-
1
-
-
84934898566
-
On condition based maintenance policy
-
Shin, J.H., Jun, H.B., On condition based maintenance policy. J. Computat. Des. Eng. 2:2 (2015), 119–127.
-
(2015)
J. Computat. Des. Eng.
, vol.2
, Issue.2
, pp. 119-127
-
-
Shin, J.H.1
Jun, H.B.2
-
2
-
-
85027927538
-
Multi-level decision-making for the predictive maintenance of-out-of-: F deteriorating systems
-
Huynh, K.T., Barros, A., Bérenguer, C., Multi-level decision-making for the predictive maintenance of-out-of-: F deteriorating systems. IEEE Trans. Reliab. 64:1 (2015), 94–117.
-
(2015)
IEEE Trans. Reliab.
, vol.64
, Issue.1
, pp. 94-117
-
-
Huynh, K.T.1
Barros, A.2
Bérenguer, C.3
-
3
-
-
84887056149
-
Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications
-
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 42:1 (2014), 314–334.
-
(2014)
Mech. Syst. Signal Process.
, vol.42
, Issue.1
, pp. 314-334
-
-
Lee, J.1
Wu, F.2
Zhao, W.3
Ghaffari, M.4
Liao, L.5
Siegel, D.6
-
4
-
-
84962294149
-
Comparison of immunity-based schemes for aircraft failure detection and identification
-
Al-Azzawi, D., Moncayo, H., Perhinschi, M.G., Perez, A., Togayev, A., Comparison of immunity-based schemes for aircraft failure detection and identification. Eng. Appl. Artif. Intell. 52 (2016), 181–193.
-
(2016)
Eng. Appl. Artif. Intell.
, vol.52
, pp. 181-193
-
-
Al-Azzawi, D.1
Moncayo, H.2
Perhinschi, M.G.3
Perez, A.4
Togayev, A.5
-
5
-
-
85042089260
-
-
in: R.J. Patton, P.M. Frank, R.N. Clark (Eds.) Issues of Fault Diagnosis for Dynamic Systems. Springer Science & Business Media.
-
in: R.J. Patton, P.M. Frank, R.N. Clark (Eds.) Issues of Fault Diagnosis for Dynamic Systems. Springer Science & Business Media, 2013.
-
(2013)
-
-
-
6
-
-
84892364826
-
No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research
-
Khan, S., Phillips, P., Hockley, C., Jennions, I., No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research. Reliab. Eng. Syst. Safety 123 (2014), 196–208.
-
(2014)
Reliab. Eng. Syst. Safety
, vol.123
, pp. 196-208
-
-
Khan, S.1
Phillips, P.2
Hockley, C.3
Jennions, I.4
-
7
-
-
85042111701
-
Perspectives on using deep learning for system health management
-
Khan, S., Yairi, T., Perspectives on using deep learning for system health management. Asia Pacific Conf. Prognostics Health Manage. Soc., 2017, 2017, 8.
-
(2017)
Asia Pacific Conf. Prognostics Health Manage. Soc.
, vol.2017
, pp. 8
-
-
Khan, S.1
Yairi, T.2
-
8
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Kingsbury, B., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29:6 (2012), 82–97.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.R.5
Jaitly, N.6
Kingsbury, B.7
-
9
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
10
-
-
84910651844
-
-
Deep learning in neural networks: an overview, Neural Netw. 61 (2014) 85–117, published online 2014; based on TR arXiv:1404.7828 [cs.NE].
-
J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2014) 85–117, 2015, published online 2014; based on TR arXiv:1404.7828 [cs.NE].
-
(2015)
-
-
Schmidhuber, J.1
-
11
-
-
85013977220
-
Deep learning applications and challenges in big data analytics
-
Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E., Deep learning applications and challenges in big data analytics. J. Big Data, 2(1), 2015, 1.
-
(2015)
J. Big Data
, vol.2
, Issue.1
, pp. 1
-
-
Najafabadi, M.M.1
Villanustre, F.2
Khoshgoftaar, T.M.3
Seliya, N.4
Wald, R.5
Muharemagic, E.6
-
12
-
-
85042106113
-
-
Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer Science & Business Media.
-
O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer Science & Business Media, 2013.
-
(2013)
-
-
Nelles, O.1
-
13
-
-
85042106804
-
-
Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073.
-
N. Gugulothu, V. TV, P. Malhotra, L. Vig, P. Agarwal, G. Shroff, Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073, 2017.
-
(2017)
-
-
Gugulothu, N.1
TV, V.2
Malhotra, P.3
Vig, L.4
Agarwal, P.5
Shroff, G.6
-
14
-
-
84883417507
-
Review on modeling and simulation of interdependent critical infrastructure systems
-
Ouyang, M., Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. safety 121 (2014), 43–60.
-
(2014)
Reliab. Eng. Syst. safety
, vol.121
, pp. 43-60
-
-
Ouyang, M.1
-
16
-
-
0000963039
-
Pengi: An Implementation of a Theory of Activity
-
No. 4 (1987, July) pp. 286–-272.
-
P. Agre, D. Chapman, Pengi: An Implementation of a Theory of Activity, in: AAAI, vol. 87, No. 4 (1987, July) pp. 286–-272.
-
, vol.87
-
-
Agre, P.1
Chapman, D.2
AAAI3
-
17
-
-
1642382748
-
Fault detection by mining association rules from house-keeping data
-
Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space
-
T. Yairi, Y. Kato, K. Hori, Fault detection by mining association rules from house-keeping data, in: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2001, pp. 18–21.
-
(2001)
, pp. 18-21
-
-
Yairi, T.1
Kato, Y.2
Hori, K.3
-
18
-
-
85015679989
-
Research advances in fault diagnosis and prognostic based on deep learning
-
Prognostics and System Health Management Conference (PHM-Chengdu), IEEE
-
G. Zhao, G. Zhang, Q. Ge, X. Liu, Research advances in fault diagnosis and prognostic based on deep learning, in: Prognostics and System Health Management Conference (PHM-Chengdu), IEEE, 2016, pp. 1–6.
-
(2016)
, pp. 1-6
-
-
Zhao, G.1
Zhang, G.2
Ge, Q.3
Liu, X.4
-
19
-
-
85042128415
-
-
Deep Learning and Its Applications to Machine Health Monitoring: A Survey. arXiv preprint arXiv:1612.07640d.
-
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R.X. Gao, Deep Learning and Its Applications to Machine Health Monitoring: A Survey. arXiv preprint arXiv:1612.07640, 2016d.
-
(2016)
-
-
Zhao, R.1
Yan, R.2
Chen, Z.3
Mao, K.4
Wang, P.5
Gao, R.X.6
-
20
-
-
84988735586
-
-
Bearing fault diagnosis based on deep belief network and multisensor information fusion, Shock Vib., 2016
-
J. Tao, Y. Liu, D. Yang, Bearing fault diagnosis based on deep belief network and multisensor information fusion, Shock Vib. 2016 (2016).
-
(2016)
-
-
Tao, J.1
Liu, Y.2
Yang, D.3
-
21
-
-
84988723839
-
-
Rolling bearing fault diagnosis based on stft-deep learning and sound signals, Shock Vib.
-
H. Liu, L. Li, J. Ma, Rolling bearing fault diagnosis based on stft-deep learning and sound signals, Shock Vib. vol. 2016 (2016).
-
(2016)
, vol.2016
-
-
Liu, H.1
Li, L.2
Ma, J.3
-
22
-
-
84946042100
-
-
Gearbox fault identification and classification with convolutional neural networks, Shock and Vib
-
Z. Chen, C. Li, R.V. Sanchez, Gearbox fault identification and classification with convolutional neural networks, Shock and Vib. 2015.
-
(2015)
-
-
Chen, Z.1
Li, C.2
Sanchez, R.V.3
-
23
-
-
84962118969
-
Multi features fusion and nonlinear dimension reduction for intelligent bearing condition monitoring
-
Guo, L., Gao, H., Huang, H., He, X., Li, S., Multi features fusion and nonlinear dimension reduction for intelligent bearing condition monitoring. Shock Vib., 2016, 2016.
-
(2016)
Shock Vib.
, vol.2016
-
-
Guo, L.1
Gao, H.2
Huang, H.3
He, X.4
Li, S.5
-
24
-
-
84955693855
-
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process. (2016)
-
F. Jia, Y. Lei, J. Lin, X. Zhou, N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process. vol. 72 (2016) pp. 303–315.
-
, vol.72
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
25
-
-
84955504842
-
Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
-
Gan, M., Wang, C., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing 72 (2016), 92–104.
-
(2016)
Mechanical Systems and Signal Processing
, vol.72
, pp. 92-104
-
-
Gan, M.1
Wang, C.2
-
26
-
-
85026870301
-
Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features
-
Ahmed, H.O.A., Wong, M.L.D., Nandi, A.K., Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features. Mech. Syst. Signal Process. 99 (2018), 459–477.
-
(2018)
Mech. Syst. Signal Process.
, vol.99
, pp. 459-477
-
-
Ahmed, H.O.A.1
Wong, M.L.D.2
Nandi, A.K.3
-
27
-
-
85015852225
-
-
Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis, IEEE Transactions on IM.
-
X. Ding, Q. He, Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis, IEEE Transactions on IM, 2017.
-
(2017)
-
-
Ding, X.1
He, Q.2
-
28
-
-
85016125628
-
Multi-sensor feature fusion for bearing fault diagnosis using sparse auto encoder and deep belief network
-
IEEE Transactions on IM.
-
Z. Chen, W. Li, Multi-sensor feature fusion for bearing fault diagnosis using sparse auto encoder and deep belief network, in: IEEE Transactions on IM, 2017.
-
(2017)
-
-
Chen, Z.1
Li, W.2
-
29
-
-
85028452247
-
Discriminative deep belief networks with ant colony optimization for health status assessment of machine
-
Ma, M., Sun, C., Chen, X., Discriminative deep belief networks with ant colony optimization for health status assessment of machine. IEEE Trans. Instrum. Meas., 2017.
-
(2017)
IEEE Trans. Instrum. Meas.
-
-
Ma, M.1
Sun, C.2
Chen, X.3
-
30
-
-
84937818415
-
-
Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis, Neurocomputing, (2015)
-
C. Li, R. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, R. Vasquez, Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis, Neurocomputing, vol. 168 (2015) pp. 119–127.
-
, vol.168
, pp. 119-127
-
-
Li, C.1
Sanchez, R.2
Zurita, G.3
Cerrada, M.4
Cabrera, D.5
Vasquez, R.6
-
31
-
-
85011575282
-
Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis
-
Gao, Z., Ma, C., Song, D., Liu, Y., Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis. Neurocomputing 238 (2017), 13–23.
-
(2017)
Neurocomputing
, vol.238
, pp. 13-23
-
-
Gao, Z.1
Ma, C.2
Song, D.3
Liu, Y.4
-
32
-
-
85040673778
-
Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
-
Wu, Y., Yuan, M., Dong, S., Lin, L., Liu, Y., Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 2017.
-
(2017)
Neurocomputing
-
-
Wu, Y.1
Yuan, M.2
Dong, S.3
Lin, L.4
Liu, Y.5
-
33
-
-
85027729414
-
Wind turbine gearbox failure identification with deep neural networks
-
Wang, L., Zhang, Z., Long, H., Xu, J., Liu, R., Wind turbine gearbox failure identification with deep neural networks. IEEE Trans. Industr. Inf. 13:3 (2017), 1360–1368.
-
(2017)
IEEE Trans. Industr. Inf.
, vol.13
, Issue.3
, pp. 1360-1368
-
-
Wang, L.1
Zhang, Z.2
Long, H.3
Xu, J.4
Liu, R.5
-
34
-
-
85020682598
-
Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning
-
Liu, Z., Jia, Z., Vong, C.M., Bu, S., Han, J., Tang, X., Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning. IEEE Trans. Industr. Inf. 13:3 (2017), 1213–1226.
-
(2017)
IEEE Trans. Industr. Inf.
, vol.13
, Issue.3
, pp. 1213-1226
-
-
Liu, Z.1
Jia, Z.2
Vong, C.M.3
Bu, S.4
Han, J.5
Tang, X.6
-
35
-
-
85042070153
-
-
Learning to monitor machine health with convolutional bi-directional lstm networks, Sensors
-
R. Zhao, R. Yan, J. Wang, K. Mao, Learning to monitor machine health with convolutional bi-directional lstm networks, Sensors (2016).
-
(2016)
-
-
Zhao, R.1
Yan, R.2
Wang, J.3
Mao, K.4
-
36
-
-
84975124887
-
-
Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning, Sensors (no. 6) (2016)
-
C. Li, R. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning, Sensors vol. 16 (no. 6) (2016) p. 895.
-
, vol.16
, pp. 895
-
-
Li, C.1
Sanchez, R.2
Zurita, G.3
Cerrada, M.4
Cabrera, D.5
-
37
-
-
84973470244
-
-
Hoecke, Convolutional neural network based fault detection for rotating machinery, J. Sound Vib.
-
O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S. Verstockt, R. Van de Walle, S. Van Hoecke, Convolutional neural network based fault detection for rotating machinery, J. Sound Vib. (2016).
-
(2016)
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
Van de Walle, R.7
Van, S.8
-
38
-
-
84997079451
-
Real-time vibration-based structural damage detection using one dimensional convolutional neural networks
-
Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D., Real-time vibration-based structural damage detection using one dimensional convolutional neural networks. J. Sound Vib. 388 (2017), 154–170.
-
(2017)
J. Sound Vib.
, vol.388
, pp. 154-170
-
-
Abdeljaber, O.1
Avci, O.2
Kiranyaz, S.3
Gabbouj, M.4
Inman, D.5
-
39
-
-
84994444628
-
Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment
-
Liao, L., Jin, W., Pavel, R., Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Trans. Industr. Electron., 63(11), 2016, 2016.
-
(2016)
IEEE Trans. Industr. Electron.
, vol.63
, Issue.11
, pp. 2016
-
-
Liao, L.1
Jin, W.2
Pavel, R.3
-
40
-
-
84994474581
-
-
Real-time motor fault detection by 1-d convolutional neural networks, IEEE Trans. Indus. Electron. (no. 11) (2016)
-
T. Ince, S. Kiranyaz, L. Eren, M. Askar, M. Gabbouj, Real-time motor fault detection by 1-d convolutional neural networks, IEEE Trans. Indus. Electron. vol. 63 (no. 11) (2016) pp. 7067–7075.
-
, vol.63
, pp. 7067-7075
-
-
Ince, T.1
Kiranyaz, S.2
Eren, L.3
Askar, M.4
Gabbouj, M.5
-
41
-
-
84964855691
-
A sparse auto-encoder-based deep neural network approach for induction motor faults classification
-
Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X., A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89 (2016), 171–178.
-
(2016)
Measurement
, vol.89
, pp. 171-178
-
-
Sun, W.1
Shao, S.2
Zhao, R.3
Yan, R.4
Zhang, X.5
Chen, X.6
-
42
-
-
84979085360
-
-
Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Measurement (2016)
-
X. Guo, L. Chen, C. Shen, Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Measurement vol. 93 (2016) pp. 490–502.
-
, vol.93
, pp. 490-502
-
-
Guo, X.1
Chen, L.2
Shen, C.3
-
43
-
-
84960129882
-
A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering
-
Javed, K., Gouriveau, R., Zerhouni, N., A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering. IEEE Trans. Cybernetics 45:12 (2015), 2626–2639.
-
(2015)
IEEE Trans. Cybernetics
, vol.45
, Issue.12
, pp. 2626-2639
-
-
Javed, K.1
Gouriveau, R.2
Zerhouni, N.3
-
44
-
-
84893464266
-
An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
-
Tran, T., Al-Thobiani, F., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41:9 (2014), 4113–4122.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.9
, pp. 4113-4122
-
-
Tran, T.1
Al-Thobiani, F.2
Ball, A.3
-
45
-
-
85028852181
-
Deep learning based approach for bearing fault diagnosis
-
He, M., He, D., Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53:3 (2017), 3057–3065.
-
(2017)
IEEE Trans. Ind. Appl.
, vol.53
, Issue.3
, pp. 3057-3065
-
-
He, M.1
He, D.2
-
46
-
-
85042063114
-
-
Hoecke, Deep learning for infrared thermal image based machine health monitoring, IEEE/ASME Trans Mechatronics
-
O. Janssens, R. Van de Walle, M. Loccufier, S. Van Hoecke, Deep learning for infrared thermal image based machine health monitoring, IEEE/ASME Trans Mechatronics (2017).
-
(2017)
-
-
Janssens, O.1
Van de Walle, R.2
Loccufier, M.3
Van, S.4
-
47
-
-
85042074106
-
-
Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics, IEEE Trans. Neural Netw. Learn. Syst.
-
C. Zhang, P. Lim, A. Qin, K. Tan, Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics, IEEE Trans. Neural Netw. Learn. Syst., 2016.
-
(2016)
-
-
Zhang, C.1
Lim, P.2
Qin, A.3
Tan, K.4
-
48
-
-
84988952865
-
-
Combining Deep Learning and Survival Analysis for Asset Health Management, Int. J. Prognostics Health Management
-
L. Liao, H.I. Ahn, Combining Deep Learning and Survival Analysis for Asset Health Management, Int. J. Prognostics Health Management (2016).
-
(2016)
-
-
Liao, L.1
Ahn, H.I.2
-
49
-
-
85006380247
-
Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks
-
Feng, D.L., Xiao, M.Q., Liu, Y.X., Song, H.F., Yang, Z., Hu, Z.W., Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks. Front. Inform. Technol. Electron. Eng. 17:12 (2016), 1287–1304.
-
(2016)
Front. Inform. Technol. Electron. Eng.
, vol.17
, Issue.12
, pp. 1287-1304
-
-
Feng, D.L.1
Xiao, M.Q.2
Liu, Y.X.3
Song, H.F.4
Yang, Z.5
Hu, Z.W.6
-
50
-
-
85028984900
-
-
Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder. IET Sci. Meas. Technol.
-
M. Xia, T. Li, L. Liu, L. Xu, C.W. de Silva, Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder. IET Sci. Meas. Technol. (2017).
-
(2017)
-
-
Xia, M.1
Li, T.2
Liu, L.3
Xu, L.4
de Silva, C.W.5
-
51
-
-
85042126878
-
-
Bearing fault diagnosis with autoencoder extreme learning machine: a comparative study, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. (2016) 1–19
-
W. Mao, J. He, Y. Li, Y. Yan, Bearing fault diagnosis with autoencoder extreme learning machine: a comparative study, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. (2016) 1–19.
-
-
-
Mao, W.1
He, J.2
Li, Y.3
Yan, Y.4
-
52
-
-
84975136179
-
-
Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection, CIRP Ann.-Manuf. Technol.
-
D. Weimer, B. Scholz-Reiter, M. Shpitalni, Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection, CIRP Ann.-Manuf. Technol. (2016).
-
(2016)
-
-
Weimer, D.1
Scholz-Reiter, B.2
Shpitalni, M.3
-
53
-
-
85023780160
-
-
Bearing Fault Diagnosis Using Fully-Connected Winner-Take-All Autoencoder. IEEE Access
-
C. Li, W. Zhang, G. Peng, S. Liu, Bearing Fault Diagnosis Using Fully-Connected Winner-Take-All Autoencoder. IEEE Access (2017).
-
(2017)
-
-
Li, C.1
Zhang, W.2
Peng, G.3
Liu, S.4
-
54
-
-
85042132212
-
-
Using deep learning-based approach to predict remaining useful life of rotating components.
-
J. Deutsch, D. He, Using deep learning-based approach to predict remaining useful life of rotating components, 2017.
-
(2017)
-
-
Deutsch, J.1
He, D.2
-
55
-
-
84982792319
-
Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
-
Lu, C., Wang, Z., Qin, W., Ma, J., Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 130 (2017), 377–388.
-
(2017)
Signal Process.
, vol.130
, pp. 377-388
-
-
Lu, C.1
Wang, Z.2
Qin, W.3
Ma, J.4
-
56
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
Tamilselvan, P., Wang, P., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013), 124–135.
-
(2013)
Reliab. Eng. Syst. Saf.
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.2
-
57
-
-
84944323318
-
Multi-layer neural network with deep belief network for gearbox fault diagnosis
-
Chen, Z., Li, C., Sanchez, R., Multi-layer neural network with deep belief network for gearbox fault diagnosis. Journal of Vibro engineering, 17(5), 2015.
-
(2015)
Journal of Vibro engineering
, vol.17
, Issue.5
-
-
Chen, Z.1
Li, C.2
Sanchez, R.3
-
58
-
-
84934923322
-
Recent advances on artificial intelligence and learning techniques in cognitive radio networks
-
Abbas, N., Nasser, Y., El Ahmad, K., Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP J. Wireless Commun. Netw., 2015(1), 2015, 1.
-
(2015)
EURASIP J. Wireless Commun. Netw.
, vol.2015
, Issue.1
, pp. 1
-
-
Abbas, N.1
Nasser, Y.2
El Ahmad, K.3
-
59
-
-
0034849323
-
Assessment of data and knowledge fusion strategies for prognostics and health management
-
Aerospace Conference, IEEE Proceedings, IEEE
-
M.J. Roemer, G.J. Kacprzynski, R.F. Orsagh, Assessment of data and knowledge fusion strategies for prognostics and health management, in: Aerospace Conference, 2001, IEEE Proceedings, vol. 6, IEEE, 2001, pp. 2979–2988.
-
(2001)
, vol.6
, pp. 2979-2988
-
-
Roemer, M.J.1
Kacprzynski, G.J.2
Orsagh, R.F.3
-
60
-
-
84892364913
-
No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices
-
Khan, S., Phillips, P., Jennions, I., Hockley, C., No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices. Reliab. Eng. Syst. Safety 123 (2014), 183–195.
-
(2014)
Reliab. Eng. Syst. Safety
, vol.123
, pp. 183-195
-
-
Khan, S.1
Phillips, P.2
Jennions, I.3
Hockley, C.4
-
61
-
-
0025745712
-
An intelligent control system for rocket engines: need, vision, and issues
-
Lorenzo, C.F., Merrill, W.C., An intelligent control system for rocket engines: need, vision, and issues. IEEE Contr. Syst. 11:1 (1991), 42–46.
-
(1991)
IEEE Contr. Syst.
, vol.11
, Issue.1
, pp. 42-46
-
-
Lorenzo, C.F.1
Merrill, W.C.2
-
62
-
-
0034432458
-
Prognosis of faults in gas turbine engines
-
IEEE., Aerospace Conference Proceedings IEEE, (2000)
-
T. Brotherton, G. Jahns, J. Jacobs, D. Wroblewski, Prognosis of faults in gas turbine engines, in: Aerospace Conference Proceedings, 2000 IEEE, vol. 6 (2000) pp. 163–171, IEEE.
-
(2000)
, vol.6
, pp. 163-171
-
-
Brotherton, T.1
Jahns, G.2
Jacobs, J.3
Wroblewski, D.4
-
63
-
-
85042068036
-
-
Meziane(Ed.) Artificial Intelligence Applications for Improved Software Engineering Development: New Prospects: New Prospects. IGI Global.
-
in: F. Meziane(Ed.) Artificial Intelligence Applications for Improved Software Engineering Development: New Prospects: New Prospects. IGI Global, 2009.
-
(2009)
-
-
in:, F.1
-
64
-
-
1842839659
-
-
Condition monitoring of electrical machines using real-time expert system. In: Proc. 1988 Int. Conf. Electr. Mach. (1988, September)
-
D. Leith, N.D. Deans, I.D. Stewart, Condition monitoring of electrical machines using real-time expert system. In: Proc. 1988 Int. Conf. Electr. Mach. vol. 3 (1988, September) pp. 297–302.
-
, vol.3
, pp. 297-302
-
-
Leith, D.1
Deans, N.D.2
Stewart, I.D.3
-
65
-
-
0003919880
-
Clinical decision support systems
-
Springer Science+ Business Media LLC. New York
-
Berner, E.S., Clinical decision support systems. 2007, Springer Science+ Business Media LLC., New York, 3–22.
-
(2007)
, pp. 3-22
-
-
Berner, E.S.1
-
66
-
-
85042077680
-
-
Autonomous robot vehicles, I.J. Cox, G.T. Wilfong (Eds.), Springer Science & Business Media
-
T. Lozano-Perez, Autonomous robot vehicles, I.J. Cox, G.T. Wilfong (Eds.), Springer Science & Business Media (2012).
-
(2012)
-
-
Lozano-Perez, T.1
-
67
-
-
84920573297
-
A systematic PHM approach for anomaly resolution: A hybrid neural fuzzy system for model construction
-
Proc PHM
-
Bonissone, P., Hu, X., Subbu, R., A systematic PHM approach for anomaly resolution: A hybrid neural fuzzy system for model construction. 2009, Proc, PHM.
-
(2009)
-
-
Bonissone, P.1
Hu, X.2
Subbu, R.3
-
68
-
-
84891584626
-
-
ura Jr. (Eds.), System health management: with aerospace applications. John Wiley & Sons
-
S.B. Johnson, T. Gormley, S. Kessler, C. Mott, A. Patterson-Hine, K. Reichard, P. Scandura Jr. (Eds.), System health management: with aerospace applications. John Wiley & Sons (2011).
-
(2011)
-
-
Johnson, S.B.1
Gormley, T.2
Kessler, S.3
Mott, C.4
Patterson-Hine, A.5
Reichard, K.6
Sc, P.7
-
69
-
-
84891808087
-
Gas turbine engine health management: past, present, and future trends
-
Volponi, A.J., Gas turbine engine health management: past, present, and future trends. J. Eng. Gas Turbines Power, 136(5), 2014, 051201.
-
(2014)
J. Eng. Gas Turbines Power
, vol.136
, Issue.5
, pp. 051201
-
-
Volponi, A.J.1
-
70
-
-
84900327405
-
Diagnostics and prognostics using switching Kalman filters
-
Reuben, L.C.K., Mba, D., Diagnostics and prognostics using switching Kalman filters. Struct. Health Monit. 13:3 (2014), 296–306.
-
(2014)
Struct. Health Monit.
, vol.13
, Issue.3
, pp. 296-306
-
-
Reuben, L.C.K.1
Mba, D.2
-
71
-
-
0027551845
-
Guaranteeing real-time response with limited resources
-
Ash, D., Gold, G., Seiver, A., Hayes-Roth, B., Guaranteeing real-time response with limited resources. Artif. Intell. Med. 5:1 (1993), 49–66.
-
(1993)
Artif. Intell. Med.
, vol.5
, Issue.1
, pp. 49-66
-
-
Ash, D.1
Gold, G.2
Seiver, A.3
Hayes-Roth, B.4
-
72
-
-
85042122484
-
AI based on-board diagnostic and prognostic health management system
-
Annual Conference of the Prognostics and Health Management Society.
-
P.S. Rao, S. Mohan, V. Chindam, AI based on-board diagnostic and prognostic health management system, in: Annual Conference of the Prognostics and Health Management Society, 2015.
-
(2015)
-
-
Rao, P.S.1
Mohan, S.2
Chindam, V.3
-
73
-
-
0036998095
-
The use of expert systems for gas turbine diagnostics and maintenance
-
Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands.
-
P.R. Spina, G. Torella, M. Venturini, The use of expert systems for gas turbine diagnostics and maintenance, in: Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands,2002.
-
(2002)
-
-
Spina, P.R.1
Torella, G.2
Venturini, M.3
-
74
-
-
85087594180
-
“Engine Data Analysis Using Decision Trees;” paper presented at the 36th Joint Propulsion Conference, 2000
-
Bajwa, A.R., Kulkarni, D., “Engine Data Analysis Using Decision Trees;” paper presented at the 36th Joint Propulsion Conference, 2000. AIAA, 2000–3627, 2000, 64.
-
(2000)
AIAA
, vol.2000-3627
, pp. 64
-
-
Bajwa, A.R.1
Kulkarni, D.2
-
75
-
-
66149125835
-
Application of random forest to aircraft engine fault diagnosis
-
Computational Engineering in Systems Applications, IMACS Multiconference on, IEEE
-
W. Yan, Application of random forest to aircraft engine fault diagnosis, in: Computational Engineering in Systems Applications, IMACS Multiconference on, IEEE, vol. 1, 2006, pp. 468–475.
-
(2006)
, vol.1
, pp. 468-475
-
-
Yan, W.1
-
76
-
-
64949202636
-
Random forests classifier for machine fault diagnosis
-
Yang, B.S., Di, X., Han, T., Random forests classifier for machine fault diagnosis. J. Mech. Sci. Technol. 22:9 (2008), 1716–1725.
-
(2008)
J. Mech. Sci. Technol.
, vol.22
, Issue.9
, pp. 1716-1725
-
-
Yang, B.S.1
Di, X.2
Han, T.3
-
77
-
-
84861900936
-
A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis
-
Muralidharan, V., Sugumaran, V., A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Appl. Soft Comput. 12:8 (2012), 2023–2029.
-
(2012)
Appl. Soft Comput.
, vol.12
, Issue.8
, pp. 2023-2029
-
-
Muralidharan, V.1
Sugumaran, V.2
-
78
-
-
70449530626
-
Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features
-
Elangovan, M., Ramachandran, K.I., Sugumaran, V., Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features. Expert Syst. Appl. 37:3 (2010), 2059–2065.
-
(2010)
Expert Syst. Appl.
, vol.37
, Issue.3
, pp. 2059-2065
-
-
Elangovan, M.1
Ramachandran, K.I.2
Sugumaran, V.3
-
79
-
-
67650995440
-
Feature selection for multi-label naive Bayes classification
-
Zhang, M.L., Peña, J.M., Robles, V., Feature selection for multi-label naive Bayes classification. Inf. Sci. 179:19 (2009), 3218–3229.
-
(2009)
Inf. Sci.
, vol.179
, Issue.19
, pp. 3218-3229
-
-
Zhang, M.L.1
Peña, J.M.2
Robles, V.3
-
80
-
-
84894125224
-
Fault diagnosis of bearings through vibration signal using Bayes classifiers
-
Kumar, H., Ranjit Kumar, T.A., Amarnath, M., Sugumaran, V., Fault diagnosis of bearings through vibration signal using Bayes classifiers. Int. J. Comp. Aided Eng. Technol. 6:1 (2014), 14–28.
-
(2014)
Int. J. Comp. Aided Eng. Technol.
, vol.6
, Issue.1
, pp. 14-28
-
-
Kumar, H.1
Ranjit Kumar, T.A.2
Amarnath, M.3
Sugumaran, V.4
-
81
-
-
84891898576
-
A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
-
Ng, S.S., Xing, Y., Tsui, K.L., A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 118 (2014), 114–123.
-
(2014)
Appl. Energy
, vol.118
, pp. 114-123
-
-
Ng, S.S.1
Xing, Y.2
Tsui, K.L.3
-
82
-
-
85054056596
-
-
Q. Hao (Eds.), Intelligent sensor networks: the integration of sensor networks, signal processing and machine learning. CRC Press.
-
F. Hu, Q. Hao (Eds.), Intelligent sensor networks: the integration of sensor networks, signal processing and machine learning. CRC Press, 2012.
-
(2012)
-
-
Hu, F.1
-
83
-
-
84993729265
-
Component reliability in fault-diagnosis decision making based on dynamic Bayesian networks
-
Weber, P., Theilliol, D., Aubrun, C., Component reliability in fault-diagnosis decision making based on dynamic Bayesian networks. Proc. Inst. Mech. Eng., Part O: J. Risk Reliab. 222:2 (2008), 161–172.
-
(2008)
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
, vol.222
, Issue.2
, pp. 161-172
-
-
Weber, P.1
Theilliol, D.2
Aubrun, C.3
-
84
-
-
84907520010
-
Bayesian hierarchical models for aerospace gas turbine engine prognostics
-
Zaidan, M.A., Harrison, R.F., Mills, A.R., Fleming, P.J., Bayesian hierarchical models for aerospace gas turbine engine prognostics. Expert Syst. Appl. 42:1 (2015), 539–553.
-
(2015)
Expert Syst. Appl.
, vol.42
, Issue.1
, pp. 539-553
-
-
Zaidan, M.A.1
Harrison, R.F.2
Mills, A.R.3
Fleming, P.J.4
-
85
-
-
85020551212
-
Improving spacecraft health monitoring with automatic anomaly detection techniques
-
14th international conference on space operations
-
S. Fuertes, G. Picart, J.Y. Tourneret, L. Chaari, A. Ferrari, C. Richard, Improving spacecraft health monitoring with automatic anomaly detection techniques, in: 14th international conference on space operations (2016) p. 2430.
-
(2016)
, pp. 2430
-
-
Fuertes, S.1
Picart, G.2
Tourneret, J.Y.3
Chaari, L.4
Ferrari, A.5
Richard, C.6
-
86
-
-
85025838899
-
Anomaly detection in medical wireless sensor networks using SVM and linear regression models
-
E-Health and Telemedicine: Concepts, Methodologies, Tools, and Applications. Medical Information science reference (an imprint of IGI global).
-
O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, B. Furht, Anomaly detection in medical wireless sensor networks using SVM and linear regression models, in: E-Health and Telemedicine: Concepts, Methodologies, Tools, and Applications. Medical Information science reference (an imprint of IGI global), 2016.
-
(2016)
-
-
Salem, O.1
Guerassimov, A.2
Mehaoua, A.3
Marcus, A.4
Furht, B.5
-
87
-
-
81255150243
-
Application research of Kalman filter and SVM applied to condition monitoring and fault diagnosis
-
Applied Mechanics and Materials, Trans Tech Publications vol. 121(2012).
-
K. Li, Y.L. Zhang, Z.X. Li, Application research of Kalman filter and SVM applied to condition monitoring and fault diagnosis, in: Applied Mechanics and Materials, Trans Tech Publications vol. 121(2012) pp. 268–272.
-
-
-
Li, K.1
Zhang, Y.L.2
Li, Z.X.3
-
88
-
-
85042098402
-
-
Fault-diagnosis using neural networks with ellipsoidal basis functions
-
S. Jakubek, T. Strasser, Fault-diagnosis using neural networks with ellipsoidal basis functions (2012) pp. 3846–3851.
-
(2012)
, pp. 3846-3851
-
-
Jakubek, S.1
Strasser, T.2
-
89
-
-
23244442882
-
Hybrid neural-network genetic-algorithm technique for aircraft engine performance diagnostics
-
Kobayashi, T., Simon, D.L., Hybrid neural-network genetic-algorithm technique for aircraft engine performance diagnostics. J. Propul. Power 21:4 (2005), 751–758.
-
(2005)
J. Propul. Power
, vol.21
, Issue.4
, pp. 751-758
-
-
Kobayashi, T.1
Simon, D.L.2
-
90
-
-
8844281752
-
Novelty detection in learning systems
-
Marsland, S., Novelty detection in learning systems. Neural Comput. Surveys 3:2 (2003), 157–195.
-
(2003)
Neural Comput. Surveys
, vol.3
, Issue.2
, pp. 157-195
-
-
Marsland, S.1
-
91
-
-
0024886995
-
-
An investigation of neural networks for F-16 fault diagnosis. I. System description, in: AUTOTESTCON'89. IEEE Automatic Testing Conference. The Systems Readiness Technology Conference. Automatic Testing in the Next Decade and the 21st Century. Conference Record, IEEE
-
R.J. McDuff, P.K. Simpson, D. Gunning, An investigation of neural networks for F-16 fault diagnosis. I. System description, in: AUTOTESTCON'89. IEEE Automatic Testing Conference. The Systems Readiness Technology Conference. Automatic Testing in the Next Decade and the 21st Century. Conference Record, IEEE, 1989, pp. 351–357.
-
(1989)
, pp. 351-357
-
-
McDuff, R.J.1
Simpson, P.K.2
Gunning, D.3
-
92
-
-
0001301007
-
Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery
-
Zhang, S., Ganesan, R., Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery. J. Eng. Gas Turb. Power 119:2 (1997), 378–384.
-
(1997)
J. Eng. Gas Turb. Power
, vol.119
, Issue.2
, pp. 378-384
-
-
Zhang, S.1
Ganesan, R.2
-
93
-
-
84877754137
-
Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique
-
Soualhi, A., Clerc, G., Razik, H., Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Trans. Industr. Electron. 60:9 (2013), 4053–4062.
-
(2013)
IEEE Trans. Industr. Electron.
, vol.60
, Issue.9
, pp. 4053-4062
-
-
Soualhi, A.1
Clerc, G.2
Razik, H.3
-
94
-
-
84876936237
-
Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
-
Lei, Y., Han, D., Lin, J., He, Z., Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech. Syst. Signal Process. 38:1 (2013), 113–124.
-
(2013)
Mech. Syst. Signal Process.
, vol.38
, Issue.1
, pp. 113-124
-
-
Lei, Y.1
Han, D.2
Lin, J.3
He, Z.4
-
95
-
-
84865610462
-
Application of adaptive resonance theory neural networks to monitor solar hot water systems and detect existing or developing faults
-
He, H., Caudell, T.P., Menicucci, D.F., Mammoli, A.A., Application of adaptive resonance theory neural networks to monitor solar hot water systems and detect existing or developing faults. Sol. Energy 86:9 (2012), 2318–2333.
-
(2012)
Sol. Energy
, vol.86
, Issue.9
, pp. 2318-2333
-
-
He, H.1
Caudell, T.P.2
Menicucci, D.F.3
Mammoli, A.A.4
-
96
-
-
85042095034
-
Self-organizing map based fault detection and isolation scheme for pneumatic actuator
-
Prabakaran, K., Kaushik, S., Mouleeshuwarapprabu, R., Singh, A.B., Self-organizing map based fault detection and isolation scheme for pneumatic actuator. Int. J. Innov. Appl. Stud., 8(3), 2014, 1361.
-
(2014)
Int. J. Innov. Appl. Stud.
, vol.8
, Issue.3
, pp. 1361
-
-
Prabakaran, K.1
Kaushik, S.2
Mouleeshuwarapprabu, R.3
Singh, A.B.4
-
97
-
-
85042127192
-
Turbofan engine monitoring with health state identification and remaining useful life anticipation
-
Lacaille, J., Gouby, A., Bense, W., Rabenoro, T., Abdel-Sayed, M., Turbofan engine monitoring with health state identification and remaining useful life anticipation. Int. J. Cond. Monitoring 5:2 (2015), 8–16.
-
(2015)
Int. J. Cond. Monitoring
, vol.5
, Issue.2
, pp. 8-16
-
-
Lacaille, J.1
Gouby, A.2
Bense, W.3
Rabenoro, T.4
Abdel-Sayed, M.5
-
98
-
-
84883743627
-
Damage classification in structural health monitoring using principal component analysis and self-organizing maps
-
Tibaduiza, D.A., Mujica, L.E., Rodellar, J., Damage classification in structural health monitoring using principal component analysis and self-organizing maps. Struct. Control Health Monit. 20:10 (2013), 1303–1316.
-
(2013)
Struct. Control Health Monit.
, vol.20
, Issue.10
, pp. 1303-1316
-
-
Tibaduiza, D.A.1
Mujica, L.E.2
Rodellar, J.3
-
99
-
-
33644914682
-
Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map
-
Cho, J., Principe, J.C., Erdogmus, D., Motter, M.A., Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map. IEEE Trans. Neural Netw. 17:2 (2006), 445–460.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.2
, pp. 445-460
-
-
Cho, J.1
Principe, J.C.2
Erdogmus, D.3
Motter, M.A.4
-
100
-
-
74149089478
-
Hidden semi-Markov models
-
Yu, S.Z., Hidden semi-Markov models. Artif. Intell. 174:2 (2010), 215–243.
-
(2010)
Artif. Intell.
, vol.174
, Issue.2
, pp. 215-243
-
-
Yu, S.Z.1
-
101
-
-
84955741179
-
Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model
-
Zhou, H., Chen, J., Dong, G., Wang, H., Yuan, H., Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model. Mech. Syst. Signal Process. 66 (2016), 568–581.
-
(2016)
Mech. Syst. Signal Process.
, vol.66
, pp. 568-581
-
-
Zhou, H.1
Chen, J.2
Dong, G.3
Wang, H.4
Yuan, H.5
-
102
-
-
84946600673
-
Bearing fault diagnosis method based on stacked autoencoder and softmax regression
-
Control Conference (CCC) 34th Chinese, IEEE, 6335
-
S. Tao, T. Zhang, J. Yang, X. Wang, W. Lu, Bearing fault diagnosis method based on stacked autoencoder and softmax regression, in: Control Conference (CCC), 2015 34th Chinese, IEEE, 2015, pp. 6331 6335.
-
(2015)
, pp. 6331
-
-
Tao, S.1
Zhang, T.2
Yang, J.3
Wang, X.4
Lu, W.5
-
103
-
-
84945576459
-
A novel feature extraction method using deep neural network for rolling bearing fault diagnosis
-
Control and Decision Conference (CCDC) 27th Chinese,. IEEE
-
W. Lu, X. Wang, C. Yang, T. Zhang, A novel feature extraction method using deep neural network for rolling bearing fault diagnosis, in: Control and Decision Conference (CCDC), 2015 27th Chinese,. IEEE, 2015, pp. 2427–2431.
-
(2015)
, pp. 2427-2431
-
-
Lu, W.1
Wang, X.2
Yang, C.3
Zhang, T.4
-
104
-
-
85042112007
-
Diagnosis of tidal turbine vibration data through deep neural networks
-
Third European Conference of the Prognostics and Health Management Society
-
G. Galloway, V. Catterson, T. Fay, A. Robb, C. Love, Diagnosis of tidal turbine vibration data through deep neural networks, in: Third European Conference of the Prognostics and Health Management Society 2016.
-
(2016)
-
-
Galloway, G.1
Catterson, V.2
Fay, T.3
Robb, A.4
Love, C.5
-
105
-
-
84963740039
-
-
Transformer fault diagnosis using continuous sparse autoencoder, SpringerPlus, (no. 1)
-
L. Wang, X. Zhao, J. Pei, G. Tang, Transformer fault diagnosis using continuous sparse autoencoder, SpringerPlus, vol. 5 (no. 1), 2016, p. 1.
-
(2016)
, vol.5
, pp. 1
-
-
Wang, L.1
Zhao, X.2
Pei, J.3
Tang, G.4
-
106
-
-
84888870402
-
Intelligent condition based monitoring of rotating machines using sparse autoencoders
-
Prognostics and Health Management (PHM) IEEE Conference on. IEEE
-
N. Verma, V. Gupta, M. Sharma, R. Sevakula, Intelligent condition based monitoring of rotating machines using sparse autoencoders, in: Prognostics and Health Management (PHM), 2013 IEEE Conference on. IEEE, 2013, pp. 1–7.
-
(2013)
, pp. 1-7
-
-
Verma, N.1
Gupta, V.2
Sharma, M.3
Sevakula, R.4
-
107
-
-
84966322221
-
Study on signal recognition and diagnosis for spacecraft based on deep learning method, in: Prognostics and System Health Management Conference (PHM), 2015
-
Li, K., Wang, Q., Study on signal recognition and diagnosis for spacecraft based on deep learning method, in: Prognostics and System Health Management Conference (PHM), 2015. IEEE 2015 (2015), 1–5.
-
(2015)
IEEE
, vol.2015
, pp. 1-5
-
-
Li, K.1
Wang, Q.2
-
108
-
-
85099697158
-
Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder, in: the 27th Chinese Control and Decision Conference (2015 CCDC)
-
Junbo, T., Weining, L., Juneng, A., Xueqian, W., Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder, in: the 27th Chinese Control and Decision Conference (2015 CCDC). IEEE 2015 (2015), 4608–4613.
-
(2015)
IEEE
, vol.2015
, pp. 4608-4613
-
-
Junbo, T.1
Weining, L.2
Juneng, A.3
Xueqian, W.4
-
109
-
-
84978805885
-
Fault diagnosis of hydraulic pump based on stacked autoencoders
-
12th IEEE International Conference on Electronic Measurement Instruments (ICEMI), (July) (2015)
-
Z. Huijie, R. Ting, W. Xinqing, Z. You, F. Husheng, Fault diagnosis of hydraulic pump based on stacked autoencoders, in: 2015 12th IEEE International Conference on Electronic Measurement Instruments (ICEMI), vol. 01 (July) (2015) pp. 58–62.
-
(2015)
, vol.1
, pp. 58-62
-
-
Huijie, Z.1
Ting, R.2
Xinqing, W.3
You, Z.4
Husheng, F.5
-
110
-
-
85030214368
-
Anomaly detection and fault disambiguation in large flight data: A multi-modal deep auto-encoder approach”, in Annual conference of the prognostics and health management society
-
Denver Colorado
-
Kishore, V., Reddy, K., Sarkar, S., Giering, M., Anomaly detection and fault disambiguation in large flight data: A multi-modal deep auto-encoder approach”, in Annual conference of the prognostics and health management society. 2016, Denver, Colorado.
-
(2016)
-
-
Kishore, V.1
Reddy, K.2
Sarkar, S.3
Giering, M.4
-
111
-
-
84985998651
-
Generating feature sets for fault diagnosis using denoising stacked auto-encoder
-
Prognostics and Health Management (ICPHM) IEEE International Conference on. IEEE
-
R. Thirukovalluru, S. Dixit, R. Sevakula, N. Verma, A. Salour, Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in: Prognostics and Health Management (ICPHM), 2016 IEEE International Conference on. IEEE, 2016, pp. 1–7.
-
(2016)
, pp. 1-7
-
-
Thirukovalluru, R.1
Dixit, S.2
Sevakula, R.3
Verma, N.4
Salour, A.5
-
112
-
-
85016121433
-
On accurate and reliable anomaly detection for gas turbine combustors: a deep learning approach
-
Proceedings of the Annual Conference of the Prognostics and Health Management Society.
-
W. Yan, L. Yu, On accurate and reliable anomaly detection for gas turbine combustors: a deep learning approach, in: Proceedings of the Annual Conference of the Prognostics and Health Management Society, 2015.
-
(2015)
-
-
Yan, W.1
Yu, L.2
-
113
-
-
85042077642
-
-
Semi-supervised Learning with Deep Generative Models for Asset Failure Prediction. arXiv preprint arXiv:1709.00845.
-
A.S. Yoon, T. Lee, Y. Lim, D. Jung, P. Kang, D. Kim, Y. Choi, Semi-supervised Learning with Deep Generative Models for Asset Failure Prediction. arXiv preprint arXiv:1709.00845, 2017.
-
(2017)
-
-
Yoon, A.S.1
Lee, T.2
Lim, Y.3
Jung, D.4
Kang, P.5
Kim, D.6
Choi, Y.7
-
114
-
-
85030250211
-
Using deep learning based approaches for bearing remaining useful life prediction
-
Annual Conference of the Prognostics and Health Management Society.
-
J. Deutsch, D. He, Using deep learning based approaches for bearing remaining useful life prediction, in: Annual Conference of the Prognostics and Health Management Society, 2016.
-
(2016)
-
-
Deutsch, J.1
He, D.2
-
115
-
-
85010527122
-
Bearing degradation assessment based on weibull distribution and deep belief network
-
Proceedings of 2016 International Symposium of Flexible Automation (ISFA)
-
M. Ma, X. Chen, S. Wang, Y. Liu, W. Li, Bearing degradation assessment based on weibull distribution and deep belief network, in: Proceedings of 2016 International Symposium of Flexible Automation (ISFA), 2016, pp. 1–4.
-
(2016)
, pp. 1-4
-
-
Ma, M.1
Chen, X.2
Wang, S.3
Liu, Y.4
Li, W.5
-
116
-
-
85010504049
-
Learning features from vibration signals for induction motor fault diagnosis
-
Proceedings of 2016 International Symposium of Flexible Automation (ISFA)
-
S. Shao, W. Sun, P. Wang, R. Gao, R. Yan, Learning features from vibration signals for induction motor fault diagnosis, in: Proceedings of 2016 International Symposium of Flexible Automation (ISFA), 2016, pp. 1–6.
-
(2016)
, pp. 1-6
-
-
Shao, S.1
Sun, W.2
Wang, P.3
Gao, R.4
Yan, R.5
-
117
-
-
84939180924
-
-
Analysis of feature extracting ability for cutting state monitoring using deep belief networks, Proc. CIRP (2015)
-
Y. Fu, Y. Zhang, H. Qiao, D. Li, H. Zhou, J. Leopold, Analysis of feature extracting ability for cutting state monitoring using deep belief networks, Proc. CIRP vol. 31 (2015) pp. 29–34.
-
, vol.31
, pp. 29-34
-
-
Fu, Y.1
Zhang, Y.2
Qiao, H.3
Li, D.4
Zhou, H.5
Leopold, J.6
-
118
-
-
85030214553
-
Smart diagnosis of journal bearing rotor systems: Unsupervised feature extraction scheme by deep learning
-
Annual Conference of the Prognostics and Health Management Society.
-
H. Oh, B. Jeon, J. Jung, B. Youn, Smart diagnosis of journal bearing rotor systems: Unsupervised feature extraction scheme by deep learning, in: Annual Conference of the Prognostics and Health Management Society, 2016.
-
(2016)
-
-
Oh, H.1
Jeon, B.2
Jung, J.3
Youn, B.4
-
119
-
-
85018748366
-
Convolutional Neural Net and Bearing Fault Analysis
-
Proceedings of the International Conference on Data Mining (DMIN) (p. 194). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016, January).
-
D. Lee, V. Siu, R. Cruz, C. Yetman, Convolutional Neural Net and Bearing Fault Analysis, in: Proceedings of the International Conference on Data Mining (DMIN) (p. 194). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016, January).
-
-
-
Lee, D.1
Siu, V.2
Cruz, R.3
Yetman, C.4
-
120
-
-
84962468883
-
Deep convolutional neural network based regression approach for estimation of remaining useful life
-
international conference on database systems for advanced applications. Springer
-
G. Babu, P. Zhao, X. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life, in: international conference on database systems for advanced applications. Springer (2016) pp. 214–228.
-
(2016)
, pp. 214-228
-
-
Babu, G.1
Zhao, P.2
Li, X.3
-
121
-
-
85006822781
-
Fault diagnosis and remaining useful life estimation of aero engine using lstm neural network
-
IEEE International Conference on Aircraft Utility Systems (AUS), 2016
-
M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using lstm neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), 2016, pp. 135–140.
-
(2016)
, pp. 135-140
-
-
Yuan, M.1
Wu, Y.2
Lin, L.3
-
122
-
-
85042102851
-
-
Multi-sensor Prognostics Using an Unsupervised Health Index Based on lstm Encoder-Decoder, arXiv preprint arXiv:1608.06154.
-
P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff, Multi-sensor Prognostics Using an Unsupervised Health Index Based on lstm Encoder-Decoder, arXiv preprint arXiv:1608.06154, 2016.
-
(2016)
-
-
Malhotra, P.1
Ramakrishnan, A.2
Anand, G.3
Vig, L.4
Agarwal, P.5
Shroff, G.6
-
123
-
-
84964414629
-
Deep belief networks ensemble with multi-objective optimization for failure diagnosis
-
Systems Man, and Cybernetics (SMC) IEEE International Conference on. IEEE
-
C. Zhang, J. Sun, K. Tan, Deep belief networks ensemble with multi-objective optimization for failure diagnosis, in: Systems Man, and Cybernetics (SMC), 2015 IEEE International Conference on. IEEE, 2015, pp. 32–37.
-
(2015)
, pp. 32-37
-
-
Zhang, C.1
Sun, J.2
Tan, K.3
-
124
-
-
85028562937
-
Long Short-Term Memory Network for Remaining Useful Life estimation
-
Prognostics and Health Management (ICPHM) IEEE International Conference on, IEEE
-
S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long Short-Term Memory Network for Remaining Useful Life estimation, in: Prognostics and Health Management (ICPHM), 2017 IEEE International Conference on, IEEE, 2017, pp. 88–95.
-
(2017)
, pp. 88-95
-
-
Zheng, S.1
Ristovski, K.2
Farahat, A.3
Gupta, C.4
-
125
-
-
85010058289
-
Machine health monitoring with LSTM networks
-
Sensing Technology (ICST) 10th International Conference on, IEEEa
-
R. Zhao, J. Wang, R. Yan, K. Mao, Machine health monitoring with LSTM networks, in: Sensing Technology (ICST), 2016 10th International Conference on, IEEE, 2016a, pp. 1–6.
-
(2016)
, pp. 1-6
-
-
Zhao, R.1
Wang, J.2
Yan, R.3
Mao, K.4
-
126
-
-
84978047763
-
The limitations of deep learning in adversarial settings
-
Security and Privacy (EuroS&P) IEEE European Symposium on. IEEE
-
N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami, The limitations of deep learning in adversarial settings, in: Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 2016, pp. 372–387.
-
(2016)
, pp. 372-387
-
-
Papernot, N.1
McDaniel, P.2
Jha, S.3
Fredrikson, M.4
Celik, Z.B.5
Swami, A.6
-
127
-
-
85030214368
-
-
M, Giering. Anomaly detection and fault disambiguation in large flight data: a multi-modal deep autoencoder approach, in: Annual Conference of the Prognostics and Health Management Society. vol. 7(26).
-
R. Reddy, S. Sarkar, V. Venugopalan, M, Giering. Anomaly detection and fault disambiguation in large flight data: a multi-modal deep autoencoder approach, in: Annual Conference of the Prognostics and Health Management Society. vol. 7(26), 2016.
-
(2016)
-
-
Reddy, R.1
Sarkar, S.2
Venugopalan, V.3
-
128
-
-
84969972527
-
An empirical exploration of recurrent network architectures
-
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
-
R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of recurrent network architectures, in: Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (2015) pp. 2342–2350.
-
(2015)
, pp. 2342-2350
-
-
Jozefowicz, R.1
Zaremba, W.2
Sutskever, I.3
-
130
-
-
85042090326
-
-
On the Origin of Deep Learning. arXiv preprint arXiv:1702.07800a.
-
H. Wang, B. Raj, E.P. Xing, On the Origin of Deep Learning. arXiv preprint arXiv:1702.07800, 2017a.
-
(2017)
-
-
Wang, H.1
Raj, B.2
Xing, E.P.3
|