-
1
-
-
77952415166
-
Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man
-
Wallace D.C. Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8947-8953.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 8947-8953
-
-
Wallace, D.C.1
-
2
-
-
79953180902
-
Assessing mitochondrial dysfunction in cells
-
Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435:297-312.
-
(2011)
Biochem. J.
, vol.435
, pp. 297-312
-
-
Brand, M.D.1
Nicholls, D.G.2
-
3
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417:1-13.
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
4
-
-
33746016268
-
Mitochondria: more than just a powerhouse
-
McBride H.M., et al. Mitochondria: more than just a powerhouse. Curr. Biol. 2006, 16:R551-R560.
-
(2006)
Curr. Biol.
, vol.16
-
-
McBride, H.M.1
-
5
-
-
36949083936
-
Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism
-
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191:144-148.
-
(1961)
Nature
, vol.191
, pp. 144-148
-
-
Mitchell, P.1
-
6
-
-
0018784261
-
Keilin's respiratory chain concept and its chemiosmotic consequences
-
Mitchell P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 1979, 206:1148-1159.
-
(1979)
Science
, vol.206
, pp. 1148-1159
-
-
Mitchell, P.1
-
7
-
-
80051783174
-
Uncoupling proteins and the control of mitochondrial reactive oxygen species production
-
Mailloux R.J., Harper M.E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 2011, 51:1106-1115.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 1106-1115
-
-
Mailloux, R.J.1
Harper, M.E.2
-
8
-
-
0015363173
-
The cellular production of hydrogen peroxide
-
Boveris A., et al. The cellular production of hydrogen peroxide. Biochem. J. 1972, 128:617-630.
-
(1972)
Biochem. J.
, vol.128
, pp. 617-630
-
-
Boveris, A.1
-
9
-
-
0015882341
-
The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
-
Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 1973, 134:707-716.
-
(1973)
Biochem. J.
, vol.134
, pp. 707-716
-
-
Boveris, A.1
Chance, B.2
-
10
-
-
50949125411
-
The efficiency of cellular energy transduction and its implications for obesity
-
Harper M.E., et al. The efficiency of cellular energy transduction and its implications for obesity. Annu. Rev. Nutr. 2008, 28:13-33.
-
(2008)
Annu. Rev. Nutr.
, vol.28
, pp. 13-33
-
-
Harper, M.E.1
-
11
-
-
0142061586
-
Oxidative stress in diabetes
-
Piconi L., et al. Oxidative stress in diabetes. Clin. Chem. Lab. Med. 2003, 41:1144-1149.
-
(2003)
Clin. Chem. Lab. Med.
, vol.41
, pp. 1144-1149
-
-
Piconi, L.1
-
12
-
-
81855221662
-
Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders
-
Lemire J., Appanna V.D. Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders. J. Inorg. Biochem. 2011, 105:1513-1517.
-
(2011)
J. Inorg. Biochem.
, vol.105
, pp. 1513-1517
-
-
Lemire, J.1
Appanna, V.D.2
-
13
-
-
77956186783
-
Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
-
Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35:505-513.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 505-513
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
14
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
15
-
-
47549096022
-
Superoxide flashes in single mitochondria
-
Wang W., et al. Superoxide flashes in single mitochondria. Cell 2008, 134:279-290.
-
(2008)
Cell
, vol.134
, pp. 279-290
-
-
Wang, W.1
-
16
-
-
77958542380
-
Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently
-
Pouvreau S. Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS ONE 2010, 5:e13035.
-
(2010)
PLoS ONE
, vol.5
-
-
Pouvreau, S.1
-
17
-
-
0242582202
-
Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes
-
Aon M.A., et al. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem. 2003, 278:44735-44744.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 44735-44744
-
-
Aon, M.A.1
-
18
-
-
0033785071
-
Uncoupling to survive? The role of mitochondrial inefficiency in ageing
-
Brand M.D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 2000, 35:811-820.
-
(2000)
Exp. Gerontol.
, vol.35
, pp. 811-820
-
-
Brand, M.D.1
-
19
-
-
0029976895
-
Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate
-
Rolfe D.F., Brand M.D. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am. J. Physiol. 1996, 271:C1380-C1389.
-
(1996)
Am. J. Physiol.
, vol.271
-
-
Rolfe, D.F.1
Brand, M.D.2
-
20
-
-
0032953969
-
Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR
-
Rolfe D.F., et al. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am. J. Physiol. 1999, 276:C692-C699.
-
(1999)
Am. J. Physiol.
, vol.276
-
-
Rolfe, D.F.1
-
21
-
-
36148985315
-
Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment
-
Arvier M., et al. Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E1320-E1324.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
-
-
Arvier, M.1
-
22
-
-
77953812540
-
Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice
-
Bevilacqua L., et al. Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice. Biochim. Biophys. Acta 2010, 1797:1389-1397.
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, pp. 1389-1397
-
-
Bevilacqua, L.1
-
23
-
-
67449149911
-
Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection
-
Nadtochiy S.M., et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc. Res. 2009, 82:333-340.
-
(2009)
Cardiovasc. Res.
, vol.82
, pp. 333-340
-
-
Nadtochiy, S.M.1
-
24
-
-
47549096022
-
Superoxide flashes in single mitochondria
-
Wang W., et al. Superoxide flashes in single mitochondria. Cell 2008, 134:279-290.
-
(2008)
Cell
, vol.134
, pp. 279-290
-
-
Wang, W.1
-
25
-
-
79960991178
-
Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis
-
Ma Q., et al. Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis. J. Biol. Chem. 2011, 286:27573-27581.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27573-27581
-
-
Ma, Q.1
-
26
-
-
4644295401
-
Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids
-
Shabalina I.G., et al. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J. Biol. Chem. 2004, 279:38236-38248.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 38236-38248
-
-
Shabalina, I.G.1
-
27
-
-
28644442428
-
SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity
-
Silva J.P., et al. SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity. EMBO J. 2005, 24:4061-4070.
-
(2005)
EMBO J.
, vol.24
, pp. 4061-4070
-
-
Silva, J.P.1
-
28
-
-
84855387138
-
Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics
-
Mailloux R.J., et al. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J. 2012, 26:363-375.
-
(2012)
FASEB J.
, vol.26
, pp. 363-375
-
-
Mailloux, R.J.1
-
29
-
-
79958735550
-
Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3
-
Mailloux R.J., et al. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 2011, 286:21865-21875.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 21865-21875
-
-
Mailloux, R.J.1
-
30
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
31
-
-
57749101272
-
Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies
-
Dzbek J., Korzeniewski B. Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies. J. Biol. Chem. 2008, 283:33232-33239.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 33232-33239
-
-
Dzbek, J.1
Korzeniewski, B.2
-
33
-
-
0022559216
-
Oxy-radicals and related species: their formation, lifetimes, and reactions
-
Pryor W.A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol. 1986, 48:657-667.
-
(1986)
Annu. Rev. Physiol.
, vol.48
, pp. 657-667
-
-
Pryor, W.A.1
-
34
-
-
0038771142
-
The nuclear encoded subunits of complex I from bovine heart mitochondria
-
Hirst J., et al. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 2003, 1604:135-150.
-
(2003)
Biochim. Biophys. Acta
, vol.1604
, pp. 135-150
-
-
Hirst, J.1
-
35
-
-
0019083215
-
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
-
Turrens J.F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980, 191:421-427.
-
(1980)
Biochem. J.
, vol.191
, pp. 421-427
-
-
Turrens, J.F.1
Boveris, A.2
-
36
-
-
1042301416
-
Characterization of superoxide-producing sites in isolated brain mitochondria
-
Kudin A.P., et al. Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 2004, 279:4127-4135.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 4127-4135
-
-
Kudin, A.P.1
-
37
-
-
4544354262
-
Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
-
Lambert A.J., Brand M.D. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 2004, 279:39414-39420.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39414-39420
-
-
Lambert, A.J.1
Brand, M.D.2
-
38
-
-
79961008706
-
Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
-
Treberg J.R., et al. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 2011, 286:27103-27110.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27103-27110
-
-
Treberg, J.R.1
-
39
-
-
24344508510
-
The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria
-
Miwa S., Brand M.D. The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim. Biophys. Acta 2005, 1709:214-219.
-
(2005)
Biochim. Biophys. Acta
, vol.1709
, pp. 214-219
-
-
Miwa, S.1
Brand, M.D.2
-
40
-
-
46449118774
-
The Q-cycle reviewed: how well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?
-
Crofts A.R., et al. The Q-cycle reviewed: how well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?. Biochim. Biophys. Acta 2008, 1777:1001-1019.
-
(2008)
Biochim. Biophys. Acta
, vol.1777
, pp. 1001-1019
-
-
Crofts, A.R.1
-
41
-
-
34250745912
-
The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
-
Bell E.L., et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007, 177:1029-1036.
-
(2007)
J. Cell Biol.
, vol.177
, pp. 1029-1036
-
-
Bell, E.L.1
-
42
-
-
77954452036
-
Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase
-
Mailloux R.J., Harper M.E. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase. FASEB J. 2010, 24:2495-2506.
-
(2010)
FASEB J.
, vol.24
, pp. 2495-2506
-
-
Mailloux, R.J.1
Harper, M.E.2
-
43
-
-
77956713136
-
Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species
-
Patten D.A., et al. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol. Biol. Cell 2010, 21:3247-3257.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 3247-3257
-
-
Patten, D.A.1
-
44
-
-
0034811384
-
Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain
-
Starkov A.A., Fiskum G. Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain. Biochem. Biophys. Res. Commun. 2001, 281:645-650.
-
(2001)
Biochem. Biophys. Res. Commun.
, vol.281
, pp. 645-650
-
-
Starkov, A.A.1
Fiskum, G.2
-
45
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
-
Guzy R.D., et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005, 1:401-408.
-
(2005)
Cell Metab.
, vol.1
, pp. 401-408
-
-
Guzy, R.D.1
-
46
-
-
80053904684
-
Mitochondrial complex III ROS regulate adipocyte differentiation
-
Tormos K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011, 14:537-544.
-
(2011)
Cell Metab.
, vol.14
, pp. 537-544
-
-
Tormos, K.V.1
-
47
-
-
77949322975
-
2 emission during long-chain fatty acid oxidation
-
2 emission during long-chain fatty acid oxidation. J. Biol. Chem. 2010, 285:5748-5758.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5748-5758
-
-
Seifert, E.L.1
-
48
-
-
4544226082
-
Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase
-
Tretter L., Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J. Neurosci. 2004, 24:7771-7778.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7771-7778
-
-
Tretter, L.1
Adam-Vizi, V.2
-
49
-
-
0017293045
-
Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase
-
Forman H.J., Kennedy J. Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch. Biochem. Biophys. 1976, 173:219-224.
-
(1976)
Arch. Biochem. Biophys.
, vol.173
, pp. 219-224
-
-
Forman, H.J.1
Kennedy, J.2
-
50
-
-
33846188870
-
2 generation in brain mitochondria
-
2 generation in brain mitochondria. J. Neurochem. 2007, 100:650-663.
-
(2007)
J. Neurochem.
, vol.100
, pp. 650-663
-
-
Tretter, L.1
-
51
-
-
76049086567
-
Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II
-
Paranagama M.P., et al. Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II. Mitochondrion 2010, 10:158-165.
-
(2010)
Mitochondrion
, vol.10
, pp. 158-165
-
-
Paranagama, M.P.1
-
52
-
-
79952144564
-
2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix
-
2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 2011, 13:340-350.
-
(2011)
Cell Metab.
, vol.13
, pp. 340-350
-
-
Cocheme, H.M.1
-
53
-
-
80052465160
-
Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals
-
Fang H., et al. Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Res. 2011, 21:1295-1304.
-
(2011)
Cell Res.
, vol.21
, pp. 1295-1304
-
-
Fang, H.1
-
54
-
-
79959716502
-
Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
-
Mailloux R.J., et al. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 2011, 437:301-311.
-
(2011)
Biochem. J.
, vol.437
, pp. 301-311
-
-
Mailloux, R.J.1
-
55
-
-
60649095658
-
Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation
-
Acin-Perez R., et al. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 2009, 9:265-276.
-
(2009)
Cell Metab.
, vol.9
, pp. 265-276
-
-
Acin-Perez, R.1
-
56
-
-
79551584971
-
Regulation of intermediary metabolism by protein acetylation
-
Guan K.L., Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 2011, 36:108-116.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 108-116
-
-
Guan, K.L.1
Xiong, Y.2
-
57
-
-
64549106959
-
Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
-
Gallogly M.M., et al. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid. Redox Signal. 2009, 11:1059-1081.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1059-1081
-
-
Gallogly, M.M.1
-
58
-
-
22044444687
-
Glutathionylation of mitochondrial proteins
-
Hurd T.R., et al. Glutathionylation of mitochondrial proteins. Antioxid. Redox Signal. 2005, 7:999-1010.
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 999-1010
-
-
Hurd, T.R.1
-
59
-
-
79959221560
-
Reversible and irreversible protein glutathionylation: biological and clinical aspects
-
Cooper A.J., et al. Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin. Drug Metab. Toxicol. 2011, 7:891-910.
-
(2011)
Expert Opin. Drug Metab. Toxicol.
, vol.7
, pp. 891-910
-
-
Cooper, A.J.1
-
60
-
-
33847021426
-
Role of glutathiolation in preservation, restoration and regulation of protein function
-
Hill B.G., Bhatnagar A. Role of glutathiolation in preservation, restoration and regulation of protein function. IUBMB Life 2007, 59:21-26.
-
(2007)
IUBMB Life
, vol.59
, pp. 21-26
-
-
Hill, B.G.1
Bhatnagar, A.2
-
61
-
-
0031000775
-
PH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis
-
Srinivasan U., et al. pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis. Biochemistry 1997, 36:3199-3206.
-
(1997)
Biochemistry
, vol.36
, pp. 3199-3206
-
-
Srinivasan, U.1
-
63
-
-
0020478933
-
Status of the mitochondrial pool of glutathione in the isolated hepatocyte
-
Meredith M.J., Reed D.J. Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J. Biol. Chem. 1982, 257:3747-3753.
-
(1982)
J. Biol. Chem.
, vol.257
, pp. 3747-3753
-
-
Meredith, M.J.1
Reed, D.J.2
-
64
-
-
0021891877
-
Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation
-
Ziegler D.M. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu. Rev. Biochem. 1985, 54:305-329.
-
(1985)
Annu. Rev. Biochem.
, vol.54
, pp. 305-329
-
-
Ziegler, D.M.1
-
65
-
-
84856745322
-
Mechanisms of altered redox regulation in neurodegenerative diseases - focus on S-glutathionylation
-
Sabens Liedhegner E.A., et al. Mechanisms of altered redox regulation in neurodegenerative diseases - focus on S-glutathionylation. Antioxid. Redox Signal. 2012, 16:543-566.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 543-566
-
-
Sabens Liedhegner, E.A.1
-
66
-
-
81155154369
-
Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance
-
de Luca A., et al. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochem. J. 2011, 440:175-183.
-
(2011)
Biochem. J.
, vol.440
, pp. 175-183
-
-
de Luca, A.1
-
67
-
-
36349016509
-
Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
-
Chen Y.R., et al. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 2007, 282:32640-32654.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32640-32654
-
-
Chen, Y.R.1
-
68
-
-
38349016262
-
Molecular mechanisms and potential clinical significance of S-glutathionylation
-
Dalle-Donne I., et al. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal. 2008, 10:445-473.
-
(2008)
Antioxid. Redox Signal.
, vol.10
, pp. 445-473
-
-
Dalle-Donne, I.1
-
69
-
-
84857630703
-
Protein S-glutathiolation: redox-sensitive regulation of protein function
-
Hill B.G., Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J. Mol. Cell. Cardiol. 2012, 52:559-567.
-
(2012)
J. Mol. Cell. Cardiol.
, vol.52
, pp. 559-567
-
-
Hill, B.G.1
Bhatnagar, A.2
-
70
-
-
84856741245
-
Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation
-
Mieyal J.J., Chock P.B. Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid. Redox Signal. 2012, 16:471-475.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 471-475
-
-
Mieyal, J.J.1
Chock, P.B.2
-
71
-
-
0027238801
-
Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase
-
Gravina S.A., Mieyal J.J. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 1993, 32:3368-3376.
-
(1993)
Biochemistry
, vol.32
, pp. 3368-3376
-
-
Gravina, S.A.1
Mieyal, J.J.2
-
72
-
-
33748339203
-
Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta
-
Reynaert N.L., et al. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:13086-13091.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 13086-13091
-
-
Reynaert, N.L.1
-
73
-
-
51349142890
-
Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles
-
Gallogly M.M., et al. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 2008, 47:11144-11157.
-
(2008)
Biochemistry
, vol.47
, pp. 11144-11157
-
-
Gallogly, M.M.1
-
74
-
-
9144249116
-
Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense
-
Beer S.M., et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense. J. Biol. Chem. 2004, 279:47939-47951.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47939-47951
-
-
Beer, S.M.1
-
75
-
-
80255140367
-
Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells
-
Wu H., et al. Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. Free Radic. Biol. Med. 2011, 51:2108-2117.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 2108-2117
-
-
Wu, H.1
-
76
-
-
20444411531
-
Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor
-
Lillig C.H., et al. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:8168-8173.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 8168-8173
-
-
Lillig, C.H.1
-
77
-
-
37849043898
-
Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
-
Applegate M.A., et al. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47:473-478.
-
(2008)
Biochemistry
, vol.47
, pp. 473-478
-
-
Applegate, M.A.1
-
78
-
-
54049146740
-
Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
-
Hurd T.R., et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283:24801-24815.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24801-24815
-
-
Hurd, T.R.1
-
79
-
-
77952559481
-
The on-off switches of the mitochondrial uncoupling proteins
-
Azzu V., Brand M.D. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem. Sci. 2010, 35:298-307.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 298-307
-
-
Azzu, V.1
Brand, M.D.2
-
80
-
-
58749091645
-
UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality
-
Feldmann H.M., et al. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009, 9:203-209.
-
(2009)
Cell Metab.
, vol.9
, pp. 203-209
-
-
Feldmann, H.M.1
-
81
-
-
57049114918
-
Long-term high-fat feeding induces greater fat storage in mice lacking UCP3
-
Costford S.R., et al. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3. Am. J. Physiol. Endocrinol. Metab. 2008, 295:E1018-E1024.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
-
-
Costford, S.R.1
-
82
-
-
20444500563
-
Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation
-
Bezaire V., et al. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J. 2005, 19:977-979.
-
(2005)
FASEB J.
, vol.19
, pp. 977-979
-
-
Bezaire, V.1
-
83
-
-
0041464712
-
Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma
-
Mattiasson G., et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat. Med. 2003, 9:1062-1068.
-
(2003)
Nat. Med.
, vol.9
, pp. 1062-1068
-
-
Mattiasson, G.1
-
84
-
-
78149459962
-
Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents
-
Mailloux R.J., et al. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS ONE 2010, 5:e13289.
-
(2010)
PLoS ONE
, vol.5
-
-
Mailloux, R.J.1
-
85
-
-
79551479549
-
Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species
-
Affourtit C., et al. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radic. Biol. Med. 2011, 50:609-616.
-
(2011)
Free Radic. Biol. Med.
, vol.50
, pp. 609-616
-
-
Affourtit, C.1
-
86
-
-
77955284325
-
Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion
-
Gray J.P., Heart E. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion. Toxicol. Mech. Methods 2010, 20:167-174.
-
(2010)
Toxicol. Mech. Methods
, vol.20
, pp. 167-174
-
-
Gray, J.P.1
Heart, E.2
-
87
-
-
63749097442
-
Fuel utilization by hypothalamic neurons: roles for ROS
-
Horvath T.L., et al. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol. Metab. 2009, 20:78-87.
-
(2009)
Trends Endocrinol. Metab.
, vol.20
, pp. 78-87
-
-
Horvath, T.L.1
-
88
-
-
83455235489
-
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
-
Zhang J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011, 30:4860-4873.
-
(2011)
EMBO J.
, vol.30
, pp. 4860-4873
-
-
Zhang, J.1
-
89
-
-
0035371184
-
Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
-
Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30:1191-1212.
-
(2001)
Free Radic. Biol. Med.
, vol.30
, pp. 1191-1212
-
-
Schafer, F.Q.1
Buettner, G.R.2
-
90
-
-
81855207310
-
Oxidants, metabolism, and stem cell biology
-
Liu J., et al. Oxidants, metabolism, and stem cell biology. Free Radic. Biol. Med. 2011, 51:2158-2162.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 2158-2162
-
-
Liu, J.1
-
91
-
-
79959716502
-
Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
-
Mailloux R.J., et al. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 2011, 437:301-311.
-
(2011)
Biochem. J.
, vol.437
, pp. 301-311
-
-
Mailloux, R.J.1
-
92
-
-
0035918162
-
Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism
-
Huppertz C., et al. Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J. Biol. Chem. 2001, 276:12520-12529.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 12520-12529
-
-
Huppertz, C.1
-
93
-
-
18244379331
-
Superoxide activates mitochondrial uncoupling proteins
-
Echtay K.S., et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002, 415:96-99.
-
(2002)
Nature
, vol.415
, pp. 96-99
-
-
Echtay, K.S.1
-
94
-
-
0041465009
-
A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling
-
Echtay K.S., et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003, 22:4103-4110.
-
(2003)
EMBO J.
, vol.22
, pp. 4103-4110
-
-
Echtay, K.S.1
|