-
1
-
-
79955584653
-
Remaining useful life estimation-A review on the statistical data driven approaches
-
X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, "Remaining useful life estimation-A review on the statistical data driven approaches, " European Journal of Operational Research, vol. 213, no. 1, pp. 1-14, 2011
-
(2011)
European Journal of Operational Research
, vol.213
, Issue.1
, pp. 1-14
-
-
Si, X.-S.1
Wang, W.2
Hu, C.-H.3
Zhou, D.-H.4
-
2
-
-
33947583430
-
A neural network integrated decision support system for condition-based optimal predictive maintenance policy
-
S.-j. Wu, N. Gebraeel, M. A. Lawley, and Y. Yih, "A neural network integrated decision support system for condition-based optimal predictive maintenance policy, " IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems, and Humans, vol. 37, no. 2, pp. 226-236, 2007
-
(2007)
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems, and Humans
, vol.37
, Issue.2
, pp. 226-236
-
-
Wu, S.-J.1
Gebraeel, N.2
Lawley, M.A.3
Yih, Y.4
-
3
-
-
84862197081
-
An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
-
Z. Tian, "An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring, " Journal of Intelligent Manufacturing, vol. 23, no. 2, pp. 227-237, 2012
-
(2012)
Journal of Intelligent Manufacturing
, vol.23
, Issue.2
, pp. 227-237
-
-
Tian, Z.1
-
4
-
-
27744505094
-
Hmms for diagnostics, and prognostics in machining processes
-
P. Baruah, and R. B. Chinnam, "Hmms for diagnostics, and prognostics in machining processes, " International Journal of Production Research, vol. 43, no. 6, pp. 1275-1293, 2005
-
(2005)
International Journal of Production Research
, vol.43
, Issue.6
, pp. 1275-1293
-
-
Baruah, P.1
Chinnam, R.B.2
-
5
-
-
0041965934
-
Learning precise timing with lstm recurrent networks
-
no. Aug
-
F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, "Learning precise timing with lstm recurrent networks, " Journal of machine learning research, vol. 3, no. Aug, pp. 115-143, 2002
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 115-143
-
-
Gers, F.A.1
Schraudolph, N.N.2
Schmidhuber, J.3
-
7
-
-
26444565569
-
Finding structure in time
-
J. L. Elman, "Finding structure in time, " Cognitive science, vol. 14, no. 2, pp. 179-211, 1990
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
8
-
-
58449086756
-
Recurrent neural networks for remaining useful life estimation
-
PHM 2008. International Conference on. IEEE
-
F. O. Heimes, "Recurrent neural networks for remaining useful life estimation, " in Prognostics, and Health Management, 2008. PHM 2008. International Conference on. IEEE, 2008, pp. 1-6
-
(2008)
Prognostics, and Health Management 2008
, pp. 1-6
-
-
Heimes, F.O.1
-
9
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult, " IEEE transactions on neural networks, vol. 5, no. 2, pp. 157-166, 1994
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
11
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter, and J. Schmidhuber, "Long short-term memory, " Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997
-
(1997)
Neural Computation
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
12
-
-
85018500482
-
Accelerating deep learning with shrinkage, and recall
-
ICPADS 2016 IEEE 22nd International Conference on. IEEE
-
S. Zheng, A. Vishnu, and C. Ding, "Accelerating deep learning with shrinkage, and recall, " in Parallel, and Distributed Systems (ICPADS), 2016 IEEE 22nd International Conference on. IEEE, 2016, pp. 963-970
-
(2016)
Parallel, and Distributed Systems
, pp. 963-970
-
-
Zheng, S.1
Vishnu, A.2
Ding, C.3
-
13
-
-
84962468883
-
Deep convolutional neural network based regression approach for estimation of remaining useful life
-
Springer
-
G. S. Babu, P. Zhao, and X.-L. Li, "Deep convolutional neural network based regression approach for estimation of remaining useful life, " in International Conference on Database Systems for Advanced Applications. Springer, 2016, pp. 214-228
-
(2016)
International Conference on Database Systems for Advanced Applications
, pp. 214-228
-
-
Babu, G.S.1
Zhao, P.2
Li, X.-L.3
-
14
-
-
84944735469
-
-
2016, book in preparation for MIT Press. [Online]. Available
-
I. G. Y. Bengio, and A. Courville, "Deep learning, " 2016, book in preparation for MIT Press. [Online]. Available: http://www.deeplearningbook.org
-
Deep Learning
-
-
Bengio, I.G.Y.1
Courville, A.2
-
15
-
-
18844440975
-
Optimal dimensionality reduction of sensor data in multisensor estimation fusion
-
Y. Zhu, E. Song, J. Zhou, and Z. You, "Optimal dimensionality reduction of sensor data in multisensor estimation fusion, " IEEE Transactions on Signal Processing, vol. 53, no. 5, pp. 1631-1639, 2005
-
(2005)
IEEE Transactions on Signal Processing
, vol.53
, Issue.5
, pp. 1631-1639
-
-
Zhu, Y.1
Song, E.2
Zhou, J.3
You, Z.4
-
16
-
-
85013682623
-
A harmonic mean linear discriminant analysis for robust image classification
-
ICTAI 2016 IEEE 28th International Conference on. IEEE
-
S. Zheng, F. Nie, C. Ding, and H. Huang, "A harmonic mean linear discriminant analysis for robust image classification, " in Tools with Artificial Intelligence (ICTAI), 2016 IEEE 28th International Conference on. IEEE, 2016, pp. 402-409
-
(2016)
Tools with Artificial Intelligence
, pp. 402-409
-
-
Zheng, S.1
Nie, F.2
Ding, C.3
Huang, H.4
-
17
-
-
84907009457
-
Kernel alignment inspired linear discriminant analysis
-
Springer Berlin Heidelberg
-
S. Zheng, and C. Ding, "Kernel alignment inspired linear discriminant analysis, " in Joint European Conference on Machine Learning, and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2014, pp. 401-416
-
(2014)
Joint European Conference on Machine Learning, and Knowledge Discovery in Databases
, pp. 401-416
-
-
Zheng, S.1
Ding, C.2
-
18
-
-
84959918627
-
A closed form solution to multi-view low-rank regression
-
S. Zheng, X. Cai, C. H. Ding, F. Nie, and H. Huang, "A closed form solution to multi-view low-rank regression." in AAAI, 2015, pp. 1973-1979
-
(2015)
AAAI
, pp. 1973-1979
-
-
Zheng, S.1
Cai, X.2
Ding, C.H.3
Nie, F.4
Huang, H.5
-
19
-
-
80052379239
-
Analysis, and modeling of social influence in high performance computing workloads
-
Springer Berlin Heidelberg
-
S. Zheng, Z.-Y. Shae, X. Zhang, H. Jamjoom, and L. Fong, "Analysis, and modeling of social influence in high performance computing workloads, " in European Conference on Parallel Processing. Springer Berlin Heidelberg, 2011, pp. 193-204
-
(2011)
European Conference on Parallel Processing
, pp. 193-204
-
-
Zheng, S.1
Shae, Z.-Y.2
Zhang, X.3
Jamjoom, H.4
Fong, L.5
-
20
-
-
84904438498
-
Tidewatch: Fingerprinting the cyclicality of big data workloads
-
IEEE. IEEE
-
D. Williams, S. Zheng, X. Zhang, and H. Jamjoom, "Tidewatch: Fingerprinting the cyclicality of big data workloads, " in INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp. 2031-2039
-
(2014)
INFOCOM 2014 Proceedings
, pp. 2031-2039
-
-
Williams, D.1
Zheng, S.2
Zhang, X.3
Jamjoom, H.4
-
21
-
-
84864213609
-
Virtual machine migration in an over-committed cloud
-
NOMS 2012 IEEE. IEEE
-
X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, "Virtual machine migration in an over-committed cloud, " in Network Operations, and Management Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp. 196-203
-
(2012)
Network Operations, and Management Symposium
, pp. 196-203
-
-
Zhang, X.1
Shae, Z.-Y.2
Zheng, S.3
Jamjoom, H.4
-
22
-
-
84923327494
-
Performance benchmarking, and analysis of prognostic methods for cmapss datasets
-
E. Ramasso, and A. Saxena, "Performance benchmarking, and analysis of prognostic methods for cmapss datasets." International Journal of Prognostics, and Health Management, vol. 5, no. 2, pp. 1-15, 2014
-
(2014)
International Journal of Prognostics, and Health Management
, vol.5
, Issue.2
, pp. 1-15
-
-
Ramasso, E.1
Saxena, A.2
-
23
-
-
84978144723
-
-
NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA
-
A. Saxena, and K. Goebel, "Phm08 challenge data set, " NASA Ames Prognostics Data Repository (http://ti. arc. nasa. gov/project/prognosticdata-repository), NASA Ames Research Center, Moffett Field, CA, 2008
-
(2008)
Phm08 Challenge Data Set
-
-
Saxena, A.1
Goebel, K.2
-
24
-
-
84919903619
-
-
NASA Ames Prognostics Data Repository NASA Ames Research Center, Moffett Field, CA
-
A. Agogino, and K. Goebel, "Mill data set, " NASA Ames Prognostics Data Repository (http://ti. arc. nasa. gov/project/prognostic-datarepository), NASA Ames Research Center, Moffett Field, CA, 2007
-
(2007)
Mill Data Set
-
-
Agogino, A.1
Goebel, K.2
-
25
-
-
85028575485
-
-
arXiv preprint arXiv 1608.06154
-
P. Malhotra, V. TV, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff, "Multi-sensor prognostics using an unsupervised health index based on lstm encoder-decoder, " arXiv preprint arXiv: 1608.06154, 2016
-
(2016)
Multi-sensor Prognostics Using An Unsupervised Health Index Based on Lstm Encoder-decoder
-
-
Malhotra, P.1
Ramakrishnan, V.T.V.A.2
Anand, G.3
Vig, L.4
Agarwal, P.5
Shroff, G.6
|