메뉴 건너뛰기




Volumn 5, Issue 1, 2016, Pages

Transformer fault diagnosis using continuous sparse autoencoder

Author keywords

Continuous sparse autoencoder; Deep belief network; Deep learning; Dissolved gas analysis; Transformer fault

Indexed keywords


EID: 84963740039     PISSN: None     EISSN: 21931801     Source Type: Journal    
DOI: 10.1186/s40064-016-2107-7     Document Type: Article
Times cited : (77)

References (29)
  • 1
    • 84963743118 scopus 로고    scopus 로고
    • Andrew NG (2012) Autoencoders and sparsity
    • Andrew NG (2012) Autoencoders and sparsity. http://ufldl.stanford.edu/wiki/index.php/Au-toencoders_and_Sparsity
  • 2
    • 10944248397 scopus 로고    scopus 로고
    • The long way to the automatic chromatographic analysis of gases dissolved in insulating oil
    • Arakelian VG (2004) The long way to the automatic chromatographic analysis of gases dissolved in insulating oil. IEEE Electr Insul Mag 20(6):8–25. doi:10.1109/MEI.2004.1367506
    • (2004) IEEE Electr Insul Mag , vol.20 , Issue.6 , pp. 8-25
    • Arakelian, V.G.1
  • 5
    • 84863766715 scopus 로고    scopus 로고
    • Function analysis based rule extraction from artificial neural networks for transformer incipient fault diagnosis
    • Bhalla D, Bansal RK, Gupta HO (2012) Function analysis based rule extraction from artificial neural networks for transformer incipient fault diagnosis. Int J Electr Power 43(1):1196–1203. doi:10.1016/j.ijepes.2012.06.042
    • (2012) Int J Electr Power , vol.43 , Issue.1 , pp. 1196-1203
    • Bhalla, D.1    Bansal, R.K.2    Gupta, H.O.3
  • 6
    • 58249139750 scopus 로고    scopus 로고
    • Wavelet networks in power transformers diagnosis using dissolved gas analysis
    • Chen W, Pan C, Yun Y, Liu Y (2009) Wavelet networks in power transformers diagnosis using dissolved gas analysis. IEEE Trans Power Deliver 24(1):187–194. doi:10.1109/TPWRD.2008.2002974
    • (2009) IEEE Trans Power Deliver , vol.24 , Issue.1 , pp. 187-194
    • Chen, W.1    Pan, C.2    Yun, Y.3    Liu, Y.4
  • 7
    • 33746586913 scopus 로고    scopus 로고
    • New life for neural networks
    • Cottrell GW (2006) New life for neural networks. Science 313(5786):454–455. doi:10.1126/science.1129813
    • (2006) Science , vol.313 , Issue.5786 , pp. 454-455
    • Cottrell, G.W.1
  • 8
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • Dahl GE, Yu D, Deng L, Acero A (2012) Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech 20(1):30–42. doi:10.1109/TASL.2011.2134090
    • (2012) IEEE Trans Audio Speech , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 9
    • 84867079924 scopus 로고    scopus 로고
    • Diagnosis of power transformer faults based on five fuzzy ratio method
    • Dhote NK, Helonde JB (2012) Diagnosis of power transformer faults based on five fuzzy ratio method. WSEAS Trans Power Syst 7(3):114–125
    • (2012) WSEAS Trans Power Syst , vol.7 , Issue.3 , pp. 114-125
    • Dhote, N.K.1    Helonde, J.B.2
  • 10
    • 0038005389 scopus 로고    scopus 로고
    • New techniques for dissolved gas-in-oil analysis
    • Duval M (2003) New techniques for dissolved gas-in-oil analysis. IEEE Electr Insul M 19(2):6–15. doi:10.1109/MEI.2003.1192031
    • (2003) IEEE Electr Insul M , vol.19 , Issue.2 , pp. 6-15
    • Duval, M.1
  • 11
    • 0035271917 scopus 로고    scopus 로고
    • Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases
    • Duval M, DePablo A (2001) Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases. IEEE Electr Insul Mag 17(2):31–41. doi:10.1109/57.917529
    • (2001) IEEE Electr Insul Mag , vol.17 , Issue.2 , pp. 31-41
    • Duval, M.1    DePablo, A.2
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507. doi:10.1126/science.1127647
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 14
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C, Lin C (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Network 13(2):415–425. doi:10.1109/72.991427
    • (2002) IEEE Trans Neural Network , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.1    Lin, C.2
  • 15
    • 0001927585 scopus 로고
    • On Information and Sufficiency
    • Kullback S, Leibler RA (1951) On Information and Sufficiency. Ann Math Stat 22(1):79–86. doi:10.1214/aoms/1177729694
    • (1951) Ann Math Stat , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 16
    • 77955997114 scopus 로고    scopus 로고
    • Deep belief networks are compact universal approximators
    • Le Roux N, Bengio Y (2010) Deep belief networks are compact universal approximators. Neural Comput 22(8):2192–2207. doi:10.1162/neco.2010.08-09-1081
    • (2010) Neural Comput , vol.22 , Issue.8 , pp. 2192-2207
    • Le Roux, N.1    Bengio, Y.2
  • 17
    • 84863003454 scopus 로고    scopus 로고
    • Diagnosing faults in power transformers with autoassociative neural networks and mean shift
    • Miranda V, Castro ARG, Lima S (2012) Diagnosing faults in power transformers with autoassociative neural networks and mean shift. IEEE Trans Power Deliver 27(3):1350–1357. doi:10.1109/TPWRD.2012.2188143
    • (2012) IEEE Trans Power Deliver , vol.27 , Issue.3 , pp. 1350-1357
    • Miranda, V.1    Castro, A.R.G.2    Lima, S.3
  • 18
    • 84866706797 scopus 로고    scopus 로고
    • Statistical machine learning and dissolved gas analysis: a review
    • Mirowski P, LeCun Y (2012) Statistical machine learning and dissolved gas analysis: a review. IEEE Trans Power Deliv 27(4):1791–1799. http://www.mirowski.info/pub/dga
    • (2012) IEEE Trans Power Deliv , vol.27 , Issue.4 , pp. 1791-1799
    • Mirowski, P.1    LeCun, Y.2
  • 20
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607–609. doi:10.1038/381607a0
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 23
    • 0344465271 scopus 로고    scopus 로고
    • Review of modern diagnostic techniques for assessing insulation condition in aged transformers
    • Saha TK (2003) Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Trans Dielectr El In 10(5):903–917. doi:10.1109/TDEI.2003.1237337
    • (2003) IEEE Trans Dielectr El In , vol.10 , Issue.5 , pp. 903-917
    • Saha, T.K.1
  • 24
    • 84864418620 scopus 로고    scopus 로고
    • MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA
    • Souahlia S, Bacha K, Chaari A (2012) MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA. Int J Electr Power 43(1):1346–1353. doi:10.1016/j.ijepes.2012.05.067
    • (2012) Int J Electr Power , vol.43 , Issue.1 , pp. 1346-1353
    • Souahlia, S.1    Bacha, K.2    Chaari, A.3
  • 25
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning
    • Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, pp 1096–1103
    • (2008) pp 1096–1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 26
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408
    • (2010) J Mach Learn Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 27
    • 0034681515 scopus 로고    scopus 로고
    • Sparse coding and decorrelation in primary visual cortex during natural vision
    • Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276. doi:10.1126/science.287.5456.1273
    • (2000) Science , vol.287 , Issue.5456 , pp. 1273-1276
    • Vinje, W.E.1    Gallant, J.L.2
  • 28
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83
    • (1945) Biom Bull , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 29
    • 0035248143 scopus 로고    scopus 로고
    • Fuzzy learning vector quantization networks for power transformer condition assessment
    • Yang HT, Liao CC, Chou JH (2001) Fuzzy learning vector quantization networks for power transformer condition assessment. IEEE Trans Dielect Electr Insul 8(1):143–149. doi:10.1109/94.910437
    • (2001) IEEE Trans Dielect Electr Insul , vol.8 , Issue.1 , pp. 143-149
    • Yang, H.T.1    Liao, C.C.2    Chou, J.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.