메뉴 건너뛰기




Volumn 107, Issue , 2018, Pages 241-265

A review on the application of deep learning in system health management

Author keywords

Artificial intelligence; Deep learning; Fault analysis; Maintenance; Real time processing; System health management

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA HANDLING; FAULT DETECTION; HEALTH; LEARNING SYSTEMS; LIFE CYCLE; MAINTENANCE; REPAIR;

EID: 85042082491     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2017.11.024     Document Type: Review
Times cited : (951)

References (130)
  • 1
    • 84934898566 scopus 로고    scopus 로고
    • On condition based maintenance policy
    • Shin, J.H., Jun, H.B., On condition based maintenance policy. J. Computat. Des. Eng. 2:2 (2015), 119–127.
    • (2015) J. Computat. Des. Eng. , vol.2 , Issue.2 , pp. 119-127
    • Shin, J.H.1    Jun, H.B.2
  • 2
    • 85027927538 scopus 로고    scopus 로고
    • Multi-level decision-making for the predictive maintenance of-out-of-: F deteriorating systems
    • Huynh, K.T., Barros, A., Bérenguer, C., Multi-level decision-making for the predictive maintenance of-out-of-: F deteriorating systems. IEEE Trans. Reliab. 64:1 (2015), 94–117.
    • (2015) IEEE Trans. Reliab. , vol.64 , Issue.1 , pp. 94-117
    • Huynh, K.T.1    Barros, A.2    Bérenguer, C.3
  • 3
    • 84887056149 scopus 로고    scopus 로고
    • Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications
    • Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 42:1 (2014), 314–334.
    • (2014) Mech. Syst. Signal Process. , vol.42 , Issue.1 , pp. 314-334
    • Lee, J.1    Wu, F.2    Zhao, W.3    Ghaffari, M.4    Liao, L.5    Siegel, D.6
  • 4
  • 5
    • 85042089260 scopus 로고    scopus 로고
    • in: R.J. Patton, P.M. Frank, R.N. Clark (Eds.) Issues of Fault Diagnosis for Dynamic Systems. Springer Science & Business Media.
    • in: R.J. Patton, P.M. Frank, R.N. Clark (Eds.) Issues of Fault Diagnosis for Dynamic Systems. Springer Science & Business Media, 2013.
    • (2013)
  • 6
    • 84892364826 scopus 로고    scopus 로고
    • No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research
    • Khan, S., Phillips, P., Hockley, C., Jennions, I., No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research. Reliab. Eng. Syst. Safety 123 (2014), 196–208.
    • (2014) Reliab. Eng. Syst. Safety , vol.123 , pp. 196-208
    • Khan, S.1    Phillips, P.2    Hockley, C.3    Jennions, I.4
  • 8
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Kingsbury, B., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29:6 (2012), 82–97.
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.R.5    Jaitly, N.6    Kingsbury, B.7
  • 9
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 10
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview, Neural Netw. 61 (2014) 85–117, published online 2014; based on TR arXiv:1404.7828 [cs.NE].
    • J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2014) 85–117, 2015, published online 2014; based on TR arXiv:1404.7828 [cs.NE].
    • (2015)
    • Schmidhuber, J.1
  • 12
    • 85042106113 scopus 로고    scopus 로고
    • Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer Science & Business Media.
    • O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer Science & Business Media, 2013.
    • (2013)
    • Nelles, O.1
  • 13
    • 85042106804 scopus 로고    scopus 로고
    • Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073.
    • N. Gugulothu, V. TV, P. Malhotra, L. Vig, P. Agarwal, G. Shroff, Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073, 2017.
    • (2017)
    • Gugulothu, N.1    TV, V.2    Malhotra, P.3    Vig, L.4    Agarwal, P.5    Shroff, G.6
  • 14
    • 84883417507 scopus 로고    scopus 로고
    • Review on modeling and simulation of interdependent critical infrastructure systems
    • Ouyang, M., Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. safety 121 (2014), 43–60.
    • (2014) Reliab. Eng. Syst. safety , vol.121 , pp. 43-60
    • Ouyang, M.1
  • 16
    • 0000963039 scopus 로고    scopus 로고
    • Pengi: An Implementation of a Theory of Activity
    • No. 4 (1987, July) pp. 286–-272.
    • P. Agre, D. Chapman, Pengi: An Implementation of a Theory of Activity, in: AAAI, vol. 87, No. 4 (1987, July) pp. 286–-272.
    • , vol.87
    • Agre, P.1    Chapman, D.2    AAAI3
  • 17
    • 1642382748 scopus 로고    scopus 로고
    • Fault detection by mining association rules from house-keeping data
    • Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space
    • T. Yairi, Y. Kato, K. Hori, Fault detection by mining association rules from house-keeping data, in: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2001, pp. 18–21.
    • (2001) , pp. 18-21
    • Yairi, T.1    Kato, Y.2    Hori, K.3
  • 18
    • 85015679989 scopus 로고    scopus 로고
    • Research advances in fault diagnosis and prognostic based on deep learning
    • Prognostics and System Health Management Conference (PHM-Chengdu), IEEE
    • G. Zhao, G. Zhang, Q. Ge, X. Liu, Research advances in fault diagnosis and prognostic based on deep learning, in: Prognostics and System Health Management Conference (PHM-Chengdu), IEEE, 2016, pp. 1–6.
    • (2016) , pp. 1-6
    • Zhao, G.1    Zhang, G.2    Ge, Q.3    Liu, X.4
  • 19
    • 85042128415 scopus 로고    scopus 로고
    • Deep Learning and Its Applications to Machine Health Monitoring: A Survey. arXiv preprint arXiv:1612.07640d.
    • R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R.X. Gao, Deep Learning and Its Applications to Machine Health Monitoring: A Survey. arXiv preprint arXiv:1612.07640, 2016d.
    • (2016)
    • Zhao, R.1    Yan, R.2    Chen, Z.3    Mao, K.4    Wang, P.5    Gao, R.X.6
  • 20
    • 84988735586 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on deep belief network and multisensor information fusion, Shock Vib., 2016
    • J. Tao, Y. Liu, D. Yang, Bearing fault diagnosis based on deep belief network and multisensor information fusion, Shock Vib. 2016 (2016).
    • (2016)
    • Tao, J.1    Liu, Y.2    Yang, D.3
  • 21
    • 84988723839 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis based on stft-deep learning and sound signals, Shock Vib.
    • H. Liu, L. Li, J. Ma, Rolling bearing fault diagnosis based on stft-deep learning and sound signals, Shock Vib. vol. 2016 (2016).
    • (2016) , vol.2016
    • Liu, H.1    Li, L.2    Ma, J.3
  • 22
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox fault identification and classification with convolutional neural networks, Shock and Vib
    • Z. Chen, C. Li, R.V. Sanchez, Gearbox fault identification and classification with convolutional neural networks, Shock and Vib. 2015.
    • (2015)
    • Chen, Z.1    Li, C.2    Sanchez, R.V.3
  • 23
    • 84962118969 scopus 로고    scopus 로고
    • Multi features fusion and nonlinear dimension reduction for intelligent bearing condition monitoring
    • Guo, L., Gao, H., Huang, H., He, X., Li, S., Multi features fusion and nonlinear dimension reduction for intelligent bearing condition monitoring. Shock Vib., 2016, 2016.
    • (2016) Shock Vib. , vol.2016
    • Guo, L.1    Gao, H.2    Huang, H.3    He, X.4    Li, S.5
  • 24
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process. (2016)
    • F. Jia, Y. Lei, J. Lin, X. Zhou, N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mech. Syst. Signal Process. vol. 72 (2016) pp. 303–315.
    • , vol.72 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 25
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • Gan, M., Wang, C., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing 72 (2016), 92–104.
    • (2016) Mechanical Systems and Signal Processing , vol.72 , pp. 92-104
    • Gan, M.1    Wang, C.2
  • 26
    • 85026870301 scopus 로고    scopus 로고
    • Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features
    • Ahmed, H.O.A., Wong, M.L.D., Nandi, A.K., Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features. Mech. Syst. Signal Process. 99 (2018), 459–477.
    • (2018) Mech. Syst. Signal Process. , vol.99 , pp. 459-477
    • Ahmed, H.O.A.1    Wong, M.L.D.2    Nandi, A.K.3
  • 27
    • 85015852225 scopus 로고    scopus 로고
    • Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis, IEEE Transactions on IM.
    • X. Ding, Q. He, Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis, IEEE Transactions on IM, 2017.
    • (2017)
    • Ding, X.1    He, Q.2
  • 28
    • 85016125628 scopus 로고    scopus 로고
    • Multi-sensor feature fusion for bearing fault diagnosis using sparse auto encoder and deep belief network
    • IEEE Transactions on IM.
    • Z. Chen, W. Li, Multi-sensor feature fusion for bearing fault diagnosis using sparse auto encoder and deep belief network, in: IEEE Transactions on IM, 2017.
    • (2017)
    • Chen, Z.1    Li, W.2
  • 29
    • 85028452247 scopus 로고    scopus 로고
    • Discriminative deep belief networks with ant colony optimization for health status assessment of machine
    • Ma, M., Sun, C., Chen, X., Discriminative deep belief networks with ant colony optimization for health status assessment of machine. IEEE Trans. Instrum. Meas., 2017.
    • (2017) IEEE Trans. Instrum. Meas.
    • Ma, M.1    Sun, C.2    Chen, X.3
  • 30
    • 84937818415 scopus 로고    scopus 로고
    • Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis, Neurocomputing, (2015)
    • C. Li, R. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, R. Vasquez, Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis, Neurocomputing, vol. 168 (2015) pp. 119–127.
    • , vol.168 , pp. 119-127
    • Li, C.1    Sanchez, R.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vasquez, R.6
  • 31
    • 85011575282 scopus 로고    scopus 로고
    • Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis
    • Gao, Z., Ma, C., Song, D., Liu, Y., Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis. Neurocomputing 238 (2017), 13–23.
    • (2017) Neurocomputing , vol.238 , pp. 13-23
    • Gao, Z.1    Ma, C.2    Song, D.3    Liu, Y.4
  • 32
    • 85040673778 scopus 로고    scopus 로고
    • Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
    • Wu, Y., Yuan, M., Dong, S., Lin, L., Liu, Y., Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 2017.
    • (2017) Neurocomputing
    • Wu, Y.1    Yuan, M.2    Dong, S.3    Lin, L.4    Liu, Y.5
  • 33
    • 85027729414 scopus 로고    scopus 로고
    • Wind turbine gearbox failure identification with deep neural networks
    • Wang, L., Zhang, Z., Long, H., Xu, J., Liu, R., Wind turbine gearbox failure identification with deep neural networks. IEEE Trans. Industr. Inf. 13:3 (2017), 1360–1368.
    • (2017) IEEE Trans. Industr. Inf. , vol.13 , Issue.3 , pp. 1360-1368
    • Wang, L.1    Zhang, Z.2    Long, H.3    Xu, J.4    Liu, R.5
  • 34
    • 85020682598 scopus 로고    scopus 로고
    • Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning
    • Liu, Z., Jia, Z., Vong, C.M., Bu, S., Han, J., Tang, X., Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning. IEEE Trans. Industr. Inf. 13:3 (2017), 1213–1226.
    • (2017) IEEE Trans. Industr. Inf. , vol.13 , Issue.3 , pp. 1213-1226
    • Liu, Z.1    Jia, Z.2    Vong, C.M.3    Bu, S.4    Han, J.5    Tang, X.6
  • 35
    • 85042070153 scopus 로고    scopus 로고
    • Learning to monitor machine health with convolutional bi-directional lstm networks, Sensors
    • R. Zhao, R. Yan, J. Wang, K. Mao, Learning to monitor machine health with convolutional bi-directional lstm networks, Sensors (2016).
    • (2016)
    • Zhao, R.1    Yan, R.2    Wang, J.3    Mao, K.4
  • 36
    • 84975124887 scopus 로고    scopus 로고
    • Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning, Sensors (no. 6) (2016)
    • C. Li, R. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning, Sensors vol. 16 (no. 6) (2016) p. 895.
    • , vol.16 , pp. 895
    • Li, C.1    Sanchez, R.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5
  • 38
    • 84997079451 scopus 로고    scopus 로고
    • Real-time vibration-based structural damage detection using one dimensional convolutional neural networks
    • Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D., Real-time vibration-based structural damage detection using one dimensional convolutional neural networks. J. Sound Vib. 388 (2017), 154–170.
    • (2017) J. Sound Vib. , vol.388 , pp. 154-170
    • Abdeljaber, O.1    Avci, O.2    Kiranyaz, S.3    Gabbouj, M.4    Inman, D.5
  • 39
    • 84994444628 scopus 로고    scopus 로고
    • Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment
    • Liao, L., Jin, W., Pavel, R., Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Trans. Industr. Electron., 63(11), 2016, 2016.
    • (2016) IEEE Trans. Industr. Electron. , vol.63 , Issue.11 , pp. 2016
    • Liao, L.1    Jin, W.2    Pavel, R.3
  • 40
    • 84994474581 scopus 로고    scopus 로고
    • Real-time motor fault detection by 1-d convolutional neural networks, IEEE Trans. Indus. Electron. (no. 11) (2016)
    • T. Ince, S. Kiranyaz, L. Eren, M. Askar, M. Gabbouj, Real-time motor fault detection by 1-d convolutional neural networks, IEEE Trans. Indus. Electron. vol. 63 (no. 11) (2016) pp. 7067–7075.
    • , vol.63 , pp. 7067-7075
    • Ince, T.1    Kiranyaz, S.2    Eren, L.3    Askar, M.4    Gabbouj, M.5
  • 41
    • 84964855691 scopus 로고    scopus 로고
    • A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    • Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X., A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89 (2016), 171–178.
    • (2016) Measurement , vol.89 , pp. 171-178
    • Sun, W.1    Shao, S.2    Zhao, R.3    Yan, R.4    Zhang, X.5    Chen, X.6
  • 42
    • 84979085360 scopus 로고    scopus 로고
    • Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Measurement (2016)
    • X. Guo, L. Chen, C. Shen, Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Measurement vol. 93 (2016) pp. 490–502.
    • , vol.93 , pp. 490-502
    • Guo, X.1    Chen, L.2    Shen, C.3
  • 43
    • 84960129882 scopus 로고    scopus 로고
    • A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering
    • Javed, K., Gouriveau, R., Zerhouni, N., A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering. IEEE Trans. Cybernetics 45:12 (2015), 2626–2639.
    • (2015) IEEE Trans. Cybernetics , vol.45 , Issue.12 , pp. 2626-2639
    • Javed, K.1    Gouriveau, R.2    Zerhouni, N.3
  • 44
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • Tran, T., Al-Thobiani, F., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41:9 (2014), 4113–4122.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.9 , pp. 4113-4122
    • Tran, T.1    Al-Thobiani, F.2    Ball, A.3
  • 45
    • 85028852181 scopus 로고    scopus 로고
    • Deep learning based approach for bearing fault diagnosis
    • He, M., He, D., Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53:3 (2017), 3057–3065.
    • (2017) IEEE Trans. Ind. Appl. , vol.53 , Issue.3 , pp. 3057-3065
    • He, M.1    He, D.2
  • 46
    • 85042063114 scopus 로고    scopus 로고
    • Hoecke, Deep learning for infrared thermal image based machine health monitoring, IEEE/ASME Trans Mechatronics
    • O. Janssens, R. Van de Walle, M. Loccufier, S. Van Hoecke, Deep learning for infrared thermal image based machine health monitoring, IEEE/ASME Trans Mechatronics (2017).
    • (2017)
    • Janssens, O.1    Van de Walle, R.2    Loccufier, M.3    Van, S.4
  • 47
    • 85042074106 scopus 로고    scopus 로고
    • Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics, IEEE Trans. Neural Netw. Learn. Syst.
    • C. Zhang, P. Lim, A. Qin, K. Tan, Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics, IEEE Trans. Neural Netw. Learn. Syst., 2016.
    • (2016)
    • Zhang, C.1    Lim, P.2    Qin, A.3    Tan, K.4
  • 48
    • 84988952865 scopus 로고    scopus 로고
    • Combining Deep Learning and Survival Analysis for Asset Health Management, Int. J. Prognostics Health Management
    • L. Liao, H.I. Ahn, Combining Deep Learning and Survival Analysis for Asset Health Management, Int. J. Prognostics Health Management (2016).
    • (2016)
    • Liao, L.1    Ahn, H.I.2
  • 49
    • 85006380247 scopus 로고    scopus 로고
    • Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks
    • Feng, D.L., Xiao, M.Q., Liu, Y.X., Song, H.F., Yang, Z., Hu, Z.W., Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks. Front. Inform. Technol. Electron. Eng. 17:12 (2016), 1287–1304.
    • (2016) Front. Inform. Technol. Electron. Eng. , vol.17 , Issue.12 , pp. 1287-1304
    • Feng, D.L.1    Xiao, M.Q.2    Liu, Y.X.3    Song, H.F.4    Yang, Z.5    Hu, Z.W.6
  • 50
    • 85028984900 scopus 로고    scopus 로고
    • Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder. IET Sci. Meas. Technol.
    • M. Xia, T. Li, L. Liu, L. Xu, C.W. de Silva, Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder. IET Sci. Meas. Technol. (2017).
    • (2017)
    • Xia, M.1    Li, T.2    Liu, L.3    Xu, L.4    de Silva, C.W.5
  • 51
    • 85042126878 scopus 로고    scopus 로고
    • Bearing fault diagnosis with autoencoder extreme learning machine: a comparative study, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. (2016) 1–19
    • W. Mao, J. He, Y. Li, Y. Yan, Bearing fault diagnosis with autoencoder extreme learning machine: a comparative study, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. (2016) 1–19.
    • Mao, W.1    He, J.2    Li, Y.3    Yan, Y.4
  • 52
    • 84975136179 scopus 로고    scopus 로고
    • Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection, CIRP Ann.-Manuf. Technol.
    • D. Weimer, B. Scholz-Reiter, M. Shpitalni, Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection, CIRP Ann.-Manuf. Technol. (2016).
    • (2016)
    • Weimer, D.1    Scholz-Reiter, B.2    Shpitalni, M.3
  • 53
    • 85023780160 scopus 로고    scopus 로고
    • Bearing Fault Diagnosis Using Fully-Connected Winner-Take-All Autoencoder. IEEE Access
    • C. Li, W. Zhang, G. Peng, S. Liu, Bearing Fault Diagnosis Using Fully-Connected Winner-Take-All Autoencoder. IEEE Access (2017).
    • (2017)
    • Li, C.1    Zhang, W.2    Peng, G.3    Liu, S.4
  • 54
    • 85042132212 scopus 로고    scopus 로고
    • Using deep learning-based approach to predict remaining useful life of rotating components.
    • J. Deutsch, D. He, Using deep learning-based approach to predict remaining useful life of rotating components, 2017.
    • (2017)
    • Deutsch, J.1    He, D.2
  • 55
    • 84982792319 scopus 로고    scopus 로고
    • Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    • Lu, C., Wang, Z., Qin, W., Ma, J., Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 130 (2017), 377–388.
    • (2017) Signal Process. , vol.130 , pp. 377-388
    • Lu, C.1    Wang, Z.2    Qin, W.3    Ma, J.4
  • 56
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan, P., Wang, P., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013), 124–135.
    • (2013) Reliab. Eng. Syst. Saf. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 57
    • 84944323318 scopus 로고    scopus 로고
    • Multi-layer neural network with deep belief network for gearbox fault diagnosis
    • Chen, Z., Li, C., Sanchez, R., Multi-layer neural network with deep belief network for gearbox fault diagnosis. Journal of Vibro engineering, 17(5), 2015.
    • (2015) Journal of Vibro engineering , vol.17 , Issue.5
    • Chen, Z.1    Li, C.2    Sanchez, R.3
  • 58
    • 84934923322 scopus 로고    scopus 로고
    • Recent advances on artificial intelligence and learning techniques in cognitive radio networks
    • Abbas, N., Nasser, Y., El Ahmad, K., Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP J. Wireless Commun. Netw., 2015(1), 2015, 1.
    • (2015) EURASIP J. Wireless Commun. Netw. , vol.2015 , Issue.1 , pp. 1
    • Abbas, N.1    Nasser, Y.2    El Ahmad, K.3
  • 59
    • 0034849323 scopus 로고    scopus 로고
    • Assessment of data and knowledge fusion strategies for prognostics and health management
    • Aerospace Conference, IEEE Proceedings, IEEE
    • M.J. Roemer, G.J. Kacprzynski, R.F. Orsagh, Assessment of data and knowledge fusion strategies for prognostics and health management, in: Aerospace Conference, 2001, IEEE Proceedings, vol. 6, IEEE, 2001, pp. 2979–2988.
    • (2001) , vol.6 , pp. 2979-2988
    • Roemer, M.J.1    Kacprzynski, G.J.2    Orsagh, R.F.3
  • 60
    • 84892364913 scopus 로고    scopus 로고
    • No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices
    • Khan, S., Phillips, P., Jennions, I., Hockley, C., No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices. Reliab. Eng. Syst. Safety 123 (2014), 183–195.
    • (2014) Reliab. Eng. Syst. Safety , vol.123 , pp. 183-195
    • Khan, S.1    Phillips, P.2    Jennions, I.3    Hockley, C.4
  • 61
    • 0025745712 scopus 로고
    • An intelligent control system for rocket engines: need, vision, and issues
    • Lorenzo, C.F., Merrill, W.C., An intelligent control system for rocket engines: need, vision, and issues. IEEE Contr. Syst. 11:1 (1991), 42–46.
    • (1991) IEEE Contr. Syst. , vol.11 , Issue.1 , pp. 42-46
    • Lorenzo, C.F.1    Merrill, W.C.2
  • 62
    • 0034432458 scopus 로고    scopus 로고
    • Prognosis of faults in gas turbine engines
    • IEEE., Aerospace Conference Proceedings IEEE, (2000)
    • T. Brotherton, G. Jahns, J. Jacobs, D. Wroblewski, Prognosis of faults in gas turbine engines, in: Aerospace Conference Proceedings, 2000 IEEE, vol. 6 (2000) pp. 163–171, IEEE.
    • (2000) , vol.6 , pp. 163-171
    • Brotherton, T.1    Jahns, G.2    Jacobs, J.3    Wroblewski, D.4
  • 63
    • 85042068036 scopus 로고    scopus 로고
    • Meziane(Ed.) Artificial Intelligence Applications for Improved Software Engineering Development: New Prospects: New Prospects. IGI Global.
    • in: F. Meziane(Ed.) Artificial Intelligence Applications for Improved Software Engineering Development: New Prospects: New Prospects. IGI Global, 2009.
    • (2009)
    • in:, F.1
  • 64
    • 1842839659 scopus 로고    scopus 로고
    • Condition monitoring of electrical machines using real-time expert system. In: Proc. 1988 Int. Conf. Electr. Mach. (1988, September)
    • D. Leith, N.D. Deans, I.D. Stewart, Condition monitoring of electrical machines using real-time expert system. In: Proc. 1988 Int. Conf. Electr. Mach. vol. 3 (1988, September) pp. 297–302.
    • , vol.3 , pp. 297-302
    • Leith, D.1    Deans, N.D.2    Stewart, I.D.3
  • 65
    • 0003919880 scopus 로고    scopus 로고
    • Clinical decision support systems
    • Springer Science+ Business Media LLC. New York
    • Berner, E.S., Clinical decision support systems. 2007, Springer Science+ Business Media LLC., New York, 3–22.
    • (2007) , pp. 3-22
    • Berner, E.S.1
  • 66
    • 85042077680 scopus 로고    scopus 로고
    • Autonomous robot vehicles, I.J. Cox, G.T. Wilfong (Eds.), Springer Science & Business Media
    • T. Lozano-Perez, Autonomous robot vehicles, I.J. Cox, G.T. Wilfong (Eds.), Springer Science & Business Media (2012).
    • (2012)
    • Lozano-Perez, T.1
  • 67
    • 84920573297 scopus 로고    scopus 로고
    • A systematic PHM approach for anomaly resolution: A hybrid neural fuzzy system for model construction
    • Proc PHM
    • Bonissone, P., Hu, X., Subbu, R., A systematic PHM approach for anomaly resolution: A hybrid neural fuzzy system for model construction. 2009, Proc, PHM.
    • (2009)
    • Bonissone, P.1    Hu, X.2    Subbu, R.3
  • 69
    • 84891808087 scopus 로고    scopus 로고
    • Gas turbine engine health management: past, present, and future trends
    • Volponi, A.J., Gas turbine engine health management: past, present, and future trends. J. Eng. Gas Turbines Power, 136(5), 2014, 051201.
    • (2014) J. Eng. Gas Turbines Power , vol.136 , Issue.5 , pp. 051201
    • Volponi, A.J.1
  • 70
    • 84900327405 scopus 로고    scopus 로고
    • Diagnostics and prognostics using switching Kalman filters
    • Reuben, L.C.K., Mba, D., Diagnostics and prognostics using switching Kalman filters. Struct. Health Monit. 13:3 (2014), 296–306.
    • (2014) Struct. Health Monit. , vol.13 , Issue.3 , pp. 296-306
    • Reuben, L.C.K.1    Mba, D.2
  • 71
    • 0027551845 scopus 로고
    • Guaranteeing real-time response with limited resources
    • Ash, D., Gold, G., Seiver, A., Hayes-Roth, B., Guaranteeing real-time response with limited resources. Artif. Intell. Med. 5:1 (1993), 49–66.
    • (1993) Artif. Intell. Med. , vol.5 , Issue.1 , pp. 49-66
    • Ash, D.1    Gold, G.2    Seiver, A.3    Hayes-Roth, B.4
  • 72
    • 85042122484 scopus 로고    scopus 로고
    • AI based on-board diagnostic and prognostic health management system
    • Annual Conference of the Prognostics and Health Management Society.
    • P.S. Rao, S. Mohan, V. Chindam, AI based on-board diagnostic and prognostic health management system, in: Annual Conference of the Prognostics and Health Management Society, 2015.
    • (2015)
    • Rao, P.S.1    Mohan, S.2    Chindam, V.3
  • 73
    • 0036998095 scopus 로고    scopus 로고
    • The use of expert systems for gas turbine diagnostics and maintenance
    • Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands.
    • P.R. Spina, G. Torella, M. Venturini, The use of expert systems for gas turbine diagnostics and maintenance, in: Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands,2002.
    • (2002)
    • Spina, P.R.1    Torella, G.2    Venturini, M.3
  • 74
    • 85087594180 scopus 로고    scopus 로고
    • “Engine Data Analysis Using Decision Trees;” paper presented at the 36th Joint Propulsion Conference, 2000
    • Bajwa, A.R., Kulkarni, D., “Engine Data Analysis Using Decision Trees;” paper presented at the 36th Joint Propulsion Conference, 2000. AIAA, 2000–3627, 2000, 64.
    • (2000) AIAA , vol.2000-3627 , pp. 64
    • Bajwa, A.R.1    Kulkarni, D.2
  • 75
    • 66149125835 scopus 로고    scopus 로고
    • Application of random forest to aircraft engine fault diagnosis
    • Computational Engineering in Systems Applications, IMACS Multiconference on, IEEE
    • W. Yan, Application of random forest to aircraft engine fault diagnosis, in: Computational Engineering in Systems Applications, IMACS Multiconference on, IEEE, vol. 1, 2006, pp. 468–475.
    • (2006) , vol.1 , pp. 468-475
    • Yan, W.1
  • 76
    • 64949202636 scopus 로고    scopus 로고
    • Random forests classifier for machine fault diagnosis
    • Yang, B.S., Di, X., Han, T., Random forests classifier for machine fault diagnosis. J. Mech. Sci. Technol. 22:9 (2008), 1716–1725.
    • (2008) J. Mech. Sci. Technol. , vol.22 , Issue.9 , pp. 1716-1725
    • Yang, B.S.1    Di, X.2    Han, T.3
  • 77
    • 84861900936 scopus 로고    scopus 로고
    • A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis
    • Muralidharan, V., Sugumaran, V., A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Appl. Soft Comput. 12:8 (2012), 2023–2029.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.8 , pp. 2023-2029
    • Muralidharan, V.1    Sugumaran, V.2
  • 78
    • 70449530626 scopus 로고    scopus 로고
    • Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features
    • Elangovan, M., Ramachandran, K.I., Sugumaran, V., Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features. Expert Syst. Appl. 37:3 (2010), 2059–2065.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.3 , pp. 2059-2065
    • Elangovan, M.1    Ramachandran, K.I.2    Sugumaran, V.3
  • 79
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • Zhang, M.L., Peña, J.M., Robles, V., Feature selection for multi-label naive Bayes classification. Inf. Sci. 179:19 (2009), 3218–3229.
    • (2009) Inf. Sci. , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.L.1    Peña, J.M.2    Robles, V.3
  • 81
    • 84891898576 scopus 로고    scopus 로고
    • A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
    • Ng, S.S., Xing, Y., Tsui, K.L., A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 118 (2014), 114–123.
    • (2014) Appl. Energy , vol.118 , pp. 114-123
    • Ng, S.S.1    Xing, Y.2    Tsui, K.L.3
  • 82
    • 85054056596 scopus 로고    scopus 로고
    • Q. Hao (Eds.), Intelligent sensor networks: the integration of sensor networks, signal processing and machine learning. CRC Press.
    • F. Hu, Q. Hao (Eds.), Intelligent sensor networks: the integration of sensor networks, signal processing and machine learning. CRC Press, 2012.
    • (2012)
    • Hu, F.1
  • 83
    • 84993729265 scopus 로고    scopus 로고
    • Component reliability in fault-diagnosis decision making based on dynamic Bayesian networks
    • Weber, P., Theilliol, D., Aubrun, C., Component reliability in fault-diagnosis decision making based on dynamic Bayesian networks. Proc. Inst. Mech. Eng., Part O: J. Risk Reliab. 222:2 (2008), 161–172.
    • (2008) Proc. Inst. Mech. Eng., Part O: J. Risk Reliab. , vol.222 , Issue.2 , pp. 161-172
    • Weber, P.1    Theilliol, D.2    Aubrun, C.3
  • 84
    • 84907520010 scopus 로고    scopus 로고
    • Bayesian hierarchical models for aerospace gas turbine engine prognostics
    • Zaidan, M.A., Harrison, R.F., Mills, A.R., Fleming, P.J., Bayesian hierarchical models for aerospace gas turbine engine prognostics. Expert Syst. Appl. 42:1 (2015), 539–553.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.1 , pp. 539-553
    • Zaidan, M.A.1    Harrison, R.F.2    Mills, A.R.3    Fleming, P.J.4
  • 85
    • 85020551212 scopus 로고    scopus 로고
    • Improving spacecraft health monitoring with automatic anomaly detection techniques
    • 14th international conference on space operations
    • S. Fuertes, G. Picart, J.Y. Tourneret, L. Chaari, A. Ferrari, C. Richard, Improving spacecraft health monitoring with automatic anomaly detection techniques, in: 14th international conference on space operations (2016) p. 2430.
    • (2016) , pp. 2430
    • Fuertes, S.1    Picart, G.2    Tourneret, J.Y.3    Chaari, L.4    Ferrari, A.5    Richard, C.6
  • 86
    • 85025838899 scopus 로고    scopus 로고
    • Anomaly detection in medical wireless sensor networks using SVM and linear regression models
    • E-Health and Telemedicine: Concepts, Methodologies, Tools, and Applications. Medical Information science reference (an imprint of IGI global).
    • O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, B. Furht, Anomaly detection in medical wireless sensor networks using SVM and linear regression models, in: E-Health and Telemedicine: Concepts, Methodologies, Tools, and Applications. Medical Information science reference (an imprint of IGI global), 2016.
    • (2016)
    • Salem, O.1    Guerassimov, A.2    Mehaoua, A.3    Marcus, A.4    Furht, B.5
  • 87
    • 81255150243 scopus 로고    scopus 로고
    • Application research of Kalman filter and SVM applied to condition monitoring and fault diagnosis
    • Applied Mechanics and Materials, Trans Tech Publications vol. 121(2012).
    • K. Li, Y.L. Zhang, Z.X. Li, Application research of Kalman filter and SVM applied to condition monitoring and fault diagnosis, in: Applied Mechanics and Materials, Trans Tech Publications vol. 121(2012) pp. 268–272.
    • Li, K.1    Zhang, Y.L.2    Li, Z.X.3
  • 88
    • 85042098402 scopus 로고    scopus 로고
    • Fault-diagnosis using neural networks with ellipsoidal basis functions
    • S. Jakubek, T. Strasser, Fault-diagnosis using neural networks with ellipsoidal basis functions (2012) pp. 3846–3851.
    • (2012) , pp. 3846-3851
    • Jakubek, S.1    Strasser, T.2
  • 89
    • 23244442882 scopus 로고    scopus 로고
    • Hybrid neural-network genetic-algorithm technique for aircraft engine performance diagnostics
    • Kobayashi, T., Simon, D.L., Hybrid neural-network genetic-algorithm technique for aircraft engine performance diagnostics. J. Propul. Power 21:4 (2005), 751–758.
    • (2005) J. Propul. Power , vol.21 , Issue.4 , pp. 751-758
    • Kobayashi, T.1    Simon, D.L.2
  • 90
    • 8844281752 scopus 로고    scopus 로고
    • Novelty detection in learning systems
    • Marsland, S., Novelty detection in learning systems. Neural Comput. Surveys 3:2 (2003), 157–195.
    • (2003) Neural Comput. Surveys , vol.3 , Issue.2 , pp. 157-195
    • Marsland, S.1
  • 91
    • 0024886995 scopus 로고
    • An investigation of neural networks for F-16 fault diagnosis. I. System description, in: AUTOTESTCON'89. IEEE Automatic Testing Conference. The Systems Readiness Technology Conference. Automatic Testing in the Next Decade and the 21st Century. Conference Record, IEEE
    • R.J. McDuff, P.K. Simpson, D. Gunning, An investigation of neural networks for F-16 fault diagnosis. I. System description, in: AUTOTESTCON'89. IEEE Automatic Testing Conference. The Systems Readiness Technology Conference. Automatic Testing in the Next Decade and the 21st Century. Conference Record, IEEE, 1989, pp. 351–357.
    • (1989) , pp. 351-357
    • McDuff, R.J.1    Simpson, P.K.2    Gunning, D.3
  • 92
    • 0001301007 scopus 로고    scopus 로고
    • Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery
    • Zhang, S., Ganesan, R., Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery. J. Eng. Gas Turb. Power 119:2 (1997), 378–384.
    • (1997) J. Eng. Gas Turb. Power , vol.119 , Issue.2 , pp. 378-384
    • Zhang, S.1    Ganesan, R.2
  • 93
    • 84877754137 scopus 로고    scopus 로고
    • Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique
    • Soualhi, A., Clerc, G., Razik, H., Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Trans. Industr. Electron. 60:9 (2013), 4053–4062.
    • (2013) IEEE Trans. Industr. Electron. , vol.60 , Issue.9 , pp. 4053-4062
    • Soualhi, A.1    Clerc, G.2    Razik, H.3
  • 94
    • 84876936237 scopus 로고    scopus 로고
    • Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
    • Lei, Y., Han, D., Lin, J., He, Z., Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech. Syst. Signal Process. 38:1 (2013), 113–124.
    • (2013) Mech. Syst. Signal Process. , vol.38 , Issue.1 , pp. 113-124
    • Lei, Y.1    Han, D.2    Lin, J.3    He, Z.4
  • 95
    • 84865610462 scopus 로고    scopus 로고
    • Application of adaptive resonance theory neural networks to monitor solar hot water systems and detect existing or developing faults
    • He, H., Caudell, T.P., Menicucci, D.F., Mammoli, A.A., Application of adaptive resonance theory neural networks to monitor solar hot water systems and detect existing or developing faults. Sol. Energy 86:9 (2012), 2318–2333.
    • (2012) Sol. Energy , vol.86 , Issue.9 , pp. 2318-2333
    • He, H.1    Caudell, T.P.2    Menicucci, D.F.3    Mammoli, A.A.4
  • 97
    • 85042127192 scopus 로고    scopus 로고
    • Turbofan engine monitoring with health state identification and remaining useful life anticipation
    • Lacaille, J., Gouby, A., Bense, W., Rabenoro, T., Abdel-Sayed, M., Turbofan engine monitoring with health state identification and remaining useful life anticipation. Int. J. Cond. Monitoring 5:2 (2015), 8–16.
    • (2015) Int. J. Cond. Monitoring , vol.5 , Issue.2 , pp. 8-16
    • Lacaille, J.1    Gouby, A.2    Bense, W.3    Rabenoro, T.4    Abdel-Sayed, M.5
  • 98
    • 84883743627 scopus 로고    scopus 로고
    • Damage classification in structural health monitoring using principal component analysis and self-organizing maps
    • Tibaduiza, D.A., Mujica, L.E., Rodellar, J., Damage classification in structural health monitoring using principal component analysis and self-organizing maps. Struct. Control Health Monit. 20:10 (2013), 1303–1316.
    • (2013) Struct. Control Health Monit. , vol.20 , Issue.10 , pp. 1303-1316
    • Tibaduiza, D.A.1    Mujica, L.E.2    Rodellar, J.3
  • 99
    • 33644914682 scopus 로고    scopus 로고
    • Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map
    • Cho, J., Principe, J.C., Erdogmus, D., Motter, M.A., Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map. IEEE Trans. Neural Netw. 17:2 (2006), 445–460.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.2 , pp. 445-460
    • Cho, J.1    Principe, J.C.2    Erdogmus, D.3    Motter, M.A.4
  • 100
    • 74149089478 scopus 로고    scopus 로고
    • Hidden semi-Markov models
    • Yu, S.Z., Hidden semi-Markov models. Artif. Intell. 174:2 (2010), 215–243.
    • (2010) Artif. Intell. , vol.174 , Issue.2 , pp. 215-243
    • Yu, S.Z.1
  • 101
    • 84955741179 scopus 로고    scopus 로고
    • Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model
    • Zhou, H., Chen, J., Dong, G., Wang, H., Yuan, H., Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model. Mech. Syst. Signal Process. 66 (2016), 568–581.
    • (2016) Mech. Syst. Signal Process. , vol.66 , pp. 568-581
    • Zhou, H.1    Chen, J.2    Dong, G.3    Wang, H.4    Yuan, H.5
  • 102
    • 84946600673 scopus 로고    scopus 로고
    • Bearing fault diagnosis method based on stacked autoencoder and softmax regression
    • Control Conference (CCC) 34th Chinese, IEEE, 6335
    • S. Tao, T. Zhang, J. Yang, X. Wang, W. Lu, Bearing fault diagnosis method based on stacked autoencoder and softmax regression, in: Control Conference (CCC), 2015 34th Chinese, IEEE, 2015, pp. 6331 6335.
    • (2015) , pp. 6331
    • Tao, S.1    Zhang, T.2    Yang, J.3    Wang, X.4    Lu, W.5
  • 103
    • 84945576459 scopus 로고    scopus 로고
    • A novel feature extraction method using deep neural network for rolling bearing fault diagnosis
    • Control and Decision Conference (CCDC) 27th Chinese,. IEEE
    • W. Lu, X. Wang, C. Yang, T. Zhang, A novel feature extraction method using deep neural network for rolling bearing fault diagnosis, in: Control and Decision Conference (CCDC), 2015 27th Chinese,. IEEE, 2015, pp. 2427–2431.
    • (2015) , pp. 2427-2431
    • Lu, W.1    Wang, X.2    Yang, C.3    Zhang, T.4
  • 104
    • 85042112007 scopus 로고    scopus 로고
    • Diagnosis of tidal turbine vibration data through deep neural networks
    • Third European Conference of the Prognostics and Health Management Society
    • G. Galloway, V. Catterson, T. Fay, A. Robb, C. Love, Diagnosis of tidal turbine vibration data through deep neural networks, in: Third European Conference of the Prognostics and Health Management Society 2016.
    • (2016)
    • Galloway, G.1    Catterson, V.2    Fay, T.3    Robb, A.4    Love, C.5
  • 105
    • 84963740039 scopus 로고    scopus 로고
    • Transformer fault diagnosis using continuous sparse autoencoder, SpringerPlus, (no. 1)
    • L. Wang, X. Zhao, J. Pei, G. Tang, Transformer fault diagnosis using continuous sparse autoencoder, SpringerPlus, vol. 5 (no. 1), 2016, p. 1.
    • (2016) , vol.5 , pp. 1
    • Wang, L.1    Zhao, X.2    Pei, J.3    Tang, G.4
  • 106
    • 84888870402 scopus 로고    scopus 로고
    • Intelligent condition based monitoring of rotating machines using sparse autoencoders
    • Prognostics and Health Management (PHM) IEEE Conference on. IEEE
    • N. Verma, V. Gupta, M. Sharma, R. Sevakula, Intelligent condition based monitoring of rotating machines using sparse autoencoders, in: Prognostics and Health Management (PHM), 2013 IEEE Conference on. IEEE, 2013, pp. 1–7.
    • (2013) , pp. 1-7
    • Verma, N.1    Gupta, V.2    Sharma, M.3    Sevakula, R.4
  • 107
    • 84966322221 scopus 로고    scopus 로고
    • Study on signal recognition and diagnosis for spacecraft based on deep learning method, in: Prognostics and System Health Management Conference (PHM), 2015
    • Li, K., Wang, Q., Study on signal recognition and diagnosis for spacecraft based on deep learning method, in: Prognostics and System Health Management Conference (PHM), 2015. IEEE 2015 (2015), 1–5.
    • (2015) IEEE , vol.2015 , pp. 1-5
    • Li, K.1    Wang, Q.2
  • 108
    • 85099697158 scopus 로고    scopus 로고
    • Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder, in: the 27th Chinese Control and Decision Conference (2015 CCDC)
    • Junbo, T., Weining, L., Juneng, A., Xueqian, W., Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder, in: the 27th Chinese Control and Decision Conference (2015 CCDC). IEEE 2015 (2015), 4608–4613.
    • (2015) IEEE , vol.2015 , pp. 4608-4613
    • Junbo, T.1    Weining, L.2    Juneng, A.3    Xueqian, W.4
  • 109
    • 84978805885 scopus 로고    scopus 로고
    • Fault diagnosis of hydraulic pump based on stacked autoencoders
    • 12th IEEE International Conference on Electronic Measurement Instruments (ICEMI), (July) (2015)
    • Z. Huijie, R. Ting, W. Xinqing, Z. You, F. Husheng, Fault diagnosis of hydraulic pump based on stacked autoencoders, in: 2015 12th IEEE International Conference on Electronic Measurement Instruments (ICEMI), vol. 01 (July) (2015) pp. 58–62.
    • (2015) , vol.1 , pp. 58-62
    • Huijie, Z.1    Ting, R.2    Xinqing, W.3    You, Z.4    Husheng, F.5
  • 110
    • 85030214368 scopus 로고    scopus 로고
    • Anomaly detection and fault disambiguation in large flight data: A multi-modal deep auto-encoder approach”, in Annual conference of the prognostics and health management society
    • Denver Colorado
    • Kishore, V., Reddy, K., Sarkar, S., Giering, M., Anomaly detection and fault disambiguation in large flight data: A multi-modal deep auto-encoder approach”, in Annual conference of the prognostics and health management society. 2016, Denver, Colorado.
    • (2016)
    • Kishore, V.1    Reddy, K.2    Sarkar, S.3    Giering, M.4
  • 111
    • 84985998651 scopus 로고    scopus 로고
    • Generating feature sets for fault diagnosis using denoising stacked auto-encoder
    • Prognostics and Health Management (ICPHM) IEEE International Conference on. IEEE
    • R. Thirukovalluru, S. Dixit, R. Sevakula, N. Verma, A. Salour, Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in: Prognostics and Health Management (ICPHM), 2016 IEEE International Conference on. IEEE, 2016, pp. 1–7.
    • (2016) , pp. 1-7
    • Thirukovalluru, R.1    Dixit, S.2    Sevakula, R.3    Verma, N.4    Salour, A.5
  • 112
    • 85016121433 scopus 로고    scopus 로고
    • On accurate and reliable anomaly detection for gas turbine combustors: a deep learning approach
    • Proceedings of the Annual Conference of the Prognostics and Health Management Society.
    • W. Yan, L. Yu, On accurate and reliable anomaly detection for gas turbine combustors: a deep learning approach, in: Proceedings of the Annual Conference of the Prognostics and Health Management Society, 2015.
    • (2015)
    • Yan, W.1    Yu, L.2
  • 113
    • 85042077642 scopus 로고    scopus 로고
    • Semi-supervised Learning with Deep Generative Models for Asset Failure Prediction. arXiv preprint arXiv:1709.00845.
    • A.S. Yoon, T. Lee, Y. Lim, D. Jung, P. Kang, D. Kim, Y. Choi, Semi-supervised Learning with Deep Generative Models for Asset Failure Prediction. arXiv preprint arXiv:1709.00845, 2017.
    • (2017)
    • Yoon, A.S.1    Lee, T.2    Lim, Y.3    Jung, D.4    Kang, P.5    Kim, D.6    Choi, Y.7
  • 114
    • 85030250211 scopus 로고    scopus 로고
    • Using deep learning based approaches for bearing remaining useful life prediction
    • Annual Conference of the Prognostics and Health Management Society.
    • J. Deutsch, D. He, Using deep learning based approaches for bearing remaining useful life prediction, in: Annual Conference of the Prognostics and Health Management Society, 2016.
    • (2016)
    • Deutsch, J.1    He, D.2
  • 115
    • 85010527122 scopus 로고    scopus 로고
    • Bearing degradation assessment based on weibull distribution and deep belief network
    • Proceedings of 2016 International Symposium of Flexible Automation (ISFA)
    • M. Ma, X. Chen, S. Wang, Y. Liu, W. Li, Bearing degradation assessment based on weibull distribution and deep belief network, in: Proceedings of 2016 International Symposium of Flexible Automation (ISFA), 2016, pp. 1–4.
    • (2016) , pp. 1-4
    • Ma, M.1    Chen, X.2    Wang, S.3    Liu, Y.4    Li, W.5
  • 116
    • 85010504049 scopus 로고    scopus 로고
    • Learning features from vibration signals for induction motor fault diagnosis
    • Proceedings of 2016 International Symposium of Flexible Automation (ISFA)
    • S. Shao, W. Sun, P. Wang, R. Gao, R. Yan, Learning features from vibration signals for induction motor fault diagnosis, in: Proceedings of 2016 International Symposium of Flexible Automation (ISFA), 2016, pp. 1–6.
    • (2016) , pp. 1-6
    • Shao, S.1    Sun, W.2    Wang, P.3    Gao, R.4    Yan, R.5
  • 117
    • 84939180924 scopus 로고    scopus 로고
    • Analysis of feature extracting ability for cutting state monitoring using deep belief networks, Proc. CIRP (2015)
    • Y. Fu, Y. Zhang, H. Qiao, D. Li, H. Zhou, J. Leopold, Analysis of feature extracting ability for cutting state monitoring using deep belief networks, Proc. CIRP vol. 31 (2015) pp. 29–34.
    • , vol.31 , pp. 29-34
    • Fu, Y.1    Zhang, Y.2    Qiao, H.3    Li, D.4    Zhou, H.5    Leopold, J.6
  • 118
    • 85030214553 scopus 로고    scopus 로고
    • Smart diagnosis of journal bearing rotor systems: Unsupervised feature extraction scheme by deep learning
    • Annual Conference of the Prognostics and Health Management Society.
    • H. Oh, B. Jeon, J. Jung, B. Youn, Smart diagnosis of journal bearing rotor systems: Unsupervised feature extraction scheme by deep learning, in: Annual Conference of the Prognostics and Health Management Society, 2016.
    • (2016)
    • Oh, H.1    Jeon, B.2    Jung, J.3    Youn, B.4
  • 119
    • 85018748366 scopus 로고    scopus 로고
    • Convolutional Neural Net and Bearing Fault Analysis
    • Proceedings of the International Conference on Data Mining (DMIN) (p. 194). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016, January).
    • D. Lee, V. Siu, R. Cruz, C. Yetman, Convolutional Neural Net and Bearing Fault Analysis, in: Proceedings of the International Conference on Data Mining (DMIN) (p. 194). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016, January).
    • Lee, D.1    Siu, V.2    Cruz, R.3    Yetman, C.4
  • 120
    • 84962468883 scopus 로고    scopus 로고
    • Deep convolutional neural network based regression approach for estimation of remaining useful life
    • international conference on database systems for advanced applications. Springer
    • G. Babu, P. Zhao, X. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life, in: international conference on database systems for advanced applications. Springer (2016) pp. 214–228.
    • (2016) , pp. 214-228
    • Babu, G.1    Zhao, P.2    Li, X.3
  • 121
    • 85006822781 scopus 로고    scopus 로고
    • Fault diagnosis and remaining useful life estimation of aero engine using lstm neural network
    • IEEE International Conference on Aircraft Utility Systems (AUS), 2016
    • M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using lstm neural network, in: 2016 IEEE International Conference on Aircraft Utility Systems (AUS), 2016, pp. 135–140.
    • (2016) , pp. 135-140
    • Yuan, M.1    Wu, Y.2    Lin, L.3
  • 122
    • 85042102851 scopus 로고    scopus 로고
    • Multi-sensor Prognostics Using an Unsupervised Health Index Based on lstm Encoder-Decoder, arXiv preprint arXiv:1608.06154.
    • P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff, Multi-sensor Prognostics Using an Unsupervised Health Index Based on lstm Encoder-Decoder, arXiv preprint arXiv:1608.06154, 2016.
    • (2016)
    • Malhotra, P.1    Ramakrishnan, A.2    Anand, G.3    Vig, L.4    Agarwal, P.5    Shroff, G.6
  • 123
    • 84964414629 scopus 로고    scopus 로고
    • Deep belief networks ensemble with multi-objective optimization for failure diagnosis
    • Systems Man, and Cybernetics (SMC) IEEE International Conference on. IEEE
    • C. Zhang, J. Sun, K. Tan, Deep belief networks ensemble with multi-objective optimization for failure diagnosis, in: Systems Man, and Cybernetics (SMC), 2015 IEEE International Conference on. IEEE, 2015, pp. 32–37.
    • (2015) , pp. 32-37
    • Zhang, C.1    Sun, J.2    Tan, K.3
  • 124
    • 85028562937 scopus 로고    scopus 로고
    • Long Short-Term Memory Network for Remaining Useful Life estimation
    • Prognostics and Health Management (ICPHM) IEEE International Conference on, IEEE
    • S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long Short-Term Memory Network for Remaining Useful Life estimation, in: Prognostics and Health Management (ICPHM), 2017 IEEE International Conference on, IEEE, 2017, pp. 88–95.
    • (2017) , pp. 88-95
    • Zheng, S.1    Ristovski, K.2    Farahat, A.3    Gupta, C.4
  • 125
    • 85010058289 scopus 로고    scopus 로고
    • Machine health monitoring with LSTM networks
    • Sensing Technology (ICST) 10th International Conference on, IEEEa
    • R. Zhao, J. Wang, R. Yan, K. Mao, Machine health monitoring with LSTM networks, in: Sensing Technology (ICST), 2016 10th International Conference on, IEEE, 2016a, pp. 1–6.
    • (2016) , pp. 1-6
    • Zhao, R.1    Wang, J.2    Yan, R.3    Mao, K.4
  • 126
    • 84978047763 scopus 로고    scopus 로고
    • The limitations of deep learning in adversarial settings
    • Security and Privacy (EuroS&P) IEEE European Symposium on. IEEE
    • N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami, The limitations of deep learning in adversarial settings, in: Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 2016, pp. 372–387.
    • (2016) , pp. 372-387
    • Papernot, N.1    McDaniel, P.2    Jha, S.3    Fredrikson, M.4    Celik, Z.B.5    Swami, A.6
  • 127
    • 85030214368 scopus 로고    scopus 로고
    • M, Giering. Anomaly detection and fault disambiguation in large flight data: a multi-modal deep autoencoder approach, in: Annual Conference of the Prognostics and Health Management Society. vol. 7(26).
    • R. Reddy, S. Sarkar, V. Venugopalan, M, Giering. Anomaly detection and fault disambiguation in large flight data: a multi-modal deep autoencoder approach, in: Annual Conference of the Prognostics and Health Management Society. vol. 7(26), 2016.
    • (2016)
    • Reddy, R.1    Sarkar, S.2    Venugopalan, V.3
  • 128
    • 84969972527 scopus 로고    scopus 로고
    • An empirical exploration of recurrent network architectures
    • Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
    • R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of recurrent network architectures, in: Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (2015) pp. 2342–2350.
    • (2015) , pp. 2342-2350
    • Jozefowicz, R.1    Zaremba, W.2    Sutskever, I.3
  • 130
    • 85042090326 scopus 로고    scopus 로고
    • On the Origin of Deep Learning. arXiv preprint arXiv:1702.07800a.
    • H. Wang, B. Raj, E.P. Xing, On the Origin of Deep Learning. arXiv preprint arXiv:1702.07800, 2017a.
    • (2017)
    • Wang, H.1    Raj, B.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.