메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Research advances in fault diagnosis and prognostic based on deep learning

Author keywords

Deep belief network; Deep learning; Fault diagnosis; Fault prognostic

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS; EQUIPMENT; FAILURE ANALYSIS; HEALTH; LEARNING SYSTEMS; NEURAL NETWORKS; SYSTEMS ENGINEERING;

EID: 85015679989     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PHM.2016.7819786     Document Type: Conference Paper
Times cited : (90)

References (40)
  • 1
    • 2942560415 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms for gear fault detection
    • September
    • B. Samanta, "Artificial neural networks and genetic algorithms for gear fault detection, " Engineering Applications of Artificial Intelligence, vol. 18, pp. 1273-1282, September 2004.
    • (2004) Engineering Applications of Artificial Intelligence , vol.18 , pp. 1273-1282
    • Samanta, B.1
  • 2
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • July
    • J. Yang, Y. Zhang, and Y. Zhu, "Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension, " Mechanical Systems and Signal Processing, vol. 21, pp. 2012-2024, July 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2012-2024
    • Yang, J.1    Zhang, Y.2    Zhu, Y.3
  • 4
    • 84962567218 scopus 로고    scopus 로고
    • Bearing defect classification based on individual wavelet local fisher discriminant analysis with particle swarm optimization
    • M. Van, and H. J. Kang, "Bearing Defect Classification Based on Individual Wavelet Local Fisher Discriminant Analysis with Particle Swarm Optimization, " IEEE Transactions on Industrial Informatics, vol. 12, pp. 124-135, 2015.
    • (2015) IEEE Transactions on Industrial Informatics , vol.12 , pp. 124-135
    • Van, M.1    Kang, H.J.2
  • 5
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: An overview, " Neural Networks, vol. 61, pp. 85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 7
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • P. Tamilselvan, and P. Wang, "Failure diagnosis using deep belief learning based health state classification, " Reliability Engineering & System Safety, vol. 115, pp. 124-135, 2013.
    • (2013) Reliability Engineering & System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 9
    • 85032751593 scopus 로고    scopus 로고
    • Developments and directions in speech recognition and understanding
    • J. M. Baker, J. R. Glass, and S. Khudanpur, "Developments and directions in speech recognition and understanding, " IEEE Signal Processing Magazine, vol. 6, pp. 75-80, 2009.
    • (2009) IEEE Signal Processing Magazine , vol.6 , pp. 75-80
    • Baker, J.M.1    Glass, J.R.2    Khudanpur, S.3
  • 10
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Helsinki, July, references
    • R. Collobert, and J. Weston, "A unified architecture for natural language processing: deep neural networks with multitask learning, " Proceedings of the 25th International Conference on Machine Learning, Helsinki, pp.160-167, July 2008. (references).
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • July
    • G. E. Hinton, and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, pp. 504-507, July 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 12
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: An overview, " Neural Networks, vol. 61, pp. 85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 13
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compress or valves using Teager-Kaiser energy operator and deep belief networks
    • V. T. Tran, F. AlThobiani, and A. Ball, "An approach to fault diagnosis of reciprocating compress or valves using Teager-Kaiser energy operator and deep belief networks, " Expert Systems with Applications, vol. 41, pp. 4113-4122, 2014.
    • (2014) Expert Systems with Applications , vol.41 , pp. 4113-4122
    • Tran, V.T.1    AlThobiani, F.2    Ball, A.3
  • 14
    • 84899568094 scopus 로고    scopus 로고
    • Time series forecasting using a deep belief network with restricted Boltzmann machines
    • T. Kuremoto, S. Kimura, and K. Kobayashi, "Time series forecasting using a deep belief network with restricted Boltzmann machines, " Neurocomputing, vol.137, pp. 47-56, 2014.
    • (2014) Neurocomputing , vol.137 , pp. 47-56
    • Kuremoto, T.1    Kimura, S.2    Kobayashi, K.3
  • 15
    • 84925271494 scopus 로고    scopus 로고
    • Deep learning for fault diagnosis based on multisourced heterogeneous data
    • Chengdu, references
    • Y. Ma, and Z. Guo, "Deep learning for fault diagnosis based on multisourced heterogeneous data, " Power System Technology, 2014 International Conference on IEEE, Chengdu, pp. 740-745, 2014. (references).
    • (2014) Power System Technology, 2014 International Conference on IEEE , pp. 740-745
    • Ma, Y.1    Guo, Z.2
  • 16
    • 84930251679 scopus 로고    scopus 로고
    • Development and application of deep belief networks for predicting railway operation disruptions
    • March
    • O. Fink, E. Zio, and U. Weidmann, "Development and Application of Deep Belief Networks for Predicting Railway Operation Disruptions, " International Journal of Performability Engineering, vol. 11, pp. 121- 134, March 2015.
    • (2015) International Journal of Performability Engineering , vol.11 , pp. 121-134
    • Fink, O.1    Zio, E.2    Weidmann, U.3
  • 17
    • 84945576459 scopus 로고    scopus 로고
    • A novel feature extraction method using deep neural network for rolling
    • Qingdao China, May, references
    • W. Lu, X. Wang, C. Yang, and T. Zhang, "A Novel Feature Extraction Method using Deep Neural Network for Rolling, " 27th Chinese Control and Decision Conference (CCDC), Qingdao China, pp. 2427-2431, May 2015. (references).
    • (2015) 27th Chinese Control and Decision Conference (CCDC) , pp. 2427-2431
    • Lu, W.1    Wang, X.2    Yang, C.3    Zhang, T.4
  • 18
    • 84966322221 scopus 로고    scopus 로고
    • Study on signal recognition and diagnosis for spacecraft based on deep learning method
    • Beijing China
    • K. Li, and Q. Wang, "Study on signal recognition and diagnosis for spacecraft based on deep learning method, " 2015 IEEE Conference on Prognostics and Health Management (PHM), Beijing China, pp. 1-5, 2015.
    • (2015) 2015 IEEE Conference on Prognostics and Health Management (PHM) , pp. 1-5
    • Li, K.1    Wang, Q.2
  • 19
    • 84958163210 scopus 로고    scopus 로고
    • The early-warning model of equipment chain in gas pipeline based on DNN-HMM
    • Jun, references
    • J. Qiu, W. Liang, L. Zhang, X. Yu, and M. Zhang, "The early-warning model of equipment chain in gas pipeline based on DNN-HMM, " Journal of Natural Gas Science and Engineering, vol. 27, pp. 1710-1722, Jun 2015. (references).
    • (2015) Journal of Natural Gas Science and Engineering , vol.27 , pp. 1710-1722
    • Qiu, J.1    Liang, W.2    Zhang, L.3    Yu, X.4    Zhang, M.5
  • 20
    • 84949999884 scopus 로고    scopus 로고
    • A deep learning-based method for machinery health monitoring with big data
    • Nov
    • Y. Lei, F. Jia, X. Zhou, and J. Lin, "A Deep Learning-based Method for Machinery Health Monitoring with Big Data", Journal Of Mechanical Engineering, vol. 51, pp. 49-56, Nov. 2015.
    • (2015) Journal of Mechanical Engineering , vol.51 , pp. 49-56
    • Lei, Y.1    Jia, F.2    Zhou, X.3    Lin, J.4
  • 21
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • F. Jia, Y. Lei, J. Lin, and X. Zhou, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, " Mechanical Systems and Signal Processing, vol. 72, pp. 303-315, 2016.
    • (2016) Mechanical Systems and Signal Processing , vol.72 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4
  • 22
    • 84939180924 scopus 로고    scopus 로고
    • Analysis of feature extracting ability for cutting state monitoring using deep belief networks
    • Y. Fu, Y. Zhang, H. Qiao, D. Li, and J. Leopold, "Analysis of Feature Extracting Ability for Cutting State Monitoring Using Deep Belief Networks, " Procedia Cirp, vol. 31, pp. 29-34, 2015.
    • (2015) Procedia Cirp , vol.31 , pp. 29-34
    • Fu, Y.1    Zhang, Y.2    Qiao, H.3    Li, D.4    Leopold, J.5
  • 23
    • 84946553828 scopus 로고    scopus 로고
    • Bearing fault diagnosis method based on Hilbert envelope spectrum and deep belief network
    • X. Wang, Y. Li, T. Rui, and H. Zhu, "Bearing fault diagnosis method based on Hilbert envelope spectrum and deep belief network, " Journal of Vibroengineering, vol. 17, pp. 1295-1308, 2015.
    • (2015) Journal of Vibroengineering , vol.17 , pp. 1295-1308
    • Wang, X.1    Li, Y.2    Rui, T.3    Zhu, H.4
  • 24
    • 84964414629 scopus 로고    scopus 로고
    • Deep belief networks ensemble with multi-objective optimization for failure diagnosis
    • HongKong China, October, references
    • C. Zhang, J. H. Sun, and K. C. Tan, "Deep Belief Networks Ensemble with Multi-objective Optimization for Failure Diagnosis, " 2015 IEEE International Conference on Systems, Man and Cybernetics, HongKong China, pp. 32-37, October, 2015. (references).
    • (2015) 2015 IEEE International Conference on Systems, Man and Cybernetics , pp. 32-37
    • Zhang, C.1    Sun, J.H.2    Tan, K.C.3
  • 25
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • M. Gan, C. Wang, and C. Zhu, "Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings, " Mechanical Systems and Signal Processing, vol. 73, pp. 92-104, 2016.
    • (2016) Mechanical Systems and Signal Processing , vol.73 , pp. 92-104
    • Gan, M.1    Wang, C.2    Zhu, C.3
  • 26
    • 85000714776 scopus 로고    scopus 로고
    • Power transformer fault classifying model based on deep belief network
    • Jan
    • X. Shi, Y. Zhu, S. A. Churila, and L. Wang, "Power transformer fault classifying model based on deep belief network, " Power System Protection and Control, vol. 44, pp. 71-76, Jan 2016.
    • (2016) Power System Protection and Control , vol.44 , pp. 71-76
    • Shi, X.1    Zhu, Y.2    Churila, S.A.3    Wang, L.4
  • 27
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox fault identification and classification with convolutional neural networks
    • April
    • Z. Chen, C. Li, and R.V. Sanchez, "Gearbox Fault Identification and Classification with Convolutional Neural Networks, " Shock and Vibration, vol. 2015, pp. 1-10, April 2015.
    • (2015) Shock and Vibration , vol.2015 , pp. 1-10
    • Chen, Z.1    Li, C.2    Sanchez, R.V.3
  • 28
    • 84962468883 scopus 로고    scopus 로고
    • Deep convolutional neural network based regression approach for estimation of remaining useful life
    • April, references
    • G. S. Babu, P. Zhao, and X. Li, "Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life, " DASFAA 2016, Dallas Texas, pp. 214-228, April 2016. (references).
    • (2016) DASFAA 2016, Dallas Texas , pp. 214-228
    • Babu, G.S.1    Zhao, P.2    Li, X.3
  • 29
    • 84930976790 scopus 로고    scopus 로고
    • Fault detection and self-learning identification based on PCA-PDBNs
    • May
    • P. Wang, and C. Xia, "Fault detection and self-learning identification based on PCA-PDBNs, " Journal of Scientific Instrument, vol.36, pp. 1147-1154, May 2015.
    • (2015) Journal of Scientific Instrument , vol.36 , pp. 1147-1154
    • Wang, P.1    Xia, C.2
  • 30
    • 84938095930 scopus 로고    scopus 로고
    • Research on deep belief network layer tendency and its application into identifying fault images of aerial images
    • Jun
    • Q. Gao, W. Yang, and Q. Li, "Research on deep belief network layer tendency and its application into identifying fault images of aerial images", Chinese Journal of Scientific Instrument, vol.36, pp. 19-25, Jun 2015.
    • (2015) Chinese Journal of Scientific Instrument , vol.36 , pp. 19-25
    • Gao, Q.1    Yang, W.2    Li, Q.3
  • 31
    • 84954206695 scopus 로고    scopus 로고
    • A deep learning method using SDA combined with dropout for bearing fault diagnosis
    • July
    • W. Zhao, C. Lu, and J. Ma, "A deep learning method using SDA combined with dropout for bearing fault diagnosis, " Vibroengineering PROCEDIA, vol. 5, pp. 151-156, July 2015.
    • (2015) Vibroengineering PROCEDIA , vol.5 , pp. 151-156
    • Zhao, W.1    Lu, C.2    Ma, J.3
  • 32
    • 84960942441 scopus 로고    scopus 로고
    • Time series prediction using restricted boltzmann machines and backpropagation
    • R. Hrasko, A. G. C. Pacheco, and R. A. Krohling "Time Series Prediction Using Restricted Boltzmann Machines and Backpropagation, " Procedia Computer Science, vol. 55, pp. 990-999, 2015.
    • (2015) Procedia Computer Science , vol.55 , pp. 990-999
    • Hrasko, R.1    Pacheco, A.G.C.2    Krohling, R.A.3
  • 33
    • 84944323318 scopus 로고    scopus 로고
    • Multi-layer neural network with deep belief network for gearbox fault diagnosis
    • Z. Chen, C. Li, and R. V. Sanchez, "Multi-layer neural network with deep belief network for gearbox fault diagnosis, " Journal of Vibroengineering, vol.17, pp. 2379-2392, 2015.
    • (2015) Journal of Vibroengineering , vol.17 , pp. 2379-2392
    • Chen, Z.1    Li, C.2    Sanchez, R.V.3
  • 35
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • H. Shao, H. Jiang, X. Zhang, and M. Niu, "Rolling bearing fault diagnosis using an optimization deep belief network, " Measurement Science & Technology, Vol.26, pp. 1-17, 2015.
    • (2015) Measurement Science & Technology , vol.26 , pp. 1-17
    • Shao, H.1    Jiang, H.2    Zhang, X.3    Niu, M.4
  • 36
    • 84937818415 scopus 로고    scopus 로고
    • Multimodal deep support vector classication with homologous features and its application to gearbox fault diagnosis
    • C. Li, R. V. Sanchez, G. Zurita, and M. Cerrada, "Multimodal deep support vector classication with homologous features and its application to gearbox fault diagnosis, " Neurocomputing, vol. 168, pp. 119-127, 2015.
    • (2015) Neurocomputing , vol.168 , pp. 119-127
    • Li, C.1    Sanchez, R.V.2    Zurita, G.3    Cerrada, M.4
  • 37
    • 85015619863 scopus 로고    scopus 로고
    • A faulted insulator identification algorithm of sparse difference-based deep belief network
    • Jan
    • Q. Gao, W. Yang, and Q. Li, "A faulted insulator identification algorithm of sparse difference-based deep belief network, " Electrical Measurement &Instrumentation, vol. 53, pp. 19-25, Jan 2016.
    • (2016) Electrical Measurement &Instrumentation , vol.53 , pp. 19-25
    • Gao, Q.1    Yang, W.2    Li, Q.3
  • 38
    • 84963864627 scopus 로고    scopus 로고
    • Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
    • Feb
    • C. Li, R. V. Sanchez, and G. Zurita, "Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals, " Mechanical Systems and Signal Processing, vol. 76, pp.283-293, Feb 2016.
    • (2016) Mechanical Systems and Signal Processing , vol.76 , pp. 283-293
    • Li, C.1    Sanchez, R.V.2    Zurita, G.3
  • 39
    • 84964855691 scopus 로고    scopus 로고
    • A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    • April
    • W. Sun, S. Shao, and R. Zhao, "A sparse auto-encoder-based deep neural network approach for induction motor faults classification, " Measurement, vol. 89, pp. 171-178, April 2016.
    • (2016) Measurement , vol.89 , pp. 171-178
    • Sun, W.1    Shao, S.2    Zhao, R.3
  • 40
    • 84975124887 scopus 로고    scopus 로고
    • Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning
    • June
    • C. Li, R. V. Sanchez, and G. Zurita, "Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning, " Sensors, vol. 16, pp. 895, June 2016.
    • (2016) Sensors , vol.16 , pp. 895
    • Li, C.1    Sanchez, R.V.2    Zurita, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.