-
1
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
Balaban R.S., et al. Mitochondria, oxidants, and aging. Cell 2005, 120:483-495.
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
-
2
-
-
34447523460
-
Hypoxia-inducible factor-1α, a key factor in the keratinocyte response to UVB exposure
-
Rezvani H.R., et al. Hypoxia-inducible factor-1α, a key factor in the keratinocyte response to UVB exposure. J. Biol. Chem. 2007, 282:16413-16422.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 16413-16422
-
-
Rezvani, H.R.1
-
3
-
-
76049083966
-
Reactive oxygen species, cellular redox systems, and apoptosis
-
Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48:749-762.
-
(2010)
Free Radic. Biol. Med.
, vol.48
, pp. 749-762
-
-
Circu, M.L.1
Aw, T.Y.2
-
4
-
-
84863664040
-
Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription
-
Al-Mehdi A.B., et al. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci. Signal. 2012, 5:ra47.
-
(2012)
Sci. Signal.
, vol.5
-
-
Al-Mehdi, A.B.1
-
5
-
-
80053904684
-
Mitochondrial complex III ROS regulate adipocyte differentiation
-
Tormos K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011, 14:537-544.
-
(2011)
Cell Metab.
, vol.14
, pp. 537-544
-
-
Tormos, K.V.1
-
6
-
-
70349512259
-
Reactive oxygen species enhance insulin sensitivity
-
Loh K., et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009, 10:260-272.
-
(2009)
Cell Metab.
, vol.10
, pp. 260-272
-
-
Loh, K.1
-
7
-
-
84869237918
-
Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion
-
Mailloux R.J., et al. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion. J. Biol. Chem. 2012, 287:39673-39685.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 39673-39685
-
-
Mailloux, R.J.1
-
8
-
-
49649122302
-
UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals
-
Andrews Z.B., et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 2008, 454:846-851.
-
(2008)
Nature
, vol.454
, pp. 846-851
-
-
Andrews, Z.B.1
-
9
-
-
40149108041
-
The tricarboxylic acid cycle, an ancient metabolic network with a novel twist
-
Mailloux R.J., et al. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS ONE 2007, 2:e690.
-
(2007)
PLoS ONE
, vol.2
-
-
Mailloux, R.J.1
-
10
-
-
84859809125
-
Redox regulation of mitochondrial function
-
Handy D.E., Loscalzo J. Redox regulation of mitochondrial function. Antioxid. Redox Signal. 2012, 16:1323-1367.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 1323-1367
-
-
Handy, D.E.1
Loscalzo, J.2
-
11
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
12
-
-
80051783174
-
Uncoupling proteins and the control of mitochondrial reactive oxygen species production
-
Mailloux R.J., Harper M.E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 2011, 51:1106-1115.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 1106-1115
-
-
Mailloux, R.J.1
Harper, M.E.2
-
13
-
-
84863301287
-
Mitochondrial redox signalling at a glance
-
Collins Y., et al. Mitochondrial redox signalling at a glance. J. Cell Sci. 2012, 125:801-806.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 801-806
-
-
Collins, Y.1
-
14
-
-
84859907743
-
Mitochondria and diabetes. An intriguing pathogenetic role
-
Newsholme P., et al. Mitochondria and diabetes. An intriguing pathogenetic role. Adv. Exp. Med. Biol. 2012, 942:235-247.
-
(2012)
Adv. Exp. Med. Biol.
, vol.942
, pp. 235-247
-
-
Newsholme, P.1
-
15
-
-
84856729192
-
Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
-
Murphy M.P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal. 2012, 16:476-495.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 476-495
-
-
Murphy, M.P.1
-
16
-
-
44449090114
-
Real-time imaging of the intracellular glutathione redox potential
-
Gutscher M., et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 2008, 5:553-559.
-
(2008)
Nat. Methods
, vol.5
, pp. 553-559
-
-
Gutscher, M.1
-
17
-
-
73449124480
-
Mitochondrial glutathione, a key survival antioxidant
-
Mari M., et al. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal. 2009, 11:2685-2700.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 2685-2700
-
-
Mari, M.1
-
18
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417:1-13.
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
19
-
-
0021351203
-
Oxygen toxicity, oxygen radicals, transition metals and disease
-
Halliwell B., Gutteridge J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219:1-14.
-
(1984)
Biochem. J.
, vol.219
, pp. 1-14
-
-
Halliwell, B.1
Gutteridge, J.M.2
-
20
-
-
0023779695
-
Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent?
-
Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent?. Biochem. J. 1988, 249:185-190.
-
(1988)
Biochem. J.
, vol.249
, pp. 185-190
-
-
Puppo, A.1
Halliwell, B.2
-
21
-
-
32644454767
-
The role of reactive oxygen and nitrogen species in cellular iron metabolism
-
Mladenka P., et al. The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic. Res. 2006, 40:263-272.
-
(2006)
Free Radic. Res.
, vol.40
, pp. 263-272
-
-
Mladenka, P.1
-
22
-
-
84865434841
-
Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins
-
Mailloux R.J., Harper M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab. 2012, 23:451-458.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 451-458
-
-
Mailloux, R.J.1
Harper, M.E.2
-
23
-
-
33751072935
-
Bioenergetics and the formation of mitochondrial reactive oxygen species
-
Adam-Vizi V., Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci. 2006, 27:639-645.
-
(2006)
Trends Pharmacol. Sci.
, vol.27
, pp. 639-645
-
-
Adam-Vizi, V.1
Chinopoulos, C.2
-
24
-
-
0019083215
-
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
-
Turrens J.F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980, 191:421-427.
-
(1980)
Biochem. J.
, vol.191
, pp. 421-427
-
-
Turrens, J.F.1
Boveris, A.2
-
25
-
-
34250745912
-
o site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
-
o site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007, 177:1029-1036.
-
(2007)
J. Cell Biol.
, vol.177
, pp. 1029-1036
-
-
Bell, E.L.1
-
26
-
-
0037160091
-
Topology of superoxide production from different sites in the mitochondrial electron transport chain
-
St-Pierre J., et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 2002, 277:44784-44790.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44784-44790
-
-
St-Pierre, J.1
-
27
-
-
84864540083
-
Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
-
Quinlan C.L., et al. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012, 287:27255-27264.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 27255-27264
-
-
Quinlan, C.L.1
-
28
-
-
4544226082
-
Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase
-
Tretter L., Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase. J. Neurosci. 2004, 24:7771-7778.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7771-7778
-
-
Tretter, L.1
Adam-Vizi, V.2
-
29
-
-
0017293045
-
Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase
-
Forman H.J., Kennedy J. Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch. Biochem. Biophys. 1976, 173:219-224.
-
(1976)
Arch. Biochem. Biophys.
, vol.173
, pp. 219-224
-
-
Forman, H.J.1
Kennedy, J.2
-
30
-
-
84871139444
-
A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
-
Orr A.L., et al. A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 2012, 287:42921-42935.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42921-42935
-
-
Orr, A.L.1
-
31
-
-
84878009179
-
Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria
-
Perevoshchikova I.V., et al. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radic. Biol. Med. 2013, 61C:298-309.
-
(2013)
Free Radic. Biol. Med.
, vol.61 C
, pp. 298-309
-
-
Perevoshchikova, I.V.1
-
32
-
-
22744447211
-
Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
-
Giorgio M., et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005, 122:221-233.
-
(2005)
Cell
, vol.122
, pp. 221-233
-
-
Giorgio, M.1
-
33
-
-
33745856614
-
Redox pathways of the mitochondrion
-
Koehler C.M., et al. Redox pathways of the mitochondrion. Antioxid. Redox Signal. 2006, 8:813-822.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, pp. 813-822
-
-
Koehler, C.M.1
-
34
-
-
79959716502
-
Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
-
Mailloux R.J., et al. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 2011, 437:301-311.
-
(2011)
Biochem. J.
, vol.437
, pp. 301-311
-
-
Mailloux, R.J.1
-
35
-
-
0030729851
-
High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
-
Korshunov S.S., et al. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416:15-18.
-
(1997)
FEBS Lett.
, vol.416
, pp. 15-18
-
-
Korshunov, S.S.1
-
36
-
-
1042301416
-
Characterization of superoxide-producing sites in isolated brain mitochondria
-
Kudin A.P., et al. Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 2004, 279:4127-4135.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 4127-4135
-
-
Kudin, A.P.1
-
37
-
-
0027491617
-
The inactivation of Fe-S cluster containing hydro-lyases by superoxide
-
Flint D.H., et al. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 1993, 268:22369-22376.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 22369-22376
-
-
Flint, D.H.1
-
38
-
-
47049101575
-
Nitro-fatty acid formation and signaling
-
Freeman B.A., et al. Nitro-fatty acid formation and signaling. J. Biol. Chem. 2008, 283:15515-15519.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 15515-15519
-
-
Freeman, B.A.1
-
39
-
-
79957441981
-
The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance
-
Lindahl M., et al. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid. Redox Signal. 2011, 14:2581-2642.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 2581-2642
-
-
Lindahl, M.1
-
40
-
-
79959340042
-
Protein sulfenic acid formation: from cellular damage to redox regulation
-
Roos G., Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med. 2011, 51:314-326.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 314-326
-
-
Roos, G.1
Messens, J.2
-
41
-
-
73849144014
-
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
-
Cox A.G., et al. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 2010, 425:313-325.
-
(2010)
Biochem. J.
, vol.425
, pp. 313-325
-
-
Cox, A.G.1
-
42
-
-
35448954324
-
Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation
-
Trujillo M., et al. Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 2007, 467:95-106.
-
(2007)
Arch. Biochem. Biophys.
, vol.467
, pp. 95-106
-
-
Trujillo, M.1
-
43
-
-
0242668686
-
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
-
Wood Z.A., et al. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300:650-653.
-
(2003)
Science
, vol.300
, pp. 650-653
-
-
Wood, Z.A.1
-
44
-
-
67649279837
-
Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III
-
Noh Y.H., et al. Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. 2009, 284:8470-8477.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8470-8477
-
-
Noh, Y.H.1
-
45
-
-
0032820359
-
Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress
-
Fu Y., et al. Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radic. Biol. Med. 1999, 27:605-611.
-
(1999)
Free Radic. Biol. Med.
, vol.27
, pp. 605-611
-
-
Fu, Y.1
-
46
-
-
0028788763
-
Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-κB: studies with isolated mitochondria and rat hepatocytes
-
Garcia-Ruiz C., et al. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-κB: studies with isolated mitochondria and rat hepatocytes. Mol. Pharmacol. 1995, 48:825-834.
-
(1995)
Mol. Pharmacol.
, vol.48
, pp. 825-834
-
-
Garcia-Ruiz, C.1
-
47
-
-
84876926069
-
Mouse models of oxidative stress indicate a role for modulating healthy aging
-
Hamilton R., et al. Mouse models of oxidative stress indicate a role for modulating healthy aging. J. Clin. Exp. Pathol. 2012, S4:1-14.
-
(2012)
J. Clin. Exp. Pathol.
, vol.S4
, pp. 1-14
-
-
Hamilton, R.1
-
48
-
-
0036070514
-
Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid
-
Moini H., et al. Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 2002, 182:84-90.
-
(2002)
Toxicol. Appl. Pharmacol.
, vol.182
, pp. 84-90
-
-
Moini, H.1
-
49
-
-
37849043898
-
Reversible inhibition of α-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
-
Applegate M.A., et al. Reversible inhibition of α-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47:473-478.
-
(2008)
Biochemistry
, vol.47
, pp. 473-478
-
-
Applegate, M.A.1
-
50
-
-
33744979253
-
Nonezymatic formation of succinate in mitochondria under oxidative stress
-
Fedotcheva N.I., et al. Nonezymatic formation of succinate in mitochondria under oxidative stress. Free Radic. Biol. Med. 2006, 41:56-64.
-
(2006)
Free Radic. Biol. Med.
, vol.41
, pp. 56-64
-
-
Fedotcheva, N.I.1
-
51
-
-
1142273368
-
Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection
-
Halestrap A.P., et al. Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection. Cardiovasc. Res. 2004, 61:372-385.
-
(2004)
Cardiovasc. Res.
, vol.61
, pp. 372-385
-
-
Halestrap, A.P.1
-
52
-
-
33750201619
-
Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression
-
Fernandez-Gomez F.J., et al. Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression. Neurobiol. Dis. 2006, 24:296-307.
-
(2006)
Neurobiol. Dis.
, vol.24
, pp. 296-307
-
-
Fernandez-Gomez, F.J.1
-
53
-
-
75949122041
-
Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms
-
Shen H., et al. Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms. Neurobiol. Dis. 2010, 37:711-722.
-
(2010)
Neurobiol. Dis.
, vol.37
, pp. 711-722
-
-
Shen, H.1
-
54
-
-
0030703154
-
Pyruvate protects neurons against hydrogen peroxide-induced toxicity
-
Desagher S., et al. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci. 1997, 17:9060-9067.
-
(1997)
J. Neurosci.
, vol.17
, pp. 9060-9067
-
-
Desagher, S.1
-
55
-
-
0343580474
-
Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion
-
Vasquez-Vivar J., et al. Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion. Chem. Res. Toxicol. 1997, 10:786-794.
-
(1997)
Chem. Res. Toxicol.
, vol.10
, pp. 786-794
-
-
Vasquez-Vivar, J.1
-
56
-
-
4544355934
-
Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria
-
da-Silva W.S., et al. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J. Biol. Chem. 2004, 279:39846-39855.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39846-39855
-
-
da-Silva, W.S.1
-
57
-
-
33846001693
-
Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity
-
Meyer L.E., et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J. Biol. Chem. 2006, 281:37361-37371.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 37361-37371
-
-
Meyer, L.E.1
-
58
-
-
0036903625
-
Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state
-
Kushnareva Y., et al. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 2002, 368:545-553.
-
(2002)
Biochem. J.
, vol.368
, pp. 545-553
-
-
Kushnareva, Y.1
-
59
-
-
84875439431
-
Glutaredoxin-2 is required to control proton leak through uncoupling protein-3
-
Mailloux R.J., et al. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J. Biol. Chem. 2013, 288:8365-8379.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 8365-8379
-
-
Mailloux, R.J.1
-
60
-
-
84855387138
-
Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics
-
Mailloux R.J., et al. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J. 2012, 26:363-375.
-
(2012)
FASEB J.
, vol.26
, pp. 363-375
-
-
Mailloux, R.J.1
-
61
-
-
48149092833
-
High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation
-
Azzu V., et al. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochem. J. 2008, 413:323-332.
-
(2008)
Biochem. J.
, vol.413
, pp. 323-332
-
-
Azzu, V.1
-
62
-
-
80054051101
-
The regulation and physiology of mitochondrial proton leak
-
Divakaruni A.S., Brand M.D. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011, 26:192-205.
-
(2011)
Physiology (Bethesda)
, vol.26
, pp. 192-205
-
-
Divakaruni, A.S.1
Brand, M.D.2
-
63
-
-
0032953969
-
Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR
-
Rolfe D.F., et al. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am. J. Physiol. 1999, 276:C692-C699.
-
(1999)
Am. J. Physiol.
, vol.276
-
-
Rolfe, D.F.1
-
64
-
-
25144476923
-
Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3
-
Brand M.D., Esteves T.C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005, 2:85-93.
-
(2005)
Cell Metab.
, vol.2
, pp. 85-93
-
-
Brand, M.D.1
Esteves, T.C.2
-
65
-
-
38149130672
-
Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion
-
Affourtit C., Brand M.D. Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochem. J. 2008, 409:199-204.
-
(2008)
Biochem. J.
, vol.409
, pp. 199-204
-
-
Affourtit, C.1
Brand, M.D.2
-
66
-
-
84880986388
-
Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production
-
Adjeitey C.N., et al. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. Am. J. Physiol. Endocrinol. Metab. 2013, 305:E405-E415.
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.305
-
-
Adjeitey, C.N.1
-
67
-
-
1842409029
-
Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese
-
Enerback S., et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997, 387:90-94.
-
(1997)
Nature
, vol.387
, pp. 90-94
-
-
Enerback, S.1
-
68
-
-
29144515671
-
The basal proton conductance of mitochondria depends on adenine nucleotide translocase content
-
Brand M.D., et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem. J. 2005, 392:353-362.
-
(2005)
Biochem. J.
, vol.392
, pp. 353-362
-
-
Brand, M.D.1
-
69
-
-
67449149911
-
Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection
-
Nadtochiy S.M., et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc. Res. 2009, 82:333-340.
-
(2009)
Cardiovasc. Res.
, vol.82
, pp. 333-340
-
-
Nadtochiy, S.M.1
-
70
-
-
77955553628
-
GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart
-
Aguirre E., Cadenas S. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. Biochim. Biophys. Acta 2010, 1797:1716-1726.
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, pp. 1716-1726
-
-
Aguirre, E.1
Cadenas, S.2
-
71
-
-
77952559481
-
The on-off switches of the mitochondrial uncoupling proteins
-
Azzu V., Brand M.D. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem. Sci. 2010, 35:298-307.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 298-307
-
-
Azzu, V.1
Brand, M.D.2
-
72
-
-
84855794688
-
Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state
-
Schonfeld P., Wojtczak L. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. Biochim. Biophys. Acta 2012, 1817:410-418.
-
(2012)
Biochim. Biophys. Acta
, vol.1817
, pp. 410-418
-
-
Schonfeld, P.1
Wojtczak, L.2
-
73
-
-
84878003949
-
The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress
-
Anedda A., et al. The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic. Biol. Med. 2013, 61C:395-407.
-
(2013)
Free Radic. Biol. Med.
, vol.61 C
, pp. 395-407
-
-
Anedda, A.1
-
74
-
-
0038061012
-
A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation
-
Negre-Salvayre A., et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 1997, 11:809-815.
-
(1997)
FASEB J.
, vol.11
, pp. 809-815
-
-
Negre-Salvayre, A.1
-
75
-
-
18244379331
-
Superoxide activates mitochondrial uncoupling proteins
-
Echtay K.S., et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002, 415:96-99.
-
(2002)
Nature
, vol.415
, pp. 96-99
-
-
Echtay, K.S.1
-
76
-
-
0041465009
-
A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling
-
Echtay K.S., et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003, 22:4103-4110.
-
(2003)
EMBO J.
, vol.22
, pp. 4103-4110
-
-
Echtay, K.S.1
-
77
-
-
84868590991
-
Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics
-
Pfefferle A., et al. Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics. Biochim. Biophys. Acta 2013, 1833:80-89.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 80-89
-
-
Pfefferle, A.1
-
78
-
-
79958735550
-
Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3
-
Mailloux R.J., et al. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 2011, 286:21865-21875.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 21865-21875
-
-
Mailloux, R.J.1
-
79
-
-
50149084247
-
UCP2 is highly expressed in pancreatic α-cells and influences secretion and survival
-
Diao J., et al. UCP2 is highly expressed in pancreatic α-cells and influences secretion and survival. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:12057-12062.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 12057-12062
-
-
Diao, J.1
-
80
-
-
83455235489
-
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
-
Zhang J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011, 30:4860-4873.
-
(2011)
EMBO J.
, vol.30
, pp. 4860-4873
-
-
Zhang, J.1
-
81
-
-
35748953472
-
Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration
-
Anderson E.J., et al. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J. Biol. Chem. 2007, 282:31257-31266.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 31257-31266
-
-
Anderson, E.J.1
-
82
-
-
77952776083
-
Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis
-
Queiroga C.S., et al. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J. Biol. Chem. 2010, 285:17077-17088.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17077-17088
-
-
Queiroga, C.S.1
-
83
-
-
36349016509
-
Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
-
Chen Y.R., et al. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 2007, 282:32640-32654.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32640-32654
-
-
Chen, Y.R.1
-
84
-
-
34548163922
-
Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
-
Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7:381-391.
-
(2007)
Curr. Opin. Pharmacol.
, vol.7
, pp. 381-391
-
-
Gallogly, M.M.1
Mieyal, J.J.2
-
85
-
-
34547666858
-
S-Glutathionylation in protein redox regulation
-
Dalle-Donne I., et al. S-Glutathionylation in protein redox regulation. Free Radic. Biol. Med. 2007, 43:883-898.
-
(2007)
Free Radic. Biol. Med.
, vol.43
, pp. 883-898
-
-
Dalle-Donne, I.1
-
86
-
-
77954744310
-
GSSG-mediated Complex I defect in isolated cardiac mitochondria
-
Passarelli C., et al. GSSG-mediated Complex I defect in isolated cardiac mitochondria. Int. J. Mol. Med. 2010, 26:95-99.
-
(2010)
Int. J. Mol. Med.
, vol.26
, pp. 95-99
-
-
Passarelli, C.1
-
87
-
-
9144249116
-
Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
-
Beer S.M., et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279:47939-47951.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47939-47951
-
-
Beer, S.M.1
-
88
-
-
84864970382
-
Protein thiyl radical mediates S-glutathionylation of complex I
-
Kang P.T., et al. Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic. Biol. Med. 2012, 53:962-973.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 962-973
-
-
Kang, P.T.1
-
89
-
-
51349142890
-
Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles
-
Gallogly M.M., et al. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 2008, 47:11144-11157.
-
(2008)
Biochemistry
, vol.47
, pp. 11144-11157
-
-
Gallogly, M.M.1
-
90
-
-
84865612521
-
The biological roles of glutaredoxins
-
Stroher E., Millar A.H. The biological roles of glutaredoxins. Biochem. J. 2012, 446:333-348.
-
(2012)
Biochem. J.
, vol.446
, pp. 333-348
-
-
Stroher, E.1
Millar, A.H.2
-
91
-
-
49349116124
-
Glutaredoxin systems
-
Lillig C.H., et al. Glutaredoxin systems. Biochim. Biophys. Acta 2008, 1780:1304-1317.
-
(2008)
Biochim. Biophys. Acta
, vol.1780
, pp. 1304-1317
-
-
Lillig, C.H.1
-
92
-
-
64549106959
-
Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
-
Gallogly M.M., et al. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid. Redox Signal. 2009, 11:1059-1081.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1059-1081
-
-
Gallogly, M.M.1
-
93
-
-
22044444687
-
Glutathionylation of mitochondrial proteins
-
Hurd T.R., et al. Glutathionylation of mitochondrial proteins. Antioxid. Redox Signal. 2005, 7:999-1010.
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 999-1010
-
-
Hurd, T.R.1
-
94
-
-
54049146740
-
Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
-
Hurd T.R., et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283:24801-24815.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24801-24815
-
-
Hurd, T.R.1
-
95
-
-
0037490142
-
Reversible glutathionylation of complex I increases mitochondrial superoxide formation
-
Taylor E.R., et al. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 2003, 278:19603-19610.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 19603-19610
-
-
Taylor, E.R.1
-
96
-
-
80255140367
-
Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells
-
Wu H., et al. Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. Free Radic. Biol. Med. 2011, 51:2108-2117.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 2108-2117
-
-
Wu, H.1
-
97
-
-
77955556206
-
2-induced cell apoptosis by protecting complex I activity in the mitochondria
-
2-induced cell apoptosis by protecting complex I activity in the mitochondria. Biochim. Biophys. Acta 2010, 1797:1705-1715.
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, pp. 1705-1715
-
-
Wu, H.1
-
98
-
-
58749103645
-
Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2
-
Diotte N.M., et al. Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim. Biophys. Acta 2009, 1793:427-438.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 427-438
-
-
Diotte, N.M.1
-
99
-
-
0030988140
-
Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression
-
Boss O., et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997, 408:39-42.
-
(1997)
FEBS Lett.
, vol.408
, pp. 39-42
-
-
Boss, O.1
-
100
-
-
20444411531
-
Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor
-
Lillig C.H., et al. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:8168-8173.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 8168-8173
-
-
Lillig, C.H.1
-
101
-
-
79954430645
-
Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange
-
Qi W., Cowan J.A. Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange. Chem. Commun. (Camb.) 2011, 47:4989-4991.
-
(2011)
Chem. Commun. (Camb.)
, vol.47
, pp. 4989-4991
-
-
Qi, W.1
Cowan, J.A.2
-
102
-
-
79955967159
-
Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study
-
Nagy P., et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J. Biol. Chem. 2011, 286:18048-18055.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18048-18055
-
-
Nagy, P.1
-
103
-
-
84872687926
-
Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis
-
Morgan B., et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 2013, 9:119-125.
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 119-125
-
-
Morgan, B.1
-
104
-
-
39949085437
-
Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology
-
Kemp M., et al. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic. Biol. Med. 2008, 44:921-937.
-
(2008)
Free Radic. Biol. Med.
, vol.44
, pp. 921-937
-
-
Kemp, M.1
-
105
-
-
70350622327
-
Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities
-
Sparaco M., et al. Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities. J. Neurol. Sci. 2009, 287:111-118.
-
(2009)
J. Neurol. Sci.
, vol.287
, pp. 111-118
-
-
Sparaco, M.1
-
106
-
-
24644469955
-
Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione
-
Han D., et al. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry 2005, 44:11986-11996.
-
(2005)
Biochemistry
, vol.44
, pp. 11986-11996
-
-
Han, D.1
-
107
-
-
15444367716
-
Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation
-
Kil I.S., Park J.W. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J. Biol. Chem. 2005, 280:10846-10854.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10846-10854
-
-
Kil, I.S.1
Park, J.W.2
-
108
-
-
78650068036
-
Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates
-
Garcia J., et al. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J. Biol. Chem. 2010, 285:39646-39654.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 39646-39654
-
-
Garcia, J.1
-
109
-
-
81255195809
-
FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function
-
Jensen K.S., et al. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J. 2011, 30:4554-4570.
-
(2011)
EMBO J.
, vol.30
, pp. 4554-4570
-
-
Jensen, K.S.1
-
110
-
-
18344390036
-
Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes
-
Fratelli M., et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:3505-3510.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 3505-3510
-
-
Fratelli, M.1
-
111
-
-
0042665896
-
Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells
-
Fratelli M., et al. Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 2003, 3:1154-1161.
-
(2003)
Proteomics
, vol.3
, pp. 1154-1161
-
-
Fratelli, M.1
-
112
-
-
84871955083
-
Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?
-
Patil N.K., et al. Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?. Free Radic. Biol. Med. 2013, 56:54-63.
-
(2013)
Free Radic. Biol. Med.
, vol.56
, pp. 54-63
-
-
Patil, N.K.1
-
113
-
-
84867032955
-
The intracellular redox state is a core determinant of mitochondrial fusion
-
Shutt T., et al. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 2012, 13:909-915.
-
(2012)
EMBO Rep.
, vol.13
, pp. 909-915
-
-
Shutt, T.1
-
114
-
-
81155123702
-
Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
-
Nguyen T.T., et al. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J. Biol. Chem. 2011, 286:40184-40192.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 40184-40192
-
-
Nguyen, T.T.1
|