메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Generating feature sets for fault diagnosis using denoising stacked auto-encoder

Author keywords

deep learning; fault diagnosis; features analysis; stacked auto encoders

Indexed keywords

DECISION TREES; FAILURE ANALYSIS; FAST FOURIER TRANSFORMS; FAULT DETECTION; LEARNING SYSTEMS; SPEECH PROCESSING; SYSTEMS ENGINEERING;

EID: 84985998651     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPHM.2016.7542865     Document Type: Conference Paper
Times cited : (104)

References (62)
  • 1
    • 84938773392 scopus 로고    scopus 로고
    • Intelligent condition based monitoring using acoustic signals for air compressors
    • Mar.
    • N. K. Verma, R. K. Sevakula, S. Dixit and A. Salour, "Intelligent Condition Based Monitoring Using Acoustic Signals for Air Compressors," in IEEE Transactions on Reliability, vol. 65, no. 1, pp. 291-309,Mar. 2016.
    • (2016) IEEE Transactions on Reliability , vol.65 , Issue.1 , pp. 291-309
    • Verma, N.K.1    Sevakula, R.K.2    Dixit, S.3    Salour, A.4
  • 4
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results
    • P. M. Frank, "Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results," Automatica, vol. 26, no. 3, pp. 459-474, 1990
    • (1990) Automatica , vol.26 , Issue.3 , pp. 459-474
    • Frank, P.M.1
  • 13
    • 4544225396 scopus 로고
    • Pattern recognition: A statistical approach
    • P. A. Devijver and J. Kittler, "Pattern recognition: A statistical approach," London: Prentice-Hall, vol. 761, 1982.
    • (1982) London: Prentice-Hall , vol.761
    • Devijver, P.A.1    Kittler, J.2
  • 14
    • 84890492030 scopus 로고    scopus 로고
    • An investigation of deep neural networks for noise robust speech recognition
    • Speech and Signal Processing (ICASSP'13)
    • M. L. Seltzer, D. Yu and Y. Wang, "An investigation of deep neural networks for noise robust speech recognition," IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'13), 2013, pp. 7398-7402.
    • (2013) IEEE Int. Conf. on Acoustics , pp. 7398-7402
    • Seltzer, M.L.1    Yu, D.2    Wang, Y.3
  • 16
    • 84929590770 scopus 로고    scopus 로고
    • Detection and classification for faults in drilling process using vibration analysis
    • Washington, USA, Jun.
    • Adarsh, J. Ramkumar, N. K. Verma and S. Dixit, "Detection and Classification for Faults in Drilling Process using Vibration Analysis," IEEE Conf. on Prognostics and Health Management (PHM 2014), Washington, USA, Jun. 2014, pp. 1-6,.
    • (2014) IEEE Conf. on Prognostics and Health Management (PHM 2014) , pp. 1-6
    • Adarsh, J.R.1    Verma, N.K.2    Dixit, S.3
  • 20
    • 34249734113 scopus 로고    scopus 로고
    • Vibration feature extraction techniques for fault diagnosis of rotating machinery: A literature survey
    • Gold Coast, Australia, November
    • H. Yang, J. Mathew and L. Ma "Vibration feature extraction techniques for fault diagnosis of rotating machinery: a literature survey," In proc. of Asia-Pacific Vibration Conference, Gold Coast, Australia, November 2003, pp. no. 801-807.
    • (2003) Proc. of Asia-Pacific Vibration Conference , pp. 801-807
    • Yang, H.1    Mathew, J.2    Ma, L.3
  • 23
    • 0034188296 scopus 로고    scopus 로고
    • Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears
    • G. Dalpiaz, A. Rivola and R. Rubini, "Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears," Mechanical Systems and Signal Processing, vol. 14, no. 3, pp. 387-412, 2000
    • (2000) Mechanical Systems and Signal Processing , vol.14 , Issue.3 , pp. 387-412
    • Dalpiaz, G.1    Rivola, A.2    Rubini, R.3
  • 26
    • 0021377369 scopus 로고
    • Vibration monitoring of rolling element bearings by the high-frequency resonance technique - A review Tribology
    • P. D. McFadden and J. D. Smith, "Vibration monitoring of rolling element bearings by the high-frequency resonance technique-a review Tribology" International Journal of Engineering Trends and Technology, vol.17, no.1, pp. 3-10, 1984
    • (1984) International Journal of Engineering Trends and Technology , vol.17 , Issue.1 , pp. 3-10
    • McFadden, P.D.1    Smith, J.D.2
  • 27
    • 0020303182 scopus 로고
    • Cepstrum analysis and gearbox fault-diagnosis
    • R.B. Randall, "Cepstrum analysis and gearbox fault-diagnosis," International Maintenance Management, vol. 3, no. 3, pp. 183-208,1982.
    • (1982) International Maintenance Management , vol.3 , Issue.3 , pp. 183-208
    • Randall, R.B.1
  • 30
    • 84876016371 scopus 로고    scopus 로고
    • Wavelet transforms for fault detection using SVM in Power Systems
    • Drives and Energy Systems (PEDES)
    • R.K. Sevakula and N. K. Verma, "Wavelet transforms for fault detection using SVM in Power Systems," In IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2012.
    • (2012) IEEE International Conference on Power Electronics
    • Sevakula, R.K.1    Verma, N.K.2
  • 31
    • 0030269937 scopus 로고    scopus 로고
    • Wavelet analysis for signal processing
    • A. Bruce, D. Donoho and H. Y. Gao, "Wavelet analysis for signal processing," IEEE Spectrum, vol. 33, no. 10, pp.26-35, 1996.
    • (1996) IEEE Spectrum , vol.33 , Issue.10 , pp. 26-35
    • Bruce, A.1    Donoho, D.2    Gao, H.Y.3
  • 32
    • 84876940227 scopus 로고    scopus 로고
    • Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples
    • Z. Feng, L. Ming and C. Fulei, "Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples," Mechanical Systems and Signal Processing, vol. 38, no. 1, pp.165-205, 2013.
    • (2013) Mechanical Systems and Signal Processing , vol.38 , Issue.1 , pp. 165-205
    • Feng, Z.1    Ming, L.2    Fulei, C.3
  • 33
    • 0034206997 scopus 로고    scopus 로고
    • Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis
    • J. Lin and Q. Liangsheng "Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis," Journal of sound and vibration, vol. 234, no. 1, pp. 135-148, 2000.
    • (2000) Journal of Sound and Vibration , vol.234 , Issue.1 , pp. 135-148
    • Lin, J.1    Liangsheng, Q.2
  • 34
    • 0031373959 scopus 로고    scopus 로고
    • Classification of the rotating machine condition using artificial neural networks
    • A.C. McCormick and A.K. Nandi "Classification of the rotating machine condition using artificial neural networks," in Proc. of the Institute for Mechanical Engineering, vol. 12 part C, 1997, pp. 439-450.
    • (1997) Proc. of the Institute for Mechanical Engineering , vol.12 , pp. 439-450
    • McCormick, A.C.1    Nandi, A.K.2
  • 36
    • 0028259235 scopus 로고
    • A comparison of some vibration parameters for the condition monitoring of rolling element bearings
    • N. Tandon "A comparison of some vibration parameters for the condition monitoring of rolling element bearings" Measurement 12, no. 3, pp. 285-289, 1994.
    • (1994) Measurement , vol.12 , Issue.3 , pp. 285-289
    • Tandon, N.1
  • 37
    • 18144399334 scopus 로고    scopus 로고
    • A comparison study ofrquencyf improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
    • Z.K. Peng, W. T, Peter, and F. L. Chu, "A comparison study ofrquencyf improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing" Mechanical systems and signal processing 19, no. 5, pp. 974-988, 2005
    • (2005) Mechanical Systems and Signal Processing , vol.19 , Issue.5 , pp. 974-988
    • Peng, Z.K.1    Peter, W.T.2    Chu, F.L.3
  • 38
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform
    • V.K. Rai and A. R. Mohanty, "Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform," Mechanical Systems and Signal Processing 21, no. 6, pp. 2607-2615,2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2607-2615
    • Rai, V.K.1    Mohanty, A.R.2
  • 41
    • 34548271512 scopus 로고    scopus 로고
    • Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes
    • M Jachan, G Matz, and F Hlawatsch. "Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes," Signal Processing, IEEE Transactions on 55, no. 9, 2007, 4366-4381.
    • (2007) Signal Processing, IEEE Transactions on , vol.55 , Issue.9 , pp. 4366-4381
    • Jachan, M.1    Matz, G.2    Hlawatsch, F.3
  • 42
    • 84955454557 scopus 로고    scopus 로고
    • Wheel-bearing fault diagnosis of trains using empirical wavelet transform
    • H Cao, F Fan, K Zhou, and Z He. "Wheel-bearing Fault Diagnosis of Trains using Empirical Wavelet Transform,"Measurement (2016).
    • (2016) Measurement
    • Cao, H.1    Fan, F.2    Zhou, K.3    He, Z.4
  • 43
    • 84955487882 scopus 로고    scopus 로고
    • Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment
    • J Pan, J Chen, Y Zi, Y Li, and Z He. "Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment," Mechanical Systems and Signal Processing vol.72, pp.160-183, 2016
    • (2016) Mechanical Systems and Signal Processing , vol.72 , pp. 160-183
    • Pan, J.1    Chen, J.2    Zi, Y.3    Li, Y.4    He, Z.5
  • 44
    • 84954165070 scopus 로고    scopus 로고
    • A novel feature extraction and optimisation method for fault diagnosis by combining WPT with FCM
    • W Lu, L Zhang, W Liang, and X Yu "A novel feature extraction and optimisation method for fault diagnosis by combining WPT with FCM," Insight-Non-Destructive Testing and Condition Monitoring, vol. 58, no. 1, pp. 35-41, 2016
    • (2016) Insight-Non-Destructive Testing and Condition Monitoring , vol.58 , Issue.1 , pp. 35-41
    • Lu, W.1    Zhang, L.2    Liang, W.3    Yu, X.4
  • 45
    • 84962408476 scopus 로고    scopus 로고
    • Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis
    • J Tian, C Morillo, MH Azarian, and Michael Pecht. "Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis," IEEE Transactions on Industrial Electronics vol.63, no. 3, pp. 1793-1803, 2016
    • (2016) IEEE Transactions on Industrial Electronics , vol.63 , Issue.3 , pp. 1793-1803
    • Tian, J.1    Morillo, C.2    Azarian, M.H.3    Pecht, M.4
  • 46
    • 0027842081 scopus 로고
    • Matching pursuits with timefrequency dictionaries
    • Mallat, G. Stéphane, and Z Zhang. "Matching pursuits with timefrequency dictionaries," IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397-3415, 1993
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, G.S.1    Zhang, Z.2
  • 47
    • 33846784838 scopus 로고    scopus 로고
    • Application of atomic decomposition to gear damage detection
    • Z. Feng, and C. Fulei, "Application of atomic decomposition to gear damage detection," Journal of Sound and Vibration, vol.302, no. 1 pp.138-151, 2007
    • (2007) Journal of Sound and Vibration , vol.302 , Issue.1 , pp. 138-151
    • Feng, Z.1    Fulei, C.2
  • 48
    • 84973459632 scopus 로고    scopus 로고
    • Approximation with artificial neural networks
    • Etvs Lornd University, Hungary
    • BC Csáji, "Approximation with artificial neural networks," Faculty of Sciences, Etvs Lornd University, Hungary 24 (2001): 48.
    • (2001) Faculty of Sciences , vol.24 , pp. 48
    • Csáji, B.C.1
  • 49
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. (1980). "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern. 36: 193-202. doi:10.1007/bf00344251.
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 50
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786,pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 53
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • V. Pascal, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Manzagol. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," The Journal of Machine Learning Research, vol. 11, pp. no. 3371-3408, 2011.
    • (2011) The Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Pascal, V.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 54
    • 84985924039 scopus 로고    scopus 로고
    • Intelligent Informatics and Automation Laboratory, IIT Kanpur, (Accessed 20 April, 2016)
    • "Air Compressor Dataset", Intelligent Informatics and Automation Laboratory, IIT Kanpur, (Accessed 20 April, 2016). URL: http://iitk.ac.in/iil/datasets/
    • Air Compressor Dataset
  • 55
    • 84985896916 scopus 로고    scopus 로고
    • Intelligent Informatics and Automation Laboratory, IIT Kanpur, (Accessed 20 April, 2016)
    • "Drill Bit Dataset", Intelligent Informatics and Automation Laboratory, IIT Kanpur, (Accessed 20 April, 2016). URL: http://iitk.ac.in/iil/datasets/
    • Drill Bit Dataset
  • 58
    • 84985982276 scopus 로고    scopus 로고
    • " Source: Research Center of Sciences of Communication, Rome, Italy. (Accessed March 2016)
    • "Steel Plates Faults Dataset" Source: Research Center of Sciences of Communication, Rome, Italy. (Accessed March 2016). URL: https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
    • Steel Plates Faults Datase
  • 60
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Software
    • C.C. Chang and C.J. Lin, "LIBSVM: a library for support vector machines," ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. no. 1-27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2011) ACM Transactions on Intelligent Systems and Technology , vol.2 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.