J.5
  • 504
    • 55149089058 scopus 로고    scopus 로고
    • "restoration" of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2
    • Z.R. Zhang, M. Bai, X.Y. Wang, J.M. Zhou, and S. Perrett "Restoration" of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2 J. Mol. Biol. 384 2008 641 651
    • (2008) J. Mol. Biol. , vol.384 , pp. 641-651
    • Zhang, Z.R.1    Bai, M.2    Wang, X.Y.3    Zhou, J.M.4    Perrett, S.5
  • 506
    • 0037053335 scopus 로고    scopus 로고
    • Active-site residues governing high steroid isomerase activity in human glutathione transferase A3-3
    • A.S. Johansson, and B. Mannervik Active-site residues governing high steroid isomerase activity in human glutathione transferase A3-3 J. Biol. Chem. 277 2002 16648 16654
    • (2002) J. Biol. Chem. , vol.277 , pp. 16648-16654
    • Johansson, A.S.1    Mannervik, B.2
  • 507
    • 0035881490 scopus 로고    scopus 로고
    • Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase i
    • N.E. Labrou, L.V. Mello, and Y.D. Clonis Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I Biochem. J. 358 2001 101 110
    • (2001) Biochem. J. , vol.358 , pp. 101-110
    • Labrou, N.E.1    Mello, L.V.2    Clonis, Y.D.3
  • 508
    • 0026705291 scopus 로고
    • Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase
    • S. Liu, P. Zhang, X. Ji, W.W. Johnson, G.L. Gilliland, and R.N. Armstrong Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase J. Biol. Chem. 267 1992 4296 4299
    • (1992) J. Biol. Chem. , vol.267 , pp. 4296-4299
    • Liu, S.1    Zhang, P.2    Ji, X.3    Johnson, W.W.4    Gilliland, G.L.5    Armstrong, R.N.6
  • 509
    • 0030923311 scopus 로고    scopus 로고
    • Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme
    • M. Lo Bello, A.J. Oakley, A. Battistoni, A.P. Mazzetti, M. Nuccetelli, G. Mazzarese, J. Rossjohn, M.W. Parker, and G. Ricci Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme Biochemistry 36 1997 6207 6217
    • (1997) Biochemistry , vol.36 , pp. 6207-6217
    • Lo Bello, M.1    Oakley, A.J.2    Battistoni, A.3    Mazzetti, A.P.4    Nuccetelli, M.5    Mazzarese, G.6    Rossjohn, J.7    Parker, M.W.8    Ricci, G.9
  • 510
    • 0037119451 scopus 로고    scopus 로고
    • Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase
    • P.L. Pettersson, A.S. Johansson, and B. Mannervik Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase J. Biol. Chem. 277 2002 30019 30022
    • (2002) J. Biol. Chem. , vol.277 , pp. 30019-30022
    • Pettersson, P.L.1    Johansson, A.S.2    Mannervik, B.3
  • 511
    • 34548169608 scopus 로고    scopus 로고
    • A functionally conserved basic residue in glutathione transferases interacts with the glycine moiety of glutathione and is pivotal for enzyme catalysis
    • A. Vararattanavech, and A.J. Ketterman A functionally conserved basic residue in glutathione transferases interacts with the glycine moiety of glutathione and is pivotal for enzyme catalysis Biochem. J. 406 2007 247 256
    • (2007) Biochem. J. , vol.406 , pp. 247-256
    • Vararattanavech, A.1    Ketterman, A.J.2
  • 512
    • 0031572846 scopus 로고    scopus 로고
    • Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor
    • L. Prade, R. Huber, T.H. Manoharan, W.E. Fahl, and W. Reuter Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor Structure 5 1997 1287 1295
    • (1997) Structure , vol.5 , pp. 1287-1295
    • Prade, L.1    Huber, R.2    Manoharan, T.H.3    Fahl, W.E.4    Reuter, W.5
  • 513
    • 0033230491 scopus 로고    scopus 로고
    • The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases
    • C.S. Allardyce, P.D. McDonagh, L.Y. Lian, C.R. Wolf, and G.C. Roberts The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases Biochem. J. 343 Pt 3 1999 525 531
    • (1999) Biochem. J. , vol.343 , Issue.PART 3 , pp. 525-531
    • Allardyce, C.S.1    McDonagh, P.D.2    Lian, L.Y.3    Wolf, C.R.4    Roberts, G.C.5
  • 514
    • 0035797878 scopus 로고    scopus 로고
    • Disorder-to-order transition of the active site of human class Pi glutathione transferase, GST P1-1
    • T.K. Hitchens, B. Mannervik, and G.S. Rule Disorder-to-order transition of the active site of human class Pi glutathione transferase, GST P1-1 Biochemistry 40 2001 11660 11669
    • (2001) Biochemistry , vol.40 , pp. 11660-11669
    • Hitchens, T.K.1    Mannervik, B.2    Rule, G.S.3
  • 515
    • 0032516446 scopus 로고    scopus 로고
    • Evidence for an induced-fit mechanism operating in pi class glutathione transferases
    • A.J. Oakley, M. Lo Bello, G. Ricci, G. Federici, and M.W. Parker Evidence for an induced-fit mechanism operating in pi class glutathione transferases Biochemistry 37 1998 9912 9917
    • (1998) Biochemistry , vol.37 , pp. 9912-9917
    • Oakley, A.J.1    Lo Bello, M.2    Ricci, G.3    Federici, G.4    Parker, M.W.5
  • 516
    • 0033215104 scopus 로고    scopus 로고
    • Molecular dynamics simulations of human glutathione transferase P1-1: Analysis of the induced-fit mechanism by GSH binding
    • L. Stella, M. Nicotra, G. Ricci, N. Rosato, and E.E. Di Iorio Molecular dynamics simulations of human glutathione transferase P1-1: analysis of the induced-fit mechanism by GSH binding Proteins 37 1999 1 9
    • (1999) Proteins , vol.37 , pp. 1-9
    • Stella, L.1    Nicotra, M.2    Ricci, G.3    Rosato, N.4    Di Iorio, E.E.5
  • 517
    • 80053232321 scopus 로고    scopus 로고
    • Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism
    • B. Wang, Y. Peng, T. Zhang, and J. Ding Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism Biochem. J. 439 2011 215 225
    • (2011) Biochem. J. , vol.439 , pp. 215-225
    • Wang, B.1    Peng, Y.2    Zhang, T.3    Ding, J.4
  • 518
    • 0024403592 scopus 로고
    • Formation of the 1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione S-transferase: Evidence for enzymic stabilization of sigma-complex intermediates in nucleophilic aromatic substitution reactions
    • G.F. Graminski, P.H. Zhang, M.A. Sesay, H.L. Ammon, and R.N. Armstrong Formation of the 1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione S-transferase: evidence for enzymic stabilization of sigma-complex intermediates in nucleophilic aromatic substitution reactions Biochemistry 28 1989 6252 6258
    • (1989) Biochemistry , vol.28 , pp. 6252-6258
    • Graminski, G.F.1    Zhang, P.H.2    Sesay, M.A.3    Ammon, H.L.4    Armstrong, R.N.5
  • 520
    • 2142762962 scopus 로고    scopus 로고
    • Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p
    • L. Bousset, V. Redeker, P. Decottignies, S. Dubois, P. Le Marechal, and R. Melki Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p Biochemistry 43 2004 5022 5032
    • (2004) Biochemistry , vol.43 , pp. 5022-5032
    • Bousset, L.1    Redeker, V.2    Decottignies, P.3    Dubois, S.4    Le Marechal, P.5    Melki, R.6
  • 521
    • 9644287905 scopus 로고    scopus 로고
    • The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms
    • M. Bai, J.M. Zhou, and S. Perrett The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms J. Biol. Chem. 279 2004 50025 50030
    • (2004) J. Biol. Chem. , vol.279 , pp. 50025-50030
    • Bai, M.1    Zhou, J.M.2    Perrett, S.3
  • 522
    • 0033531970 scopus 로고    scopus 로고
    • Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products
    • C.M. Bruns, I. Hubatsch, M. Ridderstrom, B. Mannervik, and J.A. Tainer Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products J. Mol. Biol. 288 1999 427 439
    • (1999) J. Mol. Biol. , vol.288 , pp. 427-439
    • Bruns, C.M.1    Hubatsch, I.2    Ridderstrom, M.3    Mannervik, B.4    Tainer, J.A.5
  • 523
    • 0345098311 scopus 로고    scopus 로고
    • Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts
    • D.S. Hamilton, X. Zhang, Z. Ding, I. Hubatsch, B. Mannervik, K.N. Houk, B. Ganem, and D.J. Creighton Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts J. Am. Chem. Soc. 125 2003 15049 15058
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 15049-15058
    • Hamilton, D.S.1    Zhang, X.2    Ding, Z.3    Hubatsch, I.4    Mannervik, B.5    Houk, K.N.6    Ganem, B.7    Creighton, D.J.8
  • 524
    • 0031017331 scopus 로고    scopus 로고
    • The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate
    • A.J. Oakley, J. Rossjohn, M. Lo Bello, A.M. Caccuri, G. Federici, and M.W. Parker The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate Biochemistry 36 1997 576 585
    • (1997) Biochemistry , vol.36 , pp. 576-585
    • Oakley, A.J.1    Rossjohn, J.2    Lo Bello, M.3    Caccuri, A.M.4    Federici, G.5    Parker, M.W.6
  • 525
    • 0029035314 scopus 로고
    • Stereoselective catalysis of a retro-Michael reaction by class mu glutathione transferases. Consequences for the internal distribution of products in the active site
    • J. Chen, and R.N. Armstrong Stereoselective catalysis of a retro-Michael reaction by class mu glutathione transferases. Consequences for the internal distribution of products in the active site Chem. Res. Toxicol. 8 1995 580 585
    • (1995) Chem. Res. Toxicol. , vol.8 , pp. 580-585
    • Chen, J.1    Armstrong, R.N.2
  • 526
    • 10844293503 scopus 로고    scopus 로고
    • Crystal structure of human glutathione S-transferase A3-3 and mechanistic implications for its high steroid isomerase activity
    • Y. Gu, J. Guo, A. Pal, S.S. Pan, P. Zimniak, S.V. Singh, and X. Ji Crystal structure of human glutathione S-transferase A3-3 and mechanistic implications for its high steroid isomerase activity Biochemistry 43 2004 15673 15679
    • (2004) Biochemistry , vol.43 , pp. 15673-15679
    • Gu, Y.1    Guo, J.2    Pal, A.3    Pan, S.S.4    Zimniak, P.5    Singh, S.V.6    Ji, X.7
  • 527
    • 77549087845 scopus 로고    scopus 로고
    • Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases
    • K. Tars, B. Olin, and B. Mannervik Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases J. Mol. Biol. 397 2010 332 340
    • (2010) J. Mol. Biol. , vol.397 , pp. 332-340
    • Tars, K.1    Olin, B.2    Mannervik, B.3
  • 528
    • 84856754858 scopus 로고    scopus 로고
    • Computational evidence for the catalytic mechanism of human glutathione S-transferase A3-3: A QM/MM investigation
    • M. Calvaresi, M. Stenta, M. Garavelli, P. Altoé, and A. Bottoni Computational evidence for the catalytic mechanism of human glutathione S-transferase A3-3: a QM/MM investigation ACS Catal. 2 2012 280 286
    • (2012) ACS Catal. , vol.2 , pp. 280-286
    • Calvaresi, M.1    Stenta, M.2    Garavelli, M.3    Altoé, P.4    Bottoni, A.5
  • 529
    • 0033215126 scopus 로고    scopus 로고
    • Glutathione S-transferase catalyzes the isomerization of (R)-2-hydroxymenthofuran to mintlactones
    • S.C. Khojasteh-Bakht, S.D. Nelson, and W.M. Atkins Glutathione S-transferase catalyzes the isomerization of (R)-2-hydroxymenthofuran to mintlactones Arch. Biochem. Biophys. 370 1999 59 65
    • (1999) Arch. Biochem. Biophys. , vol.370 , pp. 59-65
    • Khojasteh-Bakht, S.C.1    Nelson, S.D.2    Atkins, W.M.3
  • 532
    • 0032533524 scopus 로고    scopus 로고
    • Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro
    • H. Chen, and M.R. Juchau Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro Biochem. J. 336 Pt 1 1998 223 226
    • (1998) Biochem. J. , vol.336 , Issue.PART 1 , pp. 223-226
    • Chen, H.1    Juchau, M.R.2
  • 533
    • 0035504857 scopus 로고    scopus 로고
    • Mammalian class Sigma glutathione S-transferases: Catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases
    • I.R. Jowsey, A.M. Thomson, J.U. Flanagan, P.R. Murdock, G.B. Moore, D.J. Meyer, G.J. Murphy, S.A. Smith, and J.D. Hayes Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases Biochem. J. 359 2001 507 516
    • (2001) Biochem. J. , vol.359 , pp. 507-516
    • Jowsey, I.R.1    Thomson, A.M.2    Flanagan, J.U.3    Murdock, P.R.4    Moore, G.B.5    Meyer, D.J.6    Murphy, G.J.7    Smith, S.A.8    Hayes, J.D.9
  • 534
    • 0034613292 scopus 로고    scopus 로고
    • Structural basis of hematopoietic prostaglandin D synthase activity elucidated by site-directed mutagenesis
    • E. Pinzar, M. Miyano, Y. Kanaoka, Y. Urade, and O. Hayaishi Structural basis of hematopoietic prostaglandin D synthase activity elucidated by site-directed mutagenesis J. Biol. Chem. 275 2000 31239 31244
    • (2000) J. Biol. Chem. , vol.275 , pp. 31239-31244
    • Pinzar, E.1    Miyano, M.2    Kanaoka, Y.3    Urade, Y.4    Hayaishi, O.5
  • 536
    • 0141679076 scopus 로고    scopus 로고
    • Clarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique
    • P.G. Board, M.C. Taylor, M. Coggan, M.W. Parker, H.B. Lantum, and M.W. Anders Clarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique Biochem. J. 374 2003 731 737
    • (2003) Biochem. J. , vol.374 , pp. 731-737
    • Board, P.G.1    Taylor, M.C.2    Coggan, M.3    Parker, M.W.4    Lantum, H.B.5    Anders, M.W.6
  • 537
    • 0034625156 scopus 로고    scopus 로고
    • Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol
    • K. Anandarajah, P.M. Kiefer Jr., B.S. Donohoe, and S.D. Copley Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol Biochemistry 39 2000 5303 5311
    • (2000) Biochemistry , vol.39 , pp. 5303-5311
    • Anandarajah, K.1    Kiefer Jr., P.M.2    Donohoe, B.S.3    Copley, S.D.4
  • 538
    • 79960034249 scopus 로고    scopus 로고
    • Identification and clarification of the role of key active site residues in bacterial glutathione S-transferase zeta/maleylpyruvate isomerase
    • T. Fang, D.F. Li, and N.Y. Zhou Identification and clarification of the role of key active site residues in bacterial glutathione S-transferase zeta/maleylpyruvate isomerase Biochem. Biophys. Res. Commun. 410 2011 452 456
    • (2011) Biochem. Biophys. Res. Commun. , vol.410 , pp. 452-456
    • Fang, T.1    Li, D.F.2    Zhou, N.Y.3
  • 539
    • 0035906701 scopus 로고    scopus 로고
    • The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: Characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism
    • R. Thom, D.P. Dixon, R. Edwards, D.J. Cole, and A.J. Lapthorn The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism J. Mol. Biol. 308 2001 949 962
    • (2001) J. Mol. Biol. , vol.308 , pp. 949-962
    • Thom, R.1    Dixon, D.P.2    Edwards, R.3    Cole, D.J.4    Lapthorn, A.J.5
  • 540
    • 54249134375 scopus 로고    scopus 로고
    • Structure of bacterial glutathione-S-transferase maleyl pyruvate isomerase and implications for mechanism of isomerisation
    • M. Marsh, D.K. Shoemark, A. Jacob, C. Robinson, B. Cahill, N.Y. Zhou, P.A. Williams, and A.T. Hadfield Structure of bacterial glutathione-S- transferase maleyl pyruvate isomerase and implications for mechanism of isomerisation J. Mol. Biol. 384 2008 165 177
    • (2008) J. Mol. Biol. , vol.384 , pp. 165-177
    • Marsh, M.1    Shoemark, D.K.2    Jacob, A.3    Robinson, C.4    Cahill, B.5    Zhou, N.Y.6    Williams, P.A.7    Hadfield, A.T.8
  • 541
    • 0018466476 scopus 로고
    • Maleylacetone cis-trans-isomerase. Mechanism of the interaction of coenzyme glutathione and substrate maleylacetone in the presence and absence of enzyme
    • S. Seltzer, and M. Lin Maleylacetone cis-trans-isomerase. Mechanism of the interaction of coenzyme glutathione and substrate maleylacetone in the presence and absence of enzyme J. Am. Chem. Soc. 101 1979 3091 3097
    • (1979) J. Am. Chem. Soc. , vol.101 , pp. 3091-3097
    • Seltzer, S.1    Lin, M.2
  • 542
    • 0021104760 scopus 로고
    • Microsomal glutathione transferase. Purification in unactivated form and further characterization of the activation process, substrate specificity and amino acid composition
    • R. Morgenstern, and J.W. DePierre Microsomal glutathione transferase. Purification in unactivated form and further characterization of the activation process, substrate specificity and amino acid composition Eur. J. Biochem. 134 1983 591 597
    • (1983) Eur. J. Biochem. , vol.134 , pp. 591-597
    • Morgenstern, R.1    Depierre, J.W.2
  • 543
    • 3042856307 scopus 로고    scopus 로고
    • Kinetic characterization of thiolate anion formation and chemical catalysis of activated microsomal glutathione transferase 1
    • R. Svensson, J. Alander, R.N. Armstrong, and R. Morgenstern Kinetic characterization of thiolate anion formation and chemical catalysis of activated microsomal glutathione transferase 1 Biochemistry 43 2004 8869 8877
    • (2004) Biochemistry , vol.43 , pp. 8869-8877
    • Svensson, R.1    Alander, J.2    Armstrong, R.N.3    Morgenstern, R.4
  • 544
    • 0035916913 scopus 로고    scopus 로고
    • Kinetic analysis of the slow ionization of glutathione by microsomal glutathione transferase MGST1
    • R. Morgenstern, R. Svensson, B.A. Bernat, and R.N. Armstrong Kinetic analysis of the slow ionization of glutathione by microsomal glutathione transferase MGST1 Biochemistry 40 2001 3378 3384
    • (2001) Biochemistry , vol.40 , pp. 3378-3384
    • Morgenstern, R.1    Svensson, R.2    Bernat, B.A.3    Armstrong, R.N.4
  • 546
    • 80054891699 scopus 로고    scopus 로고
    • Microsomal prostaglandin e synthase-1 exhibits one-third-of-the-sites reactivity
    • S. He, Y. Wu, D. Yu, and L. Lai Microsomal prostaglandin E synthase-1 exhibits one-third-of-the-sites reactivity Biochem. J. 440 2011 13 21
    • (2011) Biochem. J. , vol.440 , pp. 13-21
    • He, S.1    Wu, Y.2    Yu, D.3    Lai, L.4
  • 547
    • 0023911496 scopus 로고
    • Solubilization and partial purification of leukotriene C4 synthase from guinea-pig lung: A microsomal enzyme with high specificity towards 5,6-epoxide leukotriene A4
    • T. Izumi, Z. Honda, N. Ohishi, S. Kitamura, S. Tsuchida, K. Sato, T. Shimizu, and Y. Seyama Solubilization and partial purification of leukotriene C4 synthase from guinea-pig lung: a microsomal enzyme with high specificity towards 5,6-epoxide leukotriene A4 Biochim. Biophys. Acta 959 1988 305 315
    • (1988) Biochim. Biophys. Acta , vol.959 , pp. 305-315
    • Izumi, T.1    Honda, Z.2    Ohishi, N.3    Kitamura, S.4    Tsuchida, S.5    Sato, K.6    Shimizu, T.7    Seyama, Y.8
  • 548
    • 58649098555 scopus 로고    scopus 로고
    • Mutation of a critical arginine in microsomal prostaglandin e synthase-1 shifts the isomerase activity to a reductase activity that converts prostaglandin H2 into prostaglandin F2alpha
    • T. Hammarberg, M. Hamberg, A. Wetterholm, H. Hansson, B. Samuelsson, and J.Z. Haeggstrom Mutation of a critical arginine in microsomal prostaglandin E synthase-1 shifts the isomerase activity to a reductase activity that converts prostaglandin H2 into prostaglandin F2alpha J. Biol. Chem. 284 2009 301 305
    • (2009) J. Biol. Chem. , vol.284 , pp. 301-305
    • Hammarberg, T.1    Hamberg, M.2    Wetterholm, A.3    Hansson, H.4    Samuelsson, B.5    Haeggstrom, J.Z.6
  • 549
    • 0023641350 scopus 로고
    • The evolution of glutathione metabolism in phototrophic microorganisms
    • R.C. Fahey, R.M. Buschbacher, and G.L. Newton The evolution of glutathione metabolism in phototrophic microorganisms J. Mol. Evol. 25 1987 81 88
    • (1987) J. Mol. Evol. , vol.25 , pp. 81-88
    • Fahey, R.C.1    Buschbacher, R.M.2    Newton, G.L.3
  • 551
    • 0024446668 scopus 로고
    • Evolution of antioxidant mechanisms: Thiol-dependent peroxidases and thioltransferase among procaryotes
    • A.R. Sundquist, and R.C. Fahey Evolution of antioxidant mechanisms: thiol-dependent peroxidases and thioltransferase among procaryotes J. Mol. Evol. 29 1989 429 435
    • (1989) J. Mol. Evol. , vol.29 , pp. 429-435
    • Sundquist, A.R.1    Fahey, R.C.2
  • 552
    • 57649183232 scopus 로고    scopus 로고
    • The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix
    • J. Hu, L. Dong, and C.E. Outten The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix J. Biol. Chem. 283 2008 29126 29134
    • (2008) J. Biol. Chem. , vol.283 , pp. 29126-29134
    • Hu, J.1    Dong, L.2    Outten, C.E.3
  • 553
    • 84864119697 scopus 로고    scopus 로고
    • Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state
    • K. Kojer, M. Bien, H. Gangel, B. Morgan, T.P. Dick, and J. Riemer Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state EMBO J. 31 2012 3169 3182
    • (2012) EMBO J. , vol.31 , pp. 3169-3182
    • Kojer, K.1    Bien, M.2    Gangel, H.3    Morgan, B.4    Dick, T.P.5    Riemer, J.6
  • 554
    • 3543095148 scopus 로고    scopus 로고
    • Monitoring disulfide bond formation in the eukaryotic cytosol
    • H. Ostergaard, C. Tachibana, and J.R. Winther Monitoring disulfide bond formation in the eukaryotic cytosol J. Cell Biol. 166 2004 337 345
    • (2004) J. Cell Biol. , vol.166 , pp. 337-345
    • Ostergaard, H.1    Tachibana, C.2    Winther, J.R.3
  • 555
    • 39749200944 scopus 로고    scopus 로고
    • Assessment of endoplasmic reticulum glutathione redox status is confounded by extensive ex vivo oxidation
    • B.M. Dixon, S.H. Heath, R. Kim, J.H. Suh, and T.M. Hagen Assessment of endoplasmic reticulum glutathione redox status is confounded by extensive ex vivo oxidation Antioxid. Redox Signal. 10 2008 963 972
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 963-972
    • Dixon, B.M.1    Heath, S.H.2    Kim, R.3    Suh, J.H.4    Hagen, T.M.5
  • 556
    • 0026698060 scopus 로고
    • Oxidized redox state of glutathione in the endoplasmic reticulum
    • C. Hwang, A.J. Sinskey, and H.F. Lodish Oxidized redox state of glutathione in the endoplasmic reticulum Science 257 1992 1496 1502
    • (1992) Science , vol.257 , pp. 1496-1502
    • Hwang, C.1    Sinskey, A.J.2    Lodish, H.F.3
  • 557
    • 0032575366 scopus 로고    scopus 로고
    • Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC
    • D.P. Jones, J.L. Carlson, P.S. Samiec, P. Sternberg Jr., V.C. Mody Jr., R.L. Reed, and L.A. Brown Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC Clin. Chim. Acta 275 1998 175 184
    • (1998) Clin. Chim. Acta , vol.275 , pp. 175-184
    • Jones, D.P.1    Carlson, J.L.2    Samiec, P.S.3    Sternberg Jr., P.4    Mody Jr., V.C.5    Reed, R.L.6    Brown, L.A.7
  • 558
    • 13544263241 scopus 로고    scopus 로고
    • Crystal structure and solution NMR dynamics of a D (type II) peroxiredoxin glutaredoxin and thioredoxin dependent: A new insight into the peroxiredoxin oligomerism
    • A. Echalier, X. Trivelli, C. Corbier, N. Rouhier, O. Walker, P. Tsan, J.P. Jacquot, A. Aubry, I. Krimm, and J.M. Lancelin Crystal structure and solution NMR dynamics of a D (type II) peroxiredoxin glutaredoxin and thioredoxin dependent: a new insight into the peroxiredoxin oligomerism Biochemistry 44 2005 1755 1767
    • (2005) Biochemistry , vol.44 , pp. 1755-1767
    • Echalier, A.1    Trivelli, X.2    Corbier, C.3    Rouhier, N.4    Walker, O.5    Tsan, P.6    Jacquot, J.P.7    Aubry, A.8    Krimm, I.9    Lancelin, J.M.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.