메뉴 건너뛰기




Volumn 38, Issue 12, 2013, Pages 592-602

Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics

Author keywords

Glutathionylation; Oxidative phosphorylation; Oxidative stress; Reactive oxygen species; Redox signaling

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATE; COPPER ZINC SUPEROXIDE DISMUTASE; DIHYDROOROTATE DEHYDROGENASE; GLUTATHIONE; GLUTATHIONE PEROXIDASE; GLUTATHIONE SYNTHASE; GLYCEROL 3 PHOSPHATE DEHYDROGENASE; HYDROGEN PEROXIDE; MANGANESE SUPEROXIDE DISMUTASE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NITRIC OXIDE; OXOGLUTARATE DEHYDROGENASE; OXYGEN; PEROXIREDOXIN; PEROXIREDOXIN 3; PROTON PUMP; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SUCCINATE DEHYDROGENASE (UBIQUINONE); SUPEROXIDE; SUPEROXIDE DISMUTASE; THIOCTIC ACID; THIOREDOXIN; THIOREDOXIN 2; THIOREDOXIN REDUCTASE 2; UBIQUINOL CYTOCHROME C REDUCTASE;

EID: 84888133598     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.09.001     Document Type: Review
Times cited : (251)

References (114)
  • 1
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • Balaban R.S., et al. Mitochondria, oxidants, and aging. Cell 2005, 120:483-495.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1
  • 2
    • 34447523460 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1α, a key factor in the keratinocyte response to UVB exposure
    • Rezvani H.R., et al. Hypoxia-inducible factor-1α, a key factor in the keratinocyte response to UVB exposure. J. Biol. Chem. 2007, 282:16413-16422.
    • (2007) J. Biol. Chem. , vol.282 , pp. 16413-16422
    • Rezvani, H.R.1
  • 3
    • 76049083966 scopus 로고    scopus 로고
    • Reactive oxygen species, cellular redox systems, and apoptosis
    • Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48:749-762.
    • (2010) Free Radic. Biol. Med. , vol.48 , pp. 749-762
    • Circu, M.L.1    Aw, T.Y.2
  • 4
    • 84863664040 scopus 로고    scopus 로고
    • Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription
    • Al-Mehdi A.B., et al. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci. Signal. 2012, 5:ra47.
    • (2012) Sci. Signal. , vol.5
    • Al-Mehdi, A.B.1
  • 5
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte differentiation
    • Tormos K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011, 14:537-544.
    • (2011) Cell Metab. , vol.14 , pp. 537-544
    • Tormos, K.V.1
  • 6
    • 70349512259 scopus 로고    scopus 로고
    • Reactive oxygen species enhance insulin sensitivity
    • Loh K., et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009, 10:260-272.
    • (2009) Cell Metab. , vol.10 , pp. 260-272
    • Loh, K.1
  • 7
    • 84869237918 scopus 로고    scopus 로고
    • Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion
    • Mailloux R.J., et al. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion. J. Biol. Chem. 2012, 287:39673-39685.
    • (2012) J. Biol. Chem. , vol.287 , pp. 39673-39685
    • Mailloux, R.J.1
  • 8
    • 49649122302 scopus 로고    scopus 로고
    • UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals
    • Andrews Z.B., et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 2008, 454:846-851.
    • (2008) Nature , vol.454 , pp. 846-851
    • Andrews, Z.B.1
  • 9
    • 40149108041 scopus 로고    scopus 로고
    • The tricarboxylic acid cycle, an ancient metabolic network with a novel twist
    • Mailloux R.J., et al. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS ONE 2007, 2:e690.
    • (2007) PLoS ONE , vol.2
    • Mailloux, R.J.1
  • 10
    • 84859809125 scopus 로고    scopus 로고
    • Redox regulation of mitochondrial function
    • Handy D.E., Loscalzo J. Redox regulation of mitochondrial function. Antioxid. Redox Signal. 2012, 16:1323-1367.
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 1323-1367
    • Handy, D.E.1    Loscalzo, J.2
  • 11
    • 79960286223 scopus 로고    scopus 로고
    • Signal transduction by reactive oxygen species
    • Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
    • (2011) J. Cell Biol. , vol.194 , pp. 7-15
    • Finkel, T.1
  • 12
    • 80051783174 scopus 로고    scopus 로고
    • Uncoupling proteins and the control of mitochondrial reactive oxygen species production
    • Mailloux R.J., Harper M.E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 2011, 51:1106-1115.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 1106-1115
    • Mailloux, R.J.1    Harper, M.E.2
  • 13
    • 84863301287 scopus 로고    scopus 로고
    • Mitochondrial redox signalling at a glance
    • Collins Y., et al. Mitochondrial redox signalling at a glance. J. Cell Sci. 2012, 125:801-806.
    • (2012) J. Cell Sci. , vol.125 , pp. 801-806
    • Collins, Y.1
  • 14
    • 84859907743 scopus 로고    scopus 로고
    • Mitochondria and diabetes. An intriguing pathogenetic role
    • Newsholme P., et al. Mitochondria and diabetes. An intriguing pathogenetic role. Adv. Exp. Med. Biol. 2012, 942:235-247.
    • (2012) Adv. Exp. Med. Biol. , vol.942 , pp. 235-247
    • Newsholme, P.1
  • 15
    • 84856729192 scopus 로고    scopus 로고
    • Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
    • Murphy M.P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal. 2012, 16:476-495.
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 476-495
    • Murphy, M.P.1
  • 16
    • 44449090114 scopus 로고    scopus 로고
    • Real-time imaging of the intracellular glutathione redox potential
    • Gutscher M., et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 2008, 5:553-559.
    • (2008) Nat. Methods , vol.5 , pp. 553-559
    • Gutscher, M.1
  • 17
    • 73449124480 scopus 로고    scopus 로고
    • Mitochondrial glutathione, a key survival antioxidant
    • Mari M., et al. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal. 2009, 11:2685-2700.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 2685-2700
    • Mari, M.1
  • 18
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417:1-13.
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 19
    • 0021351203 scopus 로고
    • Oxygen toxicity, oxygen radicals, transition metals and disease
    • Halliwell B., Gutteridge J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219:1-14.
    • (1984) Biochem. J. , vol.219 , pp. 1-14
    • Halliwell, B.1    Gutteridge, J.M.2
  • 20
    • 0023779695 scopus 로고
    • Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent?
    • Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent?. Biochem. J. 1988, 249:185-190.
    • (1988) Biochem. J. , vol.249 , pp. 185-190
    • Puppo, A.1    Halliwell, B.2
  • 21
    • 32644454767 scopus 로고    scopus 로고
    • The role of reactive oxygen and nitrogen species in cellular iron metabolism
    • Mladenka P., et al. The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic. Res. 2006, 40:263-272.
    • (2006) Free Radic. Res. , vol.40 , pp. 263-272
    • Mladenka, P.1
  • 22
    • 84865434841 scopus 로고    scopus 로고
    • Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins
    • Mailloux R.J., Harper M.E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab. 2012, 23:451-458.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 451-458
    • Mailloux, R.J.1    Harper, M.E.2
  • 23
    • 33751072935 scopus 로고    scopus 로고
    • Bioenergetics and the formation of mitochondrial reactive oxygen species
    • Adam-Vizi V., Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci. 2006, 27:639-645.
    • (2006) Trends Pharmacol. Sci. , vol.27 , pp. 639-645
    • Adam-Vizi, V.1    Chinopoulos, C.2
  • 24
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • Turrens J.F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 1980, 191:421-427.
    • (1980) Biochem. J. , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 25
    • 34250745912 scopus 로고    scopus 로고
    • o site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production
    • o site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007, 177:1029-1036.
    • (2007) J. Cell Biol. , vol.177 , pp. 1029-1036
    • Bell, E.L.1
  • 26
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • St-Pierre J., et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 2002, 277:44784-44790.
    • (2002) J. Biol. Chem. , vol.277 , pp. 44784-44790
    • St-Pierre, J.1
  • 27
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • Quinlan C.L., et al. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012, 287:27255-27264.
    • (2012) J. Biol. Chem. , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1
  • 28
    • 4544226082 scopus 로고    scopus 로고
    • Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase
    • Tretter L., Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase. J. Neurosci. 2004, 24:7771-7778.
    • (2004) J. Neurosci. , vol.24 , pp. 7771-7778
    • Tretter, L.1    Adam-Vizi, V.2
  • 29
    • 0017293045 scopus 로고
    • Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase
    • Forman H.J., Kennedy J. Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch. Biochem. Biophys. 1976, 173:219-224.
    • (1976) Arch. Biochem. Biophys. , vol.173 , pp. 219-224
    • Forman, H.J.1    Kennedy, J.2
  • 30
    • 84871139444 scopus 로고    scopus 로고
    • A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
    • Orr A.L., et al. A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 2012, 287:42921-42935.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42921-42935
    • Orr, A.L.1
  • 31
    • 84878009179 scopus 로고    scopus 로고
    • Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria
    • Perevoshchikova I.V., et al. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radic. Biol. Med. 2013, 61C:298-309.
    • (2013) Free Radic. Biol. Med. , vol.61 C , pp. 298-309
    • Perevoshchikova, I.V.1
  • 32
    • 22744447211 scopus 로고    scopus 로고
    • Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
    • Giorgio M., et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005, 122:221-233.
    • (2005) Cell , vol.122 , pp. 221-233
    • Giorgio, M.1
  • 33
    • 33745856614 scopus 로고    scopus 로고
    • Redox pathways of the mitochondrion
    • Koehler C.M., et al. Redox pathways of the mitochondrion. Antioxid. Redox Signal. 2006, 8:813-822.
    • (2006) Antioxid. Redox Signal. , vol.8 , pp. 813-822
    • Koehler, C.M.1
  • 34
    • 79959716502 scopus 로고    scopus 로고
    • Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration
    • Mailloux R.J., et al. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. Biochem. J. 2011, 437:301-311.
    • (2011) Biochem. J. , vol.437 , pp. 301-311
    • Mailloux, R.J.1
  • 35
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • Korshunov S.S., et al. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416:15-18.
    • (1997) FEBS Lett. , vol.416 , pp. 15-18
    • Korshunov, S.S.1
  • 36
    • 1042301416 scopus 로고    scopus 로고
    • Characterization of superoxide-producing sites in isolated brain mitochondria
    • Kudin A.P., et al. Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 2004, 279:4127-4135.
    • (2004) J. Biol. Chem. , vol.279 , pp. 4127-4135
    • Kudin, A.P.1
  • 37
    • 0027491617 scopus 로고
    • The inactivation of Fe-S cluster containing hydro-lyases by superoxide
    • Flint D.H., et al. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 1993, 268:22369-22376.
    • (1993) J. Biol. Chem. , vol.268 , pp. 22369-22376
    • Flint, D.H.1
  • 38
    • 47049101575 scopus 로고    scopus 로고
    • Nitro-fatty acid formation and signaling
    • Freeman B.A., et al. Nitro-fatty acid formation and signaling. J. Biol. Chem. 2008, 283:15515-15519.
    • (2008) J. Biol. Chem. , vol.283 , pp. 15515-15519
    • Freeman, B.A.1
  • 39
    • 79957441981 scopus 로고    scopus 로고
    • The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance
    • Lindahl M., et al. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid. Redox Signal. 2011, 14:2581-2642.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 2581-2642
    • Lindahl, M.1
  • 40
    • 79959340042 scopus 로고    scopus 로고
    • Protein sulfenic acid formation: from cellular damage to redox regulation
    • Roos G., Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med. 2011, 51:314-326.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 314-326
    • Roos, G.1    Messens, J.2
  • 41
    • 73849144014 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
    • Cox A.G., et al. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 2010, 425:313-325.
    • (2010) Biochem. J. , vol.425 , pp. 313-325
    • Cox, A.G.1
  • 42
    • 35448954324 scopus 로고    scopus 로고
    • Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation
    • Trujillo M., et al. Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 2007, 467:95-106.
    • (2007) Arch. Biochem. Biophys. , vol.467 , pp. 95-106
    • Trujillo, M.1
  • 43
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • Wood Z.A., et al. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300:650-653.
    • (2003) Science , vol.300 , pp. 650-653
    • Wood, Z.A.1
  • 44
    • 67649279837 scopus 로고    scopus 로고
    • Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III
    • Noh Y.H., et al. Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. 2009, 284:8470-8477.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8470-8477
    • Noh, Y.H.1
  • 45
    • 0032820359 scopus 로고    scopus 로고
    • Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress
    • Fu Y., et al. Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radic. Biol. Med. 1999, 27:605-611.
    • (1999) Free Radic. Biol. Med. , vol.27 , pp. 605-611
    • Fu, Y.1
  • 46
    • 0028788763 scopus 로고
    • Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-κB: studies with isolated mitochondria and rat hepatocytes
    • Garcia-Ruiz C., et al. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-κB: studies with isolated mitochondria and rat hepatocytes. Mol. Pharmacol. 1995, 48:825-834.
    • (1995) Mol. Pharmacol. , vol.48 , pp. 825-834
    • Garcia-Ruiz, C.1
  • 47
    • 84876926069 scopus 로고    scopus 로고
    • Mouse models of oxidative stress indicate a role for modulating healthy aging
    • Hamilton R., et al. Mouse models of oxidative stress indicate a role for modulating healthy aging. J. Clin. Exp. Pathol. 2012, S4:1-14.
    • (2012) J. Clin. Exp. Pathol. , vol.S4 , pp. 1-14
    • Hamilton, R.1
  • 48
    • 0036070514 scopus 로고    scopus 로고
    • Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid
    • Moini H., et al. Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 2002, 182:84-90.
    • (2002) Toxicol. Appl. Pharmacol. , vol.182 , pp. 84-90
    • Moini, H.1
  • 49
    • 37849043898 scopus 로고    scopus 로고
    • Reversible inhibition of α-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid
    • Applegate M.A., et al. Reversible inhibition of α-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008, 47:473-478.
    • (2008) Biochemistry , vol.47 , pp. 473-478
    • Applegate, M.A.1
  • 50
    • 33744979253 scopus 로고    scopus 로고
    • Nonezymatic formation of succinate in mitochondria under oxidative stress
    • Fedotcheva N.I., et al. Nonezymatic formation of succinate in mitochondria under oxidative stress. Free Radic. Biol. Med. 2006, 41:56-64.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 56-64
    • Fedotcheva, N.I.1
  • 51
    • 1142273368 scopus 로고    scopus 로고
    • Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection
    • Halestrap A.P., et al. Mitochondrial permeability transition pore opening during myocardial reperfusion - a target for cardioprotection. Cardiovasc. Res. 2004, 61:372-385.
    • (2004) Cardiovasc. Res. , vol.61 , pp. 372-385
    • Halestrap, A.P.1
  • 52
    • 33750201619 scopus 로고    scopus 로고
    • Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression
    • Fernandez-Gomez F.J., et al. Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression. Neurobiol. Dis. 2006, 24:296-307.
    • (2006) Neurobiol. Dis. , vol.24 , pp. 296-307
    • Fernandez-Gomez, F.J.1
  • 53
    • 75949122041 scopus 로고    scopus 로고
    • Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms
    • Shen H., et al. Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms. Neurobiol. Dis. 2010, 37:711-722.
    • (2010) Neurobiol. Dis. , vol.37 , pp. 711-722
    • Shen, H.1
  • 54
    • 0030703154 scopus 로고    scopus 로고
    • Pyruvate protects neurons against hydrogen peroxide-induced toxicity
    • Desagher S., et al. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci. 1997, 17:9060-9067.
    • (1997) J. Neurosci. , vol.17 , pp. 9060-9067
    • Desagher, S.1
  • 55
    • 0343580474 scopus 로고    scopus 로고
    • Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion
    • Vasquez-Vivar J., et al. Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion. Chem. Res. Toxicol. 1997, 10:786-794.
    • (1997) Chem. Res. Toxicol. , vol.10 , pp. 786-794
    • Vasquez-Vivar, J.1
  • 56
    • 4544355934 scopus 로고    scopus 로고
    • Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria
    • da-Silva W.S., et al. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J. Biol. Chem. 2004, 279:39846-39855.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39846-39855
    • da-Silva, W.S.1
  • 57
    • 33846001693 scopus 로고    scopus 로고
    • Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity
    • Meyer L.E., et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J. Biol. Chem. 2006, 281:37361-37371.
    • (2006) J. Biol. Chem. , vol.281 , pp. 37361-37371
    • Meyer, L.E.1
  • 58
    • 0036903625 scopus 로고    scopus 로고
    • Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state
    • Kushnareva Y., et al. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 2002, 368:545-553.
    • (2002) Biochem. J. , vol.368 , pp. 545-553
    • Kushnareva, Y.1
  • 59
    • 84875439431 scopus 로고    scopus 로고
    • Glutaredoxin-2 is required to control proton leak through uncoupling protein-3
    • Mailloux R.J., et al. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J. Biol. Chem. 2013, 288:8365-8379.
    • (2013) J. Biol. Chem. , vol.288 , pp. 8365-8379
    • Mailloux, R.J.1
  • 60
    • 84855387138 scopus 로고    scopus 로고
    • Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics
    • Mailloux R.J., et al. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J. 2012, 26:363-375.
    • (2012) FASEB J. , vol.26 , pp. 363-375
    • Mailloux, R.J.1
  • 61
    • 48149092833 scopus 로고    scopus 로고
    • High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation
    • Azzu V., et al. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochem. J. 2008, 413:323-332.
    • (2008) Biochem. J. , vol.413 , pp. 323-332
    • Azzu, V.1
  • 62
    • 80054051101 scopus 로고    scopus 로고
    • The regulation and physiology of mitochondrial proton leak
    • Divakaruni A.S., Brand M.D. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 2011, 26:192-205.
    • (2011) Physiology (Bethesda) , vol.26 , pp. 192-205
    • Divakaruni, A.S.1    Brand, M.D.2
  • 63
    • 0032953969 scopus 로고    scopus 로고
    • Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR
    • Rolfe D.F., et al. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am. J. Physiol. 1999, 276:C692-C699.
    • (1999) Am. J. Physiol. , vol.276
    • Rolfe, D.F.1
  • 64
    • 25144476923 scopus 로고    scopus 로고
    • Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3
    • Brand M.D., Esteves T.C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005, 2:85-93.
    • (2005) Cell Metab. , vol.2 , pp. 85-93
    • Brand, M.D.1    Esteves, T.C.2
  • 65
    • 38149130672 scopus 로고    scopus 로고
    • Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion
    • Affourtit C., Brand M.D. Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochem. J. 2008, 409:199-204.
    • (2008) Biochem. J. , vol.409 , pp. 199-204
    • Affourtit, C.1    Brand, M.D.2
  • 66
    • 84880986388 scopus 로고    scopus 로고
    • Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production
    • Adjeitey C.N., et al. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. Am. J. Physiol. Endocrinol. Metab. 2013, 305:E405-E415.
    • (2013) Am. J. Physiol. Endocrinol. Metab. , vol.305
    • Adjeitey, C.N.1
  • 67
    • 1842409029 scopus 로고    scopus 로고
    • Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese
    • Enerback S., et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997, 387:90-94.
    • (1997) Nature , vol.387 , pp. 90-94
    • Enerback, S.1
  • 68
    • 29144515671 scopus 로고    scopus 로고
    • The basal proton conductance of mitochondria depends on adenine nucleotide translocase content
    • Brand M.D., et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem. J. 2005, 392:353-362.
    • (2005) Biochem. J. , vol.392 , pp. 353-362
    • Brand, M.D.1
  • 69
    • 67449149911 scopus 로고    scopus 로고
    • Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection
    • Nadtochiy S.M., et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc. Res. 2009, 82:333-340.
    • (2009) Cardiovasc. Res. , vol.82 , pp. 333-340
    • Nadtochiy, S.M.1
  • 70
    • 77955553628 scopus 로고    scopus 로고
    • GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart
    • Aguirre E., Cadenas S. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. Biochim. Biophys. Acta 2010, 1797:1716-1726.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1716-1726
    • Aguirre, E.1    Cadenas, S.2
  • 71
    • 77952559481 scopus 로고    scopus 로고
    • The on-off switches of the mitochondrial uncoupling proteins
    • Azzu V., Brand M.D. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem. Sci. 2010, 35:298-307.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 298-307
    • Azzu, V.1    Brand, M.D.2
  • 72
    • 84855794688 scopus 로고    scopus 로고
    • Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state
    • Schonfeld P., Wojtczak L. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. Biochim. Biophys. Acta 2012, 1817:410-418.
    • (2012) Biochim. Biophys. Acta , vol.1817 , pp. 410-418
    • Schonfeld, P.1    Wojtczak, L.2
  • 73
    • 84878003949 scopus 로고    scopus 로고
    • The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress
    • Anedda A., et al. The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic. Biol. Med. 2013, 61C:395-407.
    • (2013) Free Radic. Biol. Med. , vol.61 C , pp. 395-407
    • Anedda, A.1
  • 74
    • 0038061012 scopus 로고    scopus 로고
    • A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation
    • Negre-Salvayre A., et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 1997, 11:809-815.
    • (1997) FASEB J. , vol.11 , pp. 809-815
    • Negre-Salvayre, A.1
  • 75
    • 18244379331 scopus 로고    scopus 로고
    • Superoxide activates mitochondrial uncoupling proteins
    • Echtay K.S., et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002, 415:96-99.
    • (2002) Nature , vol.415 , pp. 96-99
    • Echtay, K.S.1
  • 76
    • 0041465009 scopus 로고    scopus 로고
    • A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling
    • Echtay K.S., et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003, 22:4103-4110.
    • (2003) EMBO J. , vol.22 , pp. 4103-4110
    • Echtay, K.S.1
  • 77
    • 84868590991 scopus 로고    scopus 로고
    • Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics
    • Pfefferle A., et al. Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics. Biochim. Biophys. Acta 2013, 1833:80-89.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 80-89
    • Pfefferle, A.1
  • 78
    • 79958735550 scopus 로고    scopus 로고
    • Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3
    • Mailloux R.J., et al. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 2011, 286:21865-21875.
    • (2011) J. Biol. Chem. , vol.286 , pp. 21865-21875
    • Mailloux, R.J.1
  • 79
    • 50149084247 scopus 로고    scopus 로고
    • UCP2 is highly expressed in pancreatic α-cells and influences secretion and survival
    • Diao J., et al. UCP2 is highly expressed in pancreatic α-cells and influences secretion and survival. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:12057-12062.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 12057-12062
    • Diao, J.1
  • 80
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • Zhang J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011, 30:4860-4873.
    • (2011) EMBO J. , vol.30 , pp. 4860-4873
    • Zhang, J.1
  • 81
    • 35748953472 scopus 로고    scopus 로고
    • Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration
    • Anderson E.J., et al. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J. Biol. Chem. 2007, 282:31257-31266.
    • (2007) J. Biol. Chem. , vol.282 , pp. 31257-31266
    • Anderson, E.J.1
  • 82
    • 77952776083 scopus 로고    scopus 로고
    • Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis
    • Queiroga C.S., et al. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J. Biol. Chem. 2010, 285:17077-17088.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17077-17088
    • Queiroga, C.S.1
  • 83
    • 36349016509 scopus 로고    scopus 로고
    • Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation
    • Chen Y.R., et al. Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 2007, 282:32640-32654.
    • (2007) J. Biol. Chem. , vol.282 , pp. 32640-32654
    • Chen, Y.R.1
  • 84
    • 34548163922 scopus 로고    scopus 로고
    • Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
    • Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7:381-391.
    • (2007) Curr. Opin. Pharmacol. , vol.7 , pp. 381-391
    • Gallogly, M.M.1    Mieyal, J.J.2
  • 85
    • 34547666858 scopus 로고    scopus 로고
    • S-Glutathionylation in protein redox regulation
    • Dalle-Donne I., et al. S-Glutathionylation in protein redox regulation. Free Radic. Biol. Med. 2007, 43:883-898.
    • (2007) Free Radic. Biol. Med. , vol.43 , pp. 883-898
    • Dalle-Donne, I.1
  • 86
    • 77954744310 scopus 로고    scopus 로고
    • GSSG-mediated Complex I defect in isolated cardiac mitochondria
    • Passarelli C., et al. GSSG-mediated Complex I defect in isolated cardiac mitochondria. Int. J. Mol. Med. 2010, 26:95-99.
    • (2010) Int. J. Mol. Med. , vol.26 , pp. 95-99
    • Passarelli, C.1
  • 87
    • 9144249116 scopus 로고    scopus 로고
    • Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
    • Beer S.M., et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279:47939-47951.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47939-47951
    • Beer, S.M.1
  • 88
    • 84864970382 scopus 로고    scopus 로고
    • Protein thiyl radical mediates S-glutathionylation of complex I
    • Kang P.T., et al. Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic. Biol. Med. 2012, 53:962-973.
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 962-973
    • Kang, P.T.1
  • 89
    • 51349142890 scopus 로고    scopus 로고
    • Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles
    • Gallogly M.M., et al. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 2008, 47:11144-11157.
    • (2008) Biochemistry , vol.47 , pp. 11144-11157
    • Gallogly, M.M.1
  • 90
    • 84865612521 scopus 로고    scopus 로고
    • The biological roles of glutaredoxins
    • Stroher E., Millar A.H. The biological roles of glutaredoxins. Biochem. J. 2012, 446:333-348.
    • (2012) Biochem. J. , vol.446 , pp. 333-348
    • Stroher, E.1    Millar, A.H.2
  • 91
    • 49349116124 scopus 로고    scopus 로고
    • Glutaredoxin systems
    • Lillig C.H., et al. Glutaredoxin systems. Biochim. Biophys. Acta 2008, 1780:1304-1317.
    • (2008) Biochim. Biophys. Acta , vol.1780 , pp. 1304-1317
    • Lillig, C.H.1
  • 92
    • 64549106959 scopus 로고    scopus 로고
    • Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
    • Gallogly M.M., et al. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid. Redox Signal. 2009, 11:1059-1081.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1059-1081
    • Gallogly, M.M.1
  • 93
    • 22044444687 scopus 로고    scopus 로고
    • Glutathionylation of mitochondrial proteins
    • Hurd T.R., et al. Glutathionylation of mitochondrial proteins. Antioxid. Redox Signal. 2005, 7:999-1010.
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 999-1010
    • Hurd, T.R.1
  • 94
    • 54049146740 scopus 로고    scopus 로고
    • Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
    • Hurd T.R., et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283:24801-24815.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24801-24815
    • Hurd, T.R.1
  • 95
    • 0037490142 scopus 로고    scopus 로고
    • Reversible glutathionylation of complex I increases mitochondrial superoxide formation
    • Taylor E.R., et al. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 2003, 278:19603-19610.
    • (2003) J. Biol. Chem. , vol.278 , pp. 19603-19610
    • Taylor, E.R.1
  • 96
    • 80255140367 scopus 로고    scopus 로고
    • Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells
    • Wu H., et al. Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. Free Radic. Biol. Med. 2011, 51:2108-2117.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 2108-2117
    • Wu, H.1
  • 97
    • 77955556206 scopus 로고    scopus 로고
    • 2-induced cell apoptosis by protecting complex I activity in the mitochondria
    • 2-induced cell apoptosis by protecting complex I activity in the mitochondria. Biochim. Biophys. Acta 2010, 1797:1705-1715.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1705-1715
    • Wu, H.1
  • 98
    • 58749103645 scopus 로고    scopus 로고
    • Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2
    • Diotte N.M., et al. Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim. Biophys. Acta 2009, 1793:427-438.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 427-438
    • Diotte, N.M.1
  • 99
    • 0030988140 scopus 로고    scopus 로고
    • Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression
    • Boss O., et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997, 408:39-42.
    • (1997) FEBS Lett. , vol.408 , pp. 39-42
    • Boss, O.1
  • 100
    • 20444411531 scopus 로고    scopus 로고
    • Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor
    • Lillig C.H., et al. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:8168-8173.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 8168-8173
    • Lillig, C.H.1
  • 101
    • 79954430645 scopus 로고    scopus 로고
    • Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange
    • Qi W., Cowan J.A. Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange. Chem. Commun. (Camb.) 2011, 47:4989-4991.
    • (2011) Chem. Commun. (Camb.) , vol.47 , pp. 4989-4991
    • Qi, W.1    Cowan, J.A.2
  • 102
    • 79955967159 scopus 로고    scopus 로고
    • Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study
    • Nagy P., et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J. Biol. Chem. 2011, 286:18048-18055.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18048-18055
    • Nagy, P.1
  • 103
    • 84872687926 scopus 로고    scopus 로고
    • Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis
    • Morgan B., et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 2013, 9:119-125.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 119-125
    • Morgan, B.1
  • 104
    • 39949085437 scopus 로고    scopus 로고
    • Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology
    • Kemp M., et al. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic. Biol. Med. 2008, 44:921-937.
    • (2008) Free Radic. Biol. Med. , vol.44 , pp. 921-937
    • Kemp, M.1
  • 105
    • 70350622327 scopus 로고    scopus 로고
    • Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities
    • Sparaco M., et al. Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities. J. Neurol. Sci. 2009, 287:111-118.
    • (2009) J. Neurol. Sci. , vol.287 , pp. 111-118
    • Sparaco, M.1
  • 106
    • 24644469955 scopus 로고    scopus 로고
    • Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione
    • Han D., et al. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry 2005, 44:11986-11996.
    • (2005) Biochemistry , vol.44 , pp. 11986-11996
    • Han, D.1
  • 107
    • 15444367716 scopus 로고    scopus 로고
    • Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation
    • Kil I.S., Park J.W. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J. Biol. Chem. 2005, 280:10846-10854.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10846-10854
    • Kil, I.S.1    Park, J.W.2
  • 108
    • 78650068036 scopus 로고    scopus 로고
    • Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates
    • Garcia J., et al. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J. Biol. Chem. 2010, 285:39646-39654.
    • (2010) J. Biol. Chem. , vol.285 , pp. 39646-39654
    • Garcia, J.1
  • 109
    • 81255195809 scopus 로고    scopus 로고
    • FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function
    • Jensen K.S., et al. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J. 2011, 30:4554-4570.
    • (2011) EMBO J. , vol.30 , pp. 4554-4570
    • Jensen, K.S.1
  • 110
    • 18344390036 scopus 로고    scopus 로고
    • Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes
    • Fratelli M., et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:3505-3510.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 3505-3510
    • Fratelli, M.1
  • 111
    • 0042665896 scopus 로고    scopus 로고
    • Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells
    • Fratelli M., et al. Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 2003, 3:1154-1161.
    • (2003) Proteomics , vol.3 , pp. 1154-1161
    • Fratelli, M.1
  • 112
    • 84871955083 scopus 로고    scopus 로고
    • Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?
    • Patil N.K., et al. Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity?. Free Radic. Biol. Med. 2013, 56:54-63.
    • (2013) Free Radic. Biol. Med. , vol.56 , pp. 54-63
    • Patil, N.K.1
  • 113
    • 84867032955 scopus 로고    scopus 로고
    • The intracellular redox state is a core determinant of mitochondrial fusion
    • Shutt T., et al. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 2012, 13:909-915.
    • (2012) EMBO Rep. , vol.13 , pp. 909-915
    • Shutt, T.1
  • 114
    • 81155123702 scopus 로고    scopus 로고
    • Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
    • Nguyen T.T., et al. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J. Biol. Chem. 2011, 286:40184-40192.
    • (2011) J. Biol. Chem. , vol.286 , pp. 40184-40192
    • Nguyen, T.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.