메뉴 건너뛰기




Volumn 22, Issue 9, 2008, Pages 1716-1725

Random forests classifier for machine fault diagnosis

Author keywords

Fault diagnosis; Genetic algorithm; Machine learning; Random forests algorithm; Rotating machinery

Indexed keywords

APPLICATION RESEARCHES; CLASSIFICATION ACCURACIES; DIAGNOSIS METHODS; ENSEMBLE CLASSIFIERS; EXECUTION SPEED; FAULT DIAGNOSIS; FAULTS DIAGNOSIS; HYBRID METHODS; MACHINE FAULT DIAGNOSIS; MACHINE FAULTS; MACHINE LEARNING; MOTOR FAULTS; RANDOM FORESTS ALGORITHM; TREE CLASSIFIERS;

EID: 64949202636     PISSN: 1738494X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s12206-008-0603-6     Document Type: Article
Times cited : (156)

References (20)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman 1996 Bagging Predictors Machine Learning 26 2 123 140
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • E. Bauer R. Kohavi 1999 An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants Machine Learning 36 105 139
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0025448521 scopus 로고
    • The Strength of Weak Learnability
    • R. E. Schapire 1990 The Strength of Weak Learnability Machine Learning 5 2 197 227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L. Breiman 2001 Random Forests Machine Learning 45 1 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 17844362636 scopus 로고    scopus 로고
    • An Efficient Method of Vibration Diagnostics for Rotating Machinery Using a Decision Tree
    • B. S. Yang C. H. Park H. J. Kim 2000 An Efficient Method of Vibration Diagnostics For Rotating Machinery Using a Decision Tree International Journal of Rotating Machinery 6 1 19 27
    • (2000) International Journal of Rotating Machinery , vol.6 , Issue.1 , pp. 19-27
    • Yang, B.S.1    Park, C.H.2    Kim, H.J.3
  • 11
    • 15944389874 scopus 로고    scopus 로고
    • Statistics Department, University of California Berkeley L. Breiman, Random Forest User Notes, Statistics Department, University of California, Berkeley
    • L. Breiman 2006 Random Forest User Notes Statistics Department, University of California Berkeley L. Breiman, Random Forest User Notes, Statistics Department, University of California, Berkeley, ftp://ftp.stat. berkeley.edu/pub/users/breiman/notes-on-random-forests-v2.pdf, (2006).
    • (2006) Random Forest User Notes
    • Breiman, L.1
  • 12
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest Classifier for Remote Sensing Classification
    • M. Pal 2005 Random Forest Classifier for Remote Sensing Classification International Journal of Remote Sensing 26 1 217 222
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 14
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the Random Forest Framework for Classification of Hyperspectral Data
    • J. S. Ham Y. Chen M. M. Crawford J. Ghosh 2005 Investigation of the Random Forest Framework for Classification of Hyperspectral Data IEEE Trans. Geoscience and Remote Sensing 43 3 492 501
    • (2005) IEEE Trans. Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.S.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 16
    • 0942289508 scopus 로고    scopus 로고
    • ARTKOHONEN Neural Network for Fault Diagnosis of Rotating Machinery
    • B. S. Yang T. Han J. L. An 2004 ARTKOHONEN Neural Network for Fault Diagnosis of Rotating Machinery Mechanical Systems and Signal Processing 18 3 645 657
    • (2004) Mechanical Systems and Signal Processing , vol.18 , Issue.3 , pp. 645-657
    • Yang, B.S.1    Han, T.2    An, J.L.3
  • 19
    • 27744525373 scopus 로고    scopus 로고
    • Application of Data Fusion and Dempster-Shafer Theory in Fault Diagnostics of Induction Motors
    • B. S. Yang K. J. Kim 2006 Application of Data Fusion and Dempster-Shafer Theory in Fault Diagnostics of Induction Motors Mechanical Systems and Signal Processing 20 2 403 420
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.2 , pp. 403-420
    • Yang, B.S.1    Kim, K.J.2
  • 20
    • 33750481498 scopus 로고    scopus 로고
    • Combination of Independent Component Analysis and Multiclass Support Vector Machines for Fault Diagnosis of Induction Motors
    • A. Widodo T. Han B. S. Yang 2007 Combination of Independent Component Analysis and Multiclass Support Vector Machines for Fault Diagnosis of Induction Motors Expert Systems with Applications 32 2 299 312
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 299-312
    • Widodo, A.1    Han, T.2    Yang, B.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.