메뉴 건너뛰기




Volumn 23, Issue 9, 2012, Pages 451-458

Mitochondrial proticity and ROS signaling: Lessons from the uncoupling proteins

Author keywords

[No Author keywords available]

Indexed keywords

ACONITATE HYDRATASE; ADENOSINE TRIPHOSPHATE; CYTOCHROME C OXIDASE; ISOCITRATE DEHYDROGENASE; MALATE DEHYDROGENASE; OXOGLUTARATE DEHYDROGENASE; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); SUCCINATE DEHYDROGENASE; SUCCINYL COENZYME A SYNTHETASE; UBIQUINOL CYTOCHROME C REDUCTASE; UNCOUPLING PROTEIN 1; UNCOUPLING PROTEIN 2; UNCOUPLING PROTEIN 3;

EID: 84865434841     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2012.04.004     Document Type: Review
Times cited : (99)

References (94)
  • 1
    • 77952415166 scopus 로고    scopus 로고
    • Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man
    • Wallace D.C. Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8947-8953.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 8947-8953
    • Wallace, D.C.1
  • 2
    • 79953180902 scopus 로고    scopus 로고
    • Assessing mitochondrial dysfunction in cells
    • Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435:297-312.
    • (2011) Biochem. J. , vol.435 , pp. 297-312
    • Brand, M.D.1    Nicholls, D.G.2
  • 3
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417:1-13.
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 4
    • 33746016268 scopus 로고    scopus 로고
    • Mitochondria: more than just a powerhouse
    • McBride H.M., et al. Mitochondria: more than just a powerhouse. Curr. Biol. 2006, 16:R551-R560.
    • (2006) Curr. Biol. , vol.16
    • McBride, H.M.1
  • 5
    • 36949083936 scopus 로고
    • Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism
    • Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191:144-148.
    • (1961) Nature , vol.191 , pp. 144-148
    • Mitchell, P.1
  • 6
    • 0018784261 scopus 로고
    • Keilin's respiratory chain concept and its chemiosmotic consequences
    • Mitchell P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 1979, 206:1148-1159.
    • (1979) Science , vol.206 , pp. 1148-1159
    • Mitchell, P.1
  • 7
    • 80051783174 scopus 로고    scopus 로고
    • Uncoupling proteins and the control of mitochondrial reactive oxygen species production
    • Mailloux R.J., Harper M.E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 2011, 51:1106-1115.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 1106-1115
    • Mailloux, R.J.1    Harper, M.E.2
  • 8
    • 0015363173 scopus 로고
    • The cellular production of hydrogen peroxide
    • Boveris A., et al. The cellular production of hydrogen peroxide. Biochem. J. 1972, 128:617-630.
    • (1972) Biochem. J. , vol.128 , pp. 617-630
    • Boveris, A.1
  • 9
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 1973, 134:707-716.
    • (1973) Biochem. J. , vol.134 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 10
    • 50949125411 scopus 로고    scopus 로고
    • The efficiency of cellular energy transduction and its implications for obesity
    • Harper M.E., et al. The efficiency of cellular energy transduction and its implications for obesity. Annu. Rev. Nutr. 2008, 28:13-33.
    • (2008) Annu. Rev. Nutr. , vol.28 , pp. 13-33
    • Harper, M.E.1
  • 11
    • 0142061586 scopus 로고    scopus 로고
    • Oxidative stress in diabetes
    • Piconi L., et al. Oxidative stress in diabetes. Clin. Chem. Lab. Med. 2003, 41:1144-1149.
    • (2003) Clin. Chem. Lab. Med. , vol.41 , pp. 1144-1149
    • Piconi, L.1
  • 12
    • 81855221662 scopus 로고    scopus 로고
    • Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders
    • Lemire J., Appanna V.D. Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders. J. Inorg. Biochem. 2011, 105:1513-1517.
    • (2011) J. Inorg. Biochem. , vol.105 , pp. 1513-1517
    • Lemire, J.1    Appanna, V.D.2
  • 13
    • 77956186783 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
    • Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35:505-513.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 505-513
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 14
    • 79960286223 scopus 로고    scopus 로고
    • Signal transduction by reactive oxygen species
    • Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
    • (2011) J. Cell Biol. , vol.194 , pp. 7-15
    • Finkel, T.1
  • 15
    • 47549096022 scopus 로고    scopus 로고
    • Superoxide flashes in single mitochondria
    • Wang W., et al. Superoxide flashes in single mitochondria. Cell 2008, 134:279-290.
    • (2008) Cell , vol.134 , pp. 279-290
    • Wang, W.1
  • 16
    • 77958542380 scopus 로고    scopus 로고
    • Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently
    • Pouvreau S. Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS ONE 2010, 5:e13035.
    • (2010) PLoS ONE , vol.5
    • Pouvreau, S.1
  • 17
    • 0242582202 scopus 로고    scopus 로고
    • Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes
    • Aon M.A., et al. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem. 2003, 278:44735-44744.
    • (2003) J. Biol. Chem. , vol.278 , pp. 44735-44744
    • Aon, M.A.1
  • 18
    • 0033785071 scopus 로고    scopus 로고
    • Uncoupling to survive? The role of mitochondrial inefficiency in ageing
    • Brand M.D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 2000, 35:811-820.
    • (2000) Exp. Gerontol. , vol.35 , pp. 811-820
    • Brand, M.D.1
  • 19
    • 0029976895 scopus 로고    scopus 로고
    • Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate
    • Rolfe D.F., Brand M.D. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am. J. Physiol. 1996, 271:C1380-C1389.
    • (1996) Am. J. Physiol. , vol.271
    • Rolfe, D.F.1    Brand, M.D.2
  • 20
    • 0032953969 scopus 로고    scopus 로고
    • Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR
    • Rolfe D.F., et al. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am. J. Physiol. 1999, 276:C692-C699.
    • (1999) Am. J. Physiol. , vol.276
    • Rolfe, D.F.1
  • 21
    • 36148985315 scopus 로고    scopus 로고
    • Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment
    • Arvier M., et al. Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E1320-E1324.
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.293
    • Arvier, M.1
  • 22
    • 77953812540 scopus 로고    scopus 로고
    • Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice
    • Bevilacqua L., et al. Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice. Biochim. Biophys. Acta 2010, 1797:1389-1397.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1389-1397
    • Bevilacqua, L.1
  • 23
    • 67449149911 scopus 로고    scopus 로고
    • Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection
    • Nadtochiy S.M., et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc. Res. 2009, 82:333-340.
    • (2009) Cardiovasc. Res. , vol.82 , pp. 333-340
    • Nadtochiy, S.M.1
  • 24
    • 47549096022 scopus 로고    scopus 로고
    • Superoxide flashes in single mitochondria
    • Wang W., et al. Superoxide flashes in single mitochondria. Cell 2008, 134:279-290.
    • (2008) Cell , vol.134 , pp. 279-290
    • Wang, W.1
  • 25
    • 79960991178 scopus 로고    scopus 로고
    • Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis
    • Ma Q., et al. Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis. J. Biol. Chem. 2011, 286:27573-27581.
    • (2011) J. Biol. Chem. , vol.286 , pp. 27573-27581
    • Ma, Q.1
  • 26
    • 4644295401 scopus 로고    scopus 로고
    • Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids
    • Shabalina I.G., et al. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J. Biol. Chem. 2004, 279:38236-38248.
    • (2004) J. Biol. Chem. , vol.279 , pp. 38236-38248
    • Shabalina, I.G.1
  • 27
    • 28644442428 scopus 로고    scopus 로고
    • SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity
    • Silva J.P., et al. SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity. EMBO J. 2005, 24:4061-4070.
    • (2005) EMBO J. , vol.24 , pp. 4061-4070
    • Silva, J.P.1
  • 28
    • 84855387138 scopus 로고    scopus 로고
    • Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics
    • Mailloux R.J., et al. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J. 2012, 26:363-375.
    • (2012) FASEB J. , vol.26 , pp. 363-375
    • Mailloux, R.J.1
  • 29
    • 79958735550 scopus 로고    scopus 로고
    • Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3
    • Mailloux R.J., et al. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 2011, 286:21865-21875.
    • (2011) J. Biol. Chem. , vol.286 , pp. 21865-21875
    • Mailloux, R.J.1
  • 30
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
    • (2008) Cell Metab. , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1
  • 31
    • 57749101272 scopus 로고    scopus 로고
    • Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies
    • Dzbek J., Korzeniewski B. Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies. J. Biol. Chem. 2008, 283:33232-33239.
    • (2008) J. Biol. Chem. , vol.283 , pp. 33232-33239
    • Dzbek, J.1    Korzeniewski, B.2
  • 33
    • 0022559216 scopus 로고
    • Oxy-radicals and related species: their formation, lifetimes, and reactions
    • Pryor W.A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol. 1986, 48:657-667.
    • (1986) Annu. Rev. Physiol. , vol.48 , pp. 657-667
    • Pryor, W.A.1
  • 34
    • 0038771142 scopus 로고    scopus 로고
    • The nuclear encoded subunits of complex I from bovine heart mitochondria
    • Hirst J., et al. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 2003, 1604:135-150.
    • (2003) Biochim. Biophys. Acta , vol.1604 , pp. 135-150
    • Hirst, J.1
  • 35
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • Turrens J.F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980, 191:421-427.
    • (1980) Biochem. J. , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 36
    • 1042301416 scopus 로고    scopus 로고
    • Characterization of superoxide-producing sites in isolated brain mitochondria
    • Kudin A.P., et al. Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 2004, 279:4127-4135.
    • (2004) J. Biol. Chem. , vol.279 , pp. 4127-4135
    • Kudin, A.P.1
  • 37
    • 4544354262 scopus 로고    scopus 로고
    • Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
    • Lambert A.J., Brand M.D. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 2004, 279:39414-39420.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39414-39420
    • Lambert, A.J.1    Brand, M.D.2
  • 38
    • 79961008706 scopus 로고    scopus 로고
    • Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
    • Treberg J.R., et al. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 2011, 286:27103-27110.
    • (2011) J. Biol. Chem. , vol.286 , pp. 27103-27110
    • Treberg, J.R.1
  • 39
    • 24344508510 scopus 로고    scopus 로고
    • The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria
    • Miwa S., Brand M.D. The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim. Biophys. Acta 2005, 1709:214-219.
    • (2005) Biochim. Biophys. Acta , vol.1709 , pp. 214-219
    • Miwa, S.1    Brand, M.D.2
  • 40
    • 46449118774 scopus 로고    scopus 로고
    • The Q-cycle reviewed: how well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?
    • Crofts A.R., et al. The Q-cycle reviewed: how well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?. Biochim. Biophys. Acta 2008, 1777:1001-1019.
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 1001-1019
    • Crofts, A.R.1
  • 41
    • 34250745912 scopus 로고    scopus 로고
    • The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
    • Bell E.L., et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007, 177:1029-1036.
    • (2007) J. Cell Biol. , vol.177 , pp. 1029-1036
    • Bell, E.L.1
  • 42
    • 77954452036 scopus 로고    scopus 로고
    • Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase
    • Mailloux R.J., Harper M.E. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase. FASEB J. 2010, 24:2495-2506.
    • (2010) FASEB J. , vol.24 , pp. 2495-2506
    • Mailloux, R.J.1    Harper, M.E.2
  • 43
    • 77956713136 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species
    • Patten D.A., et al. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol. Biol. Cell 2010, 21:3247-3257.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 3247-3257
    • Patten, D.A.1
  • 44
    • 0034811384 scopus 로고    scopus 로고
    • Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain
    • Starkov A.A., Fiskum G. Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain. Biochem. Biophys. Res. Commun. 2001, 281:645-650.
    • (2001) Biochem. Biophys. Res. Commun. , vol.281 , pp. 645-650
    • Starkov, A.A.1    Fiskum, G.2
  • 45
    • 24144493814 scopus 로고    scopus 로고
    • Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
    • Guzy R.D., et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005, 1:401-408.
    • (2005) Cell Metab. , vol.1 , pp. 401-408
    • Guzy, R.D.1
  • 46
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte differentiation
    • Tormos K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011, 14:537-544.
    • (2011) Cell Metab. , vol.14 , pp. 537-544
    • Tormos, K.V.1
  • 47
    • 77949322975 scopus 로고    scopus 로고
    • 2 emission during long-chain fatty acid oxidation
    • 2 emission during long-chain fatty acid oxidation. J. Biol. Chem. 2010, 285:5748-5758.
    • (2010) J. Biol. Chem. , vol.285 , pp. 5748-5758
    • Seifert, E.L.1
  • 48
    • 4544226082 scopus 로고    scopus 로고
    • Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase
    • Tretter L., Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J. Neurosci. 2004, 24:7771-7778.
    • (2004) J. Neurosci. , vol.24 , pp. 7771-7778
    • Tretter, L.1    Adam-Vizi, V.2
  • 49
    • 0017293045 scopus 로고
    • Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase
    • Forman H.J., Kennedy J. Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch. Biochem. Biophys. 1976, 173:219-224.
    • (1976) Arch. Biochem. Biophys. , vol.173 , pp. 219-224
    • Forman, H.J.1    Kennedy, J.2
  • 50
    • 33846188870 scopus 로고    scopus 로고
    • 2 generation in brain mitochondria
    • 2 generation in brain mitochondria. J. Neurochem. 2007, 100:650-663.
    • (2007) J. Neurochem. , vol.100 , pp. 650-663
    • Tretter, L.1
  • 51
    • 76049086567 scopus 로고    scopus 로고
    • Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II
    • Paranagama M.P., et al. Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II. Mitochondrion 2010, 10:158-165.
    • (2010) Mitochondrion , vol.10 , pp. 158-165
    • Paranagama, M.P.1
  • 52
    • 79952144564 scopus 로고    scopus 로고
    • 2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix
    • 2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 2011, 13:340-350.
    • (2011) Cell Metab. , vol.13 , pp. 340-350
    • Cocheme, H.M.1
  • 53
    • 80052465160 scopus 로고    scopus 로고
    • Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals
    • Fang H., et al. Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Res. 2011, 21:1295-1304.
    • (2011) Cell Res. , vol.21 , pp. 1295-1304
    • Fang, H.1
  • 54
    • 79959716502 scopus 로고    scopus 로고
    • Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
    • Mailloux R.J., et al. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 2011, 437:301-311.
    • (2011) Biochem. J. , vol.437 , pp. 301-311
    • Mailloux, R.J.1
  • 55
    • 60649095658 scopus 로고    scopus 로고
    • Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation
    • Acin-Perez R., et al. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 2009, 9:265-276.
    • (2009) Cell Metab. , vol.9 , pp. 265-276
    • Acin-Perez, R.1
  • 56
    • 79551584971 scopus 로고    scopus 로고
    • Regulation of intermediary metabolism by protein acetylation
    • Guan K.L., Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 2011, 36:108-116.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 108-116
    • Guan, K.L.1    Xiong, Y.2
  • 57
    • 64549106959 scopus 로고    scopus 로고
    • Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
    • Gallogly M.M., et al. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid. Redox Signal. 2009, 11:1059-1081.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1059-1081
    • Gallogly, M.M.1
  • 58
    • 22044444687 scopus 로고    scopus 로고
    • Glutathionylation of mitochondrial proteins
    • Hurd T.R., et al. Glutathionylation of mitochondrial proteins. Antioxid. Redox Signal. 2005, 7:999-1010.
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 999-1010
    • Hurd, T.R.1
  • 59
    • 79959221560 scopus 로고    scopus 로고
    • Reversible and irreversible protein glutathionylation: biological and clinical aspects
    • Cooper A.J., et al. Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin. Drug Metab. Toxicol. 2011, 7:891-910.
    • (2011) Expert Opin. Drug Metab. Toxicol. , vol.7 , pp. 891-910
    • Cooper, A.J.1
  • 60
    • 33847021426 scopus 로고    scopus 로고
    • Role of glutathiolation in preservation, restoration and regulation of protein function
    • Hill B.G., Bhatnagar A. Role of glutathiolation in preservation, restoration and regulation of protein function. IUBMB Life 2007, 59:21-26.
    • (2007) IUBMB Life , vol.59 , pp. 21-26
    • Hill, B.G.1    Bhatnagar, A.2
  • 61
    • 0031000775 scopus 로고    scopus 로고
    • PH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis
    • Srinivasan U., et al. pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis. Biochemistry 1997, 36:3199-3206.
    • (1997) Biochemistry , vol.36 , pp. 3199-3206
    • Srinivasan, U.1
  • 62
  • 63
    • 0020478933 scopus 로고
    • Status of the mitochondrial pool of glutathione in the isolated hepatocyte
    • Meredith M.J., Reed D.J. Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J. Biol. Chem. 1982, 257:3747-3753.
    • (1982) J. Biol. Chem. , vol.257 , pp. 3747-3753
    • Meredith, M.J.1    Reed, D.J.2
  • 64
    • 0021891877 scopus 로고
    • Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation
    • Ziegler D.M. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu. Rev. Biochem. 1985, 54:305-329.
    • (1985) Annu. Rev. Biochem. , vol.54 , pp. 305-329
    • Ziegler, D.M.1
  • 65
    • 84856745322 scopus 로고    scopus 로고
    • Mechanisms of altered redox regulation in neurodegenerative diseases - focus on S-glutathionylation
    • Sabens Liedhegner E.A., et al. Mechanisms of altered redox regulation in neurodegenerative diseases - focus on S-glutathionylation. Antioxid. Redox Signal. 2012, 16:543-566.
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 543-566
    • Sabens Liedhegner, E.A.1
  • 66
    • 81155154369 scopus 로고    scopus 로고
    • Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance
    • de Luca A., et al. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochem. J. 2011, 440:175-183.
    • (2011) Biochem. J. , vol.440 , pp. 175-183
    • de Luca, A.1
  • 67
    • 36349016509 scopus 로고    scopus 로고
    • Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
    • Chen Y.R., et al. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 2007, 282:32640-32654.
    • (2007) J. Biol. Chem. , vol.282 , pp. 32640-32654
    • Chen, Y.R.1
  • 68
    • 38349016262 scopus 로고    scopus 로고
    • Molecular mechanisms and potential clinical significance of S-glutathionylation
    • Dalle-Donne I., et al. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal. 2008, 10:445-473.
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 445-473
    • Dalle-Donne, I.1
  • 69
    • 84857630703 scopus 로고    scopus 로고
    • Protein S-glutathiolation: redox-sensitive regulation of protein function
    • Hill B.G., Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J. Mol. Cell. Cardiol. 2012, 52:559-567.
    • (2012) J. Mol. Cell. Cardiol. , vol.52 , pp. 559-567
    • Hill, B.G.1    Bhatnagar, A.2
  • 70
    • 84856741245 scopus 로고    scopus 로고
    • Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation
    • Mieyal J.J., Chock P.B. Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid. Redox Signal. 2012, 16:471-475.
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 471-475
    • Mieyal, J.J.1    Chock, P.B.2
  • 71
    • 0027238801 scopus 로고
    • Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase
    • Gravina S.A., Mieyal J.J. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 1993, 32:3368-3376.
    • (1993) Biochemistry , vol.32 , pp. 3368-3376
    • Gravina, S.A.1    Mieyal, J.J.2
  • 72
    • 33748339203 scopus 로고    scopus 로고
    • Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta
    • Reynaert N.L., et al. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:13086-13091.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 13086-13091
    • Reynaert, N.L.1
  • 73
    • 51349142890 scopus 로고    scopus 로고
    • Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles
    • Gallogly M.M., et al. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 2008, 47:11144-11157.
    • (2008) Biochemistry , vol.47 , pp. 11144-11157
    • Gallogly, M.M.1
  • 74
    • 9144249116 scopus 로고    scopus 로고
    • Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense
    • Beer S.M., et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense. J. Biol. Chem. 2004, 279:47939-47951.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47939-47951
    • Beer, S.M.1
  • 75
    • 80255140367 scopus 로고    scopus 로고
    • Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells
    • Wu H., et al. Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. Free Radic. Biol. Med. 2011, 51:2108-2117.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 2108-2117
    • Wu, H.1
  • 76
    • 20444411531 scopus 로고    scopus 로고
    • Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor
    • Lillig C.H., et al. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:8168-8173.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 8168-8173
    • Lillig, C.H.1
  • 77
    • 37849043898 scopus 로고    scopus 로고
    • Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
    • Applegate M.A., et al. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47:473-478.
    • (2008) Biochemistry , vol.47 , pp. 473-478
    • Applegate, M.A.1
  • 78
    • 54049146740 scopus 로고    scopus 로고
    • Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
    • Hurd T.R., et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283:24801-24815.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24801-24815
    • Hurd, T.R.1
  • 79
    • 77952559481 scopus 로고    scopus 로고
    • The on-off switches of the mitochondrial uncoupling proteins
    • Azzu V., Brand M.D. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem. Sci. 2010, 35:298-307.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 298-307
    • Azzu, V.1    Brand, M.D.2
  • 80
    • 58749091645 scopus 로고    scopus 로고
    • UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality
    • Feldmann H.M., et al. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009, 9:203-209.
    • (2009) Cell Metab. , vol.9 , pp. 203-209
    • Feldmann, H.M.1
  • 81
    • 57049114918 scopus 로고    scopus 로고
    • Long-term high-fat feeding induces greater fat storage in mice lacking UCP3
    • Costford S.R., et al. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3. Am. J. Physiol. Endocrinol. Metab. 2008, 295:E1018-E1024.
    • (2008) Am. J. Physiol. Endocrinol. Metab. , vol.295
    • Costford, S.R.1
  • 82
    • 20444500563 scopus 로고    scopus 로고
    • Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation
    • Bezaire V., et al. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J. 2005, 19:977-979.
    • (2005) FASEB J. , vol.19 , pp. 977-979
    • Bezaire, V.1
  • 83
    • 0041464712 scopus 로고    scopus 로고
    • Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma
    • Mattiasson G., et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat. Med. 2003, 9:1062-1068.
    • (2003) Nat. Med. , vol.9 , pp. 1062-1068
    • Mattiasson, G.1
  • 84
    • 78149459962 scopus 로고    scopus 로고
    • Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents
    • Mailloux R.J., et al. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS ONE 2010, 5:e13289.
    • (2010) PLoS ONE , vol.5
    • Mailloux, R.J.1
  • 85
    • 79551479549 scopus 로고    scopus 로고
    • Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species
    • Affourtit C., et al. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radic. Biol. Med. 2011, 50:609-616.
    • (2011) Free Radic. Biol. Med. , vol.50 , pp. 609-616
    • Affourtit, C.1
  • 86
    • 77955284325 scopus 로고    scopus 로고
    • Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion
    • Gray J.P., Heart E. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion. Toxicol. Mech. Methods 2010, 20:167-174.
    • (2010) Toxicol. Mech. Methods , vol.20 , pp. 167-174
    • Gray, J.P.1    Heart, E.2
  • 87
    • 63749097442 scopus 로고    scopus 로고
    • Fuel utilization by hypothalamic neurons: roles for ROS
    • Horvath T.L., et al. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol. Metab. 2009, 20:78-87.
    • (2009) Trends Endocrinol. Metab. , vol.20 , pp. 78-87
    • Horvath, T.L.1
  • 88
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • Zhang J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011, 30:4860-4873.
    • (2011) EMBO J. , vol.30 , pp. 4860-4873
    • Zhang, J.1
  • 89
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30:1191-1212.
    • (2001) Free Radic. Biol. Med. , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 90
    • 81855207310 scopus 로고    scopus 로고
    • Oxidants, metabolism, and stem cell biology
    • Liu J., et al. Oxidants, metabolism, and stem cell biology. Free Radic. Biol. Med. 2011, 51:2158-2162.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 2158-2162
    • Liu, J.1
  • 91
    • 79959716502 scopus 로고    scopus 로고
    • Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
    • Mailloux R.J., et al. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 2011, 437:301-311.
    • (2011) Biochem. J. , vol.437 , pp. 301-311
    • Mailloux, R.J.1
  • 92
    • 0035918162 scopus 로고    scopus 로고
    • Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism
    • Huppertz C., et al. Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J. Biol. Chem. 2001, 276:12520-12529.
    • (2001) J. Biol. Chem. , vol.276 , pp. 12520-12529
    • Huppertz, C.1
  • 93
    • 18244379331 scopus 로고    scopus 로고
    • Superoxide activates mitochondrial uncoupling proteins
    • Echtay K.S., et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002, 415:96-99.
    • (2002) Nature , vol.415 , pp. 96-99
    • Echtay, K.S.1
  • 94
    • 0041465009 scopus 로고    scopus 로고
    • A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling
    • Echtay K.S., et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003, 22:4103-4110.
    • (2003) EMBO J. , vol.22 , pp. 4103-4110
    • Echtay, K.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.