메뉴 건너뛰기




Volumn 45, Issue 12, 2015, Pages 2626-2639

A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering

Author keywords

Data driven; extreme learning machine (ELM); fuzzy clustering; prognostics; remaining useful life (RUL)

Indexed keywords

CONDITION MONITORING; FUZZY CLUSTERING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; MACHINERY; NASA; PATIENT MONITORING; STATE ESTIMATION; TURBOFAN ENGINES;

EID: 84960129882     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2378056     Document Type: Article
Times cited : (182)

References (44)
  • 5
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A. K. Jardine, D. Lin and D. Banjevic, " A review on machinery diagnostics and prognostics implementing condition-based maintenance, " Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483-1510, 2006.
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.1    Lin, D.2    Banjevic, D.3
  • 6
    • 84903145771 scopus 로고    scopus 로고
    • Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine
    • Jul.
    • H. Li, D. Pan and C. Chen, " Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine, " IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 7, pp. 851-862, Jul. 2014.
    • (2014) IEEE Trans. Syst., Man, Cybern., Syst. , vol.44 , Issue.7 , pp. 851-862
    • Li, H.1    Pan, D.2    Chen, C.3
  • 7
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics: State of the art, challenges and opportunities
    • A. Heng, S. Zhang, A. C. Tan and J. Mathew, " Rotating machinery prognostics: State of the art, challenges and opportunities, " Mech. Syst. Signal Process., vol. 23, no. 3, pp. 724-739, 2009.
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.3 , pp. 724-739
    • Heng, A.1    Zhang, S.2    Tan, A.C.3    Mathew, J.4
  • 8
    • 84887081561 scopus 로고    scopus 로고
    • Model-based prognostics with concurrent damage progression processes
    • May
    • M. J. Daigle and K. Goebel, " Model-based prognostics with concurrent damage progression processes, " IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 3, pp. 535-546, May 2013.
    • (2013) IEEE Trans. Syst., Man, Cybern., Syst. , vol.43 , Issue.3 , pp. 535-546
    • Daigle, M.J.1    Goebel, K.2
  • 10
    • 70349470960 scopus 로고    scopus 로고
    • A data-Driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
    • E. Zio and F. Di Maio, " A data-Driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system, " Rel. Eng. Syst. Safety, vol. 95, no. 1, pp. 49-57, 2010.
    • (2010) Rel. Eng. Syst. Safety , vol.95 , Issue.1 , pp. 49-57
    • Zio, E.1    Di Maio, F.2
  • 11
    • 84883752333 scopus 로고    scopus 로고
    • Bayesian approach for remaining useful life prediction
    • A. Mosallam, K. Medjaher and N. Zerhouni, " Bayesian approach for remaining useful life prediction, " Chem. Eng. Trans., vol. 33, pp. 139-144, 2013.
    • (2013) Chem. Eng. Trans. , vol.33 , pp. 139-144
    • Mosallam, A.1    Medjaher, K.2    Zerhouni, N.3
  • 14
    • 77950641714 scopus 로고    scopus 로고
    • Prognostics in switching systems: Evidential Markovian classification of real-Time neuro-fuzzy predictions
    • E. Ramasso and R. Gouriveau, " Prognostics in switching systems: Evidential Markovian classification of real-Time neuro-fuzzy predictions, " in Proc. IEEE Prognostics Health Manage. Conf. (PHM), Macau, 2010, pp. 1-10.
    • (2010) Proc. IEEE Prognostics Health Manage. Conf. (PHM), Macau , pp. 1-10
    • Ramasso, E.1    Gouriveau, R.2
  • 15
    • 84902115700 scopus 로고    scopus 로고
    • Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions
    • Jun.
    • E. Ramasso and R. Gouriveau, " Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions, " IEEE Trans. Rel., vol. 63, no. 2, pp. 555-566, Jun. 2014.
    • (2014) IEEE Trans. Rel. , vol.63 , Issue.2 , pp. 555-566
    • Ramasso, E.1    Gouriveau, R.2
  • 16
    • 84885852883 scopus 로고    scopus 로고
    • Joint prediction of continuous and discrete states in time-series based on belief functions
    • Feb.
    • E. Ramasso, M. Rombaut and N. Zerhouni, " Joint prediction of continuous and discrete states in time-series based on belief functions, " IEEE Trans. Cybern., vol. 43, no. 1, pp. 37-50, Feb. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.1 , pp. 37-50
    • Ramasso, E.1    Rombaut, M.2    Zerhouni, N.3
  • 19
    • 84856297247 scopus 로고    scopus 로고
    • Improving the prediction accuracy of recurrent neural network by a PID controller
    • R. Zemouri, R. Gouriveau and N. Zerhouni, " Improving the prediction accuracy of recurrent neural network by a PID controller, " Int. J. Syst. Appl. Eng. Develop., vol. 4, no. 2, pp. 19-34, 2010.
    • (2010) Int. J. Syst. Appl. Eng. Develop. , vol.4 , Issue.2 , pp. 19-34
    • Zemouri, R.1    Gouriveau, R.2    Zerhouni, N.3
  • 22
    • 77952553337 scopus 로고    scopus 로고
    • Application of extreme learning machine method for time series analysis
    • R. Singh and S. Balasundaram, " Application of extreme learning machine method for time series analysis, " Int. J. Intell. Technol., vol. 2, no. 4, pp. 256-262, 2007.
    • (2007) Int. J. Intell. Technol. , vol.2 , Issue.4 , pp. 256-262
    • Singh, R.1    Balasundaram, S.2
  • 23
    • 0037862841 scopus 로고    scopus 로고
    • A comprehensive review for industrial applicability of artificial neural networks
    • Jun.
    • M. R. Meireles, P. E. Almeida and M. G. Simões, " A comprehensive review for industrial applicability of artificial neural networks, " IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 585-601, Jun. 2003.
    • (2003) IEEE Trans. Ind. Electron. , vol.50 , Issue.3 , pp. 585-601
    • Meireles, M.R.1    Almeida, P.E.2    Simões, M.G.3
  • 26
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Apr.
    • G.-B. Huang, H. Zhou, X. Ding and R. Zhang, " Extreme learning machine for regression and multiclass classification, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 27
    • 84897026988 scopus 로고    scopus 로고
    • Sparse Bayesian extreme learning machine for multi-classification
    • Apr.
    • J. Luo, C.-M. Vong and P.-K. Wong, " Sparse Bayesian extreme learning machine for multi-classification, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 4, pp. 836-843, Apr. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.4 , pp. 836-843
    • Luo, J.1    Vong, C.-M.2    Wong, P.-K.3
  • 28
    • 84885695058 scopus 로고    scopus 로고
    • SW-ELM: A summation wavelet extreme learning machine algorithm with a priori parameter initialization
    • Jan.
    • K. Javed, R. Gouriveau and N. Zerhouni, " SW-ELM: A summation wavelet extreme learning machine algorithm with a priori parameter initialization, " Neurocomputing, vol. 123, pp. 299-307, Jan. 2014.
    • (2014) Neurocomputing , vol.123 , pp. 299-307
    • Javed, K.1    Gouriveau, R.2    Zerhouni, N.3
  • 29
    • 50149114113 scopus 로고    scopus 로고
    • Artificial wavelet neural network and its application in neuro-fuzzy models
    • A. Banakar and M. F. Azeem, " Artificial wavelet neural network and its application in neuro-fuzzy models, " Appl. Soft Comput., vol. 8, no. 4, pp. 1463-1485, 2008.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1463-1485
    • Banakar, A.1    Azeem, M.F.2
  • 30
    • 0034284052 scopus 로고    scopus 로고
    • Initialization by selection for wavelet network training
    • Y. Oussar and G. Dreyfus, " Initialization by selection for wavelet network training, " Neurocomputing, vol. 34, no. 1, pp. 131-143, 2000.
    • (2000) Neurocomputing , vol.34 , Issue.1 , pp. 131-143
    • Oussar, Y.1    Dreyfus, G.2
  • 33
    • 84870563115 scopus 로고    scopus 로고
    • Connexionist-systems-based long term prediction approaches for prognostics
    • Dec.
    • R. Gouriveau and N. Zerhouni, " Connexionist-systems-based long term prediction approaches for prognostics, " IEEE Trans. Rel., vol. 61, no. 4, pp. 909-920, Dec. 2012.
    • (2012) IEEE Trans. Rel. , vol.61 , Issue.4 , pp. 909-920
    • Gouriveau, R.1    Zerhouni, N.2
  • 34
    • 79551492286 scopus 로고    scopus 로고
    • Reducing arbitrary choices in model building for prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system
    • M. El-Koujok, R. Gouriveau and N. Zerhouni, " Reducing arbitrary choices in model building for prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system, " Microelectron. Rel., vol. 51, no. 2, pp. 310-320, 2011.
    • (2011) Microelectron. Rel. , vol.51 , Issue.2 , pp. 310-320
    • El-Koujok, M.1    Gouriveau, R.2    Zerhouni, N.3
  • 35
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-A survey
    • T. Warren Liao, " Clustering of time series data-A survey, " Pattern Recognit., vol. 38, no. 11, pp. 1857-1874, 2005.
    • (2005) Pattern Recognit. , vol.38 , Issue.11 , pp. 1857-1874
    • Warren Liao, T.1
  • 36
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S. L. Chiu, " Fuzzy model identification based on cluster estimation, " J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 267-278, 1994.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.L.1
  • 38
    • 33748542651 scopus 로고    scopus 로고
    • Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm
    • C. Doan, S. Liong and D. Karunasinghe, " Derivation of effective and efficient data set with subtractive clustering method and genetic algorithm, " J. Hydroinformat., vol. 7, no. 4, pp. 219-233, 2005.
    • (2005) J. Hydroinformat. , vol.7 , Issue.4 , pp. 219-233
    • Doan, C.1    Liong, S.2    Karunasinghe, D.3
  • 39
    • 84857381873 scopus 로고    scopus 로고
    • A comparison study between various fuzzy clustering algorithms
    • K. Bataineh, M. Naji and M. Saqer, " A comparison study between various fuzzy clustering algorithms, " Ed. Board, vol. 5, no. 4, p. 335, 2011.
    • (2011) Ed. Board , vol.5 , Issue.4 , pp. 335
    • Bataineh, K.1    Naji, M.2    Saqer, M.3
  • 41
  • 42
    • 84960125436 scopus 로고    scopus 로고
    • NASA. (Mar. 2013). [Online]. Available:
    • NASA. (Mar. 2013). Prognostic Data Repository. [Online]. Available: http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-Data-repository/
    • Prognostic Data Repository


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.