-
1
-
-
78649600770
-
Rolling element bearing diagnostics – a tutorial
-
Randall, R.B., Antoni, J., Rolling element bearing diagnostics – a tutorial. Mech. Syst. Signal Process. 25 (2011), 485–520.
-
(2011)
Mech. Syst. Signal Process.
, vol.25
, pp. 485-520
-
-
Randall, R.B.1
Antoni, J.2
-
2
-
-
79952317515
-
The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery
-
Loutas, T.H., Roulias, D., Pauly, E., Kostopoulos, V., The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery. Mech. Syst. Signal Process. 25:4 (2011), 1339–1352.
-
(2011)
Mech. Syst. Signal Process.
, vol.25
, Issue.4
, pp. 1339-1352
-
-
Loutas, T.H.1
Roulias, D.2
Pauly, E.3
Kostopoulos, V.4
-
3
-
-
85026870043
-
-
Intelligent vibration signal processing for condition monitoring, Surveill. 7 Int. Conf. – Oct. 29-30, 2013 Inst. Technol. Chartres, Fr. Plenary Session
-
A.K. Nandi, C. Liu, M.L.D. Wong, Intelligent vibration signal processing for condition monitoring, Surveill. 7 Int. Conf. – Oct. 29-30, 2013 Inst. Technol. Chartres, Fr. Plenary Session, 2013.
-
(2013)
-
-
Nandi, A.K.1
Liu, C.2
Wong, M.L.D.3
-
4
-
-
33845434311
-
Fault classification using genetic programming
-
Zhang, L., Nandi, A.K., Fault classification using genetic programming. Mech. Syst. Signal Process. 21:3 (2007), 1273–1284.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.3
, pp. 1273-1284
-
-
Zhang, L.1
Nandi, A.K.2
-
5
-
-
28844433590
-
Modified self-organising map for automated novelty detection applied to vibration signal monitoring
-
Wong, M.L.D., Jack, L.B., Nandi, A.K., Modified self-organising map for automated novelty detection applied to vibration signal monitoring. Mech. Syst. Signal Process. 20:3 (2006), 593–610.
-
(2006)
Mech. Syst. Signal Process.
, vol.20
, Issue.3
, pp. 593-610
-
-
Wong, M.L.D.1
Jack, L.B.2
Nandi, A.K.3
-
6
-
-
33646534620
-
a review on machinery diagnostics and prognostics implementing condition-based maintenance
-
Jardine, A.K.S., Lin, D., Banjevic, D., a review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20 (2006), 1483–1510.
-
(2006)
Mech. Syst. Signal Process.
, vol.20
, pp. 1483-1510
-
-
Jardine, A.K.S.1
Lin, D.2
Banjevic, D.3
-
7
-
-
0004068444
-
Fundamentals of noise and vibration analysis for engineers
-
Cambridge University Press
-
Norton, Michael Peter, Karczub, Denis G., Fundamentals of noise and vibration analysis for engineers. 2003, Cambridge University Press.
-
(2003)
-
-
Norton, M.P.1
Karczub, D.G.2
-
8
-
-
0036664241
-
Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets
-
Nikolaou, N.G., Antoiadis, I.A., Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets. Mech. Syst. Signal Process. 16 (2002), 677–694.
-
(2002)
Mech. Syst. Signal Process.
, vol.16
, pp. 677-694
-
-
Nikolaou, N.G.1
Antoiadis, I.A.2
-
9
-
-
84892675059
-
Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform
-
Pandya, D.H., Upadhyay, S.H., Harsha, S.P., Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform. Soft. Comput. 18 (2014), 255–266.
-
(2014)
Soft. Comput.
, vol.18
, pp. 255-266
-
-
Pandya, D.H.1
Upadhyay, S.H.2
Harsha, S.P.3
-
10
-
-
84985038048
-
Ann based fault diagnosis of rolling element bearing using time-frequency domain feature
-
Pandya, D.H., Upadhyay, S.H., Harsha, S.P., Ann based fault diagnosis of rolling element bearing using time-frequency domain feature. J. Eng. Sci. Technol. 4 (2012), 2878–2886.
-
(2012)
J. Eng. Sci. Technol.
, vol.4
, pp. 2878-2886
-
-
Pandya, D.H.1
Upadhyay, S.H.2
Harsha, S.P.3
-
11
-
-
84870404381
-
A review on empirical mode decomposition in fault diagnosis of rotating machinery
-
Lei, Y.G., Lin, J., He, Z.J., et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35:1–2 (2013), 108–126.
-
(2013)
Mech. Syst. Signal Process.
, vol.35
, Issue.1-2
, pp. 108-126
-
-
Lei, Y.G.1
Lin, J.2
He, Z.J.3
-
12
-
-
0031233479
-
Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a pre-processor
-
Paya, B.A., Esat, I.I., Badi, M.N.M., Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a pre-processor. Mech. Syst. Signal Process. 11 (1997), 751–765.
-
(1997)
Mech. Syst. Signal Process.
, vol.11
, pp. 751-765
-
-
Paya, B.A.1
Esat, I.I.2
Badi, M.N.M.3
-
13
-
-
84928394433
-
Non-negative EMD manifold for feature extraction in machinery fault diagnosis
-
Wang, C., Gan, M., Zhu, C., Non-negative EMD manifold for feature extraction in machinery fault diagnosis. Meas. J. Int. Meas. Confed. 70 (2015), 188–202.
-
(2015)
Meas. J. Int. Meas. Confed.
, vol.70
, pp. 188-202
-
-
Wang, C.1
Gan, M.2
Zhu, C.3
-
14
-
-
84876940227
-
Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples
-
Feng, Z., Liang, M., Chu, F., Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech. Syst. Signal Process. 38 (2013), 165–205.
-
(2013)
Mech. Syst. Signal Process.
, vol.38
, pp. 165-205
-
-
Feng, Z.1
Liang, M.2
Chu, F.3
-
15
-
-
84887433963
-
Wavelets for fault diagnosis of rotary machines: a review with applications
-
Yan, R., Gao, R.X., Chen, X., Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96 (2014), 1–15.
-
(2014)
Signal Process.
, vol.96
, pp. 1-15
-
-
Yan, R.1
Gao, R.X.2
Chen, X.3
-
16
-
-
27744553270
-
The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
-
Antoni, Jérôme, Randall, R.B., The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20:2 (2006), 308–331.
-
(2006)
Mech. Syst. Signal Process.
, vol.20
, Issue.2
, pp. 308-331
-
-
Antoni, J.1
Randall, R.B.2
-
17
-
-
78349312373
-
The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing
-
Eftekharnejad, B., Carrasco, M.R., Charnley, B., Mba, D., The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing. Mech. Syst. Signal Process. 25:1 (2011), 266–284.
-
(2011)
Mech. Syst. Signal Process.
, vol.25
, Issue.1
, pp. 266-284
-
-
Eftekharnejad, B.1
Carrasco, M.R.2
Charnley, B.3
Mba, D.4
-
18
-
-
0035856984
-
Cyclostationary analysis of rolling-element bearing vibration signals
-
Antoniadis, I., Glossiotis, G., Cyclostationary analysis of rolling-element bearing vibration signals. J. Sound Vib. 248:5 (2001), 829–845.
-
(2001)
J. Sound Vib.
, vol.248
, Issue.5
, pp. 829-845
-
-
Antoniadis, I.1
Glossiotis, G.2
-
19
-
-
0032027521
-
Cyclostationarity in rotating machine vibrations
-
McCormick, A.C., Nandi, A.K., Cyclostationarity in rotating machine vibrations. Mech. Syst. Signal Process. 12:2 (1998), 225–242.
-
(1998)
Mech. Syst. Signal Process.
, vol.12
, Issue.2
, pp. 225-242
-
-
McCormick, A.C.1
Nandi, A.K.2
-
20
-
-
33645712892
-
Compressed sensing
-
Donoho, D.L., Compressed sensing. IEEE Trans. Inf. Theory 52 (2006), 1289–1306.
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, pp. 1289-1306
-
-
Donoho, D.L.1
-
22
-
-
84892379607
-
Spatial compressive sensing for MIMO radar
-
Rossi, M., Haimovich, A.M., Eldar, Y.C., Spatial compressive sensing for MIMO radar. IEEE Trans. Signal Process. 62 (2014), 419–430.
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, pp. 419-430
-
-
Rossi, M.1
Haimovich, A.M.2
Eldar, Y.C.3
-
23
-
-
84886657714
-
Compressed sensing signal and data acquisition in wireless sensor networks and internet of things
-
Li, S., Da Xu, L., Wang, X., Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans. Ind. Infor. 9 (2013), 2177–2186.
-
(2013)
IEEE Trans. Ind. Infor.
, vol.9
, pp. 2177-2186
-
-
Li, S.1
Da Xu, L.2
Wang, X.3
-
24
-
-
77949492044
-
reducing data acquisition times in phase-encoded velocity imaging using compressed sensing
-
Holland, D.J., Malioutov, D.M., Blake, A., Sederman, A.J., Gladden, L.F., reducing data acquisition times in phase-encoded velocity imaging using compressed sensing. J. Magn. Reson. 203 (2010), 236–246.
-
(2010)
J. Magn. Reson.
, vol.203
, pp. 236-246
-
-
Holland, D.J.1
Malioutov, D.M.2
Blake, A.3
Sederman, A.J.4
Gladden, L.F.5
-
25
-
-
84876713856
-
Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI
-
Merlet, S.L., Deriche, R., Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17 (2013), 556–572.
-
(2013)
Med. Image Anal.
, vol.17
, pp. 556-572
-
-
Merlet, S.L.1
Deriche, R.2
-
26
-
-
84889657929
-
Compressive sensing: from theory to applications, a survey
-
Qaisar, S., Bilal, R.M., Iqbal, W., Naureen, M., Lee, S., Compressive sensing: from theory to applications, a survey. J. Commun. Networks. 15 (2013), 443–456.
-
(2013)
J. Commun. Networks.
, vol.15
, pp. 443-456
-
-
Qaisar, S.1
Bilal, R.M.2
Iqbal, W.3
Naureen, M.4
Lee, S.5
-
27
-
-
78149452076
-
Application of compressive sensing to sparse channel estimation
-
Berger, C.R., Wang, Z., Huang, J., Zhou, S., Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 48 (2010), 164–174.
-
(2010)
IEEE Commun. Mag.
, vol.48
, pp. 164-174
-
-
Berger, C.R.1
Wang, Z.2
Huang, J.3
Zhou, S.4
-
28
-
-
84907977633
-
Reconstruction of signals drawn from a Gaussian mixture via noisy compressive measurements
-
Renna, F., Calderbank, R., Carin, L., Rodrigues, M.R.D., Reconstruction of signals drawn from a Gaussian mixture via noisy compressive measurements. IEEE Trans. Signal Process. 62 (2014), 2265–2277.
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, pp. 2265-2277
-
-
Renna, F.1
Calderbank, R.2
Carin, L.3
Rodrigues, M.R.D.4
-
29
-
-
65749110333
-
Subspace pursuit for compressive sensing signal reconstruction
-
Dai, W., Milenkovic, O., Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55 (2009), 2230–2249.
-
(2009)
IEEE Trans. Inf. Theory
, vol.55
, pp. 2230-2249
-
-
Dai, W.1
Milenkovic, O.2
-
30
-
-
79955778301
-
Compressed sensing with coherent and redundant dictionaries
-
Candès, E.J., Eldar, Y.C., Needell, D., Randall, P., Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31 (2011), 59–73.
-
(2011)
Appl. Comput. Harmon. Anal.
, vol.31
, pp. 59-73
-
-
Candès, E.J.1
Eldar, Y.C.2
Needell, D.3
Randall, P.4
-
31
-
-
84899527553
-
an automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment
-
Stanković, S., Orović, I., Stanković, L., an automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment. Signal Process. 104 (2014), 43–50.
-
(2014)
Signal Process.
, vol.104
, pp. 43-50
-
-
Stanković, S.1
Orović, I.2
Stanković, L.3
-
32
-
-
84963976707
-
Effects of compressed sensing on classification of bearing faults with entropic features
-
IEEE
-
Wong, M.L.D., Zhang, M., Nandi, A.K., Effects of compressed sensing on classification of bearing faults with entropic features. EUSIPCO Proceeding, 2015, IEEE, 2296–2300.
-
(2015)
EUSIPCO Proceeding
, pp. 2296-2300
-
-
Wong, M.L.D.1
Zhang, M.2
Nandi, A.K.3
-
33
-
-
84871342984
-
Compressed sensing technology applied to fault diagnosis of train rolling bearing
-
Li, X.F., Fan, X.C., Jia, L.M., Compressed sensing technology applied to fault diagnosis of train rolling bearing. Vib. Struct. Eng. Meas. Ii, Pts 1-3 226–228 (2012), 2056–2061.
-
(2012)
Vib. Struct. Eng. Meas. Ii, Pts 1-3
, vol.226-228
, pp. 2056-2061
-
-
Li, X.F.1
Fan, X.C.2
Jia, L.M.3
-
34
-
-
34548269362
-
Detection and estimation with compressive measurements
-
Davenport, M.a., Wakin, M.B., Baraniuk, R.G., Detection and estimation with compressive measurements. Comput. Eng, 2007, 1–16.
-
(2007)
Comput. Eng
, pp. 1-16
-
-
Davenport, M.A.1
Wakin, M.B.2
Baraniuk, R.G.3
-
35
-
-
84928189410
-
Sparse classification of rotating machinery faults based on compressive sensing strategy
-
Tang, G., Yang, Q., Wang, H.Q., Luo, G. gang, Ma, J. wei, Sparse classification of rotating machinery faults based on compressive sensing strategy. Mechatronics 31 (2014), 60–67.
-
(2014)
Mechatronics
, vol.31
, pp. 60-67
-
-
Tang, G.1
Yang, Q.2
Wang, H.Q.3
Luo, G.G.4
Ma, J.W.5
-
36
-
-
84938490502
-
A bearing fault diagnosis method based on the low-dimensional compressed vibration signal
-
Zhang, X., Hu, N., Hu, L., Chen, L., Cheng, Z., A bearing fault diagnosis method based on the low-dimensional compressed vibration signal. Adv. Mech. Eng. 7 (2015), 1–12.
-
(2015)
Adv. Mech. Eng.
, vol.7
, pp. 1-12
-
-
Zhang, X.1
Hu, N.2
Hu, L.3
Chen, L.4
Cheng, Z.5
-
37
-
-
84887486721
-
Compressed sensing based on dictionary learning for extracting impulse components
-
Chen, X., Du, Z., Li, J., Li, X., Zhang, H., Compressed sensing based on dictionary learning for extracting impulse components. Signal Process. 96 (2014), 94–109.
-
(2014)
Signal Process.
, vol.96
, pp. 94-109
-
-
Chen, X.1
Du, Z.2
Li, J.3
Li, X.4
Zhang, H.5
-
38
-
-
84944096985
-
Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals
-
Tang, G., Hou, W., Wang, H., Luo, G., Ma, J., Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals. Sensors (Switzerland) 15 (2015), 25648–25662.
-
(2015)
Sensors (Switzerland)
, vol.15
, pp. 25648-25662
-
-
Tang, G.1
Hou, W.2
Wang, H.3
Luo, G.4
Ma, J.5
-
39
-
-
85026887141
-
-
Deep Learning and its applications to machine health monitoring: a survey
-
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, X. Gao, Deep Learning and its applications to machine health monitoring: a survey, 2016.
-
(2016)
-
-
Zhao, R.1
Yan, R.2
Chen, Z.3
Mao, K.4
Wang, P.5
Gao, X.6
-
40
-
-
84975229487
-
Fault diagnosis using a joint model based on sparse representation and SVM
-
Ren, L., Lv, W., Jiang, S., Xiao, Y., Fault diagnosis using a joint model based on sparse representation and SVM. IEEE Trans. Instrum. Meas., 2016, 1–8.
-
(2016)
IEEE Trans. Instrum. Meas.
, pp. 1-8
-
-
Ren, L.1
Lv, W.2
Jiang, S.3
Xiao, Y.4
-
41
-
-
84937851164
-
Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis
-
Zhu, H., Wang, X., Zhao, Y., Li, Y., Wang, W., Li, L., Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229 (2015), 2303–2313.
-
(2015)
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
, vol.229
, pp. 2303-2313
-
-
Zhu, H.1
Wang, X.2
Zhao, Y.3
Li, Y.4
Wang, W.5
Li, L.6
-
42
-
-
84898081265
-
Sparse representation based latent components analysis for machinery weak fault detection
-
Tang, H., Chen, J., Dong, G., Sparse representation based latent components analysis for machinery weak fault detection. Mech. Syst. Signal Process. 46 (2014), 373–388.
-
(2014)
Mech. Syst. Signal Process.
, vol.46
, pp. 373-388
-
-
Tang, H.1
Chen, J.2
Dong, G.3
-
43
-
-
78649634282
-
Adaptive feature extraction using sparse coding for machinery fault diagnosis
-
Liu, H., Liu, C., Huang, Y., Adaptive feature extraction using sparse coding for machinery fault diagnosis. Mech. Syst. Signal Process. 25 (2011), 558–574.
-
(2011)
Mech. Syst. Signal Process.
, vol.25
, pp. 558-574
-
-
Liu, H.1
Liu, C.2
Huang, Y.3
-
44
-
-
84919839730
-
Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction
-
Fan, W., Cai, G., Zhu, Z.K., Shen, C., Huang, W., Shang, L., Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction. Mech. Syst. Signal Process. 56 (2015), 230–245.
-
(2015)
Mech. Syst. Signal Process.
, vol.56
, pp. 230-245
-
-
Fan, W.1
Cai, G.2
Zhu, Z.K.3
Shen, C.4
Huang, W.5
Shang, L.6
-
45
-
-
0034133184
-
Learning overcomplete representations
-
Lewicki, M.S., Sejnowski, T.J., Learning overcomplete representations. Neural Comput. 12 (2000), 337–365, 10.1162/089976600300015826.
-
(2000)
Neural Comput.
, vol.12
, pp. 337-365
-
-
Lewicki, M.S.1
Sejnowski, T.J.2
-
46
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by V1?
-
Olshausen, B.A., Field, D.J., Sparse coding with an overcomplete basis set: A strategy employed by V1?. Vision. Res. 37 (1997), 3311–3325.
-
(1997)
Vision. Res.
, vol.37
, pp. 3311-3325
-
-
Olshausen, B.A.1
Field, D.J.2
-
47
-
-
56449113213
-
A theoretical analysis of robust coding over noisy overcomplete channels
-
Doi, E., Balcan, D., A theoretical analysis of robust coding over noisy overcomplete channels. Adv. Neural. Inf., 2006 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.9617&rep=rep1&type=pdf.
-
(2006)
Adv. Neural. Inf.
-
-
Doi, E.1
Balcan, D.2
-
48
-
-
84856109878
-
CS294A lecture notes sparse autoencoder
-
Ng, A., CS294A lecture notes sparse autoencoder. Cs294a, 2011, 1–19.
-
(2011)
Cs294a
, pp. 1-19
-
-
Ng, A.1
-
49
-
-
56449086627
-
Sparse deep belief net model for visual area V2
-
Lee, H., Ekanadham, C., Ng, A., Sparse deep belief net model for visual area V2. Nips, 2007, 1–8.
-
(2007)
Nips
, pp. 1-8
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.3
-
50
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst., 19, 2007, 153.
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 153
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
51
-
-
84946600673
-
Bearing fault diagnosis method based on stacked autoencoder and softmax regression
-
Chinese Control Conf. CCC. 2015-September
-
S. Tao, T. Zhang, J. Yang, X. Wang, W. Lu, Bearing fault diagnosis method based on stacked autoencoder and softmax regression, in: Chinese Control Conf. CCC. 2015-September; 2015, pp. 6331–6335.
-
(2015)
, pp. 6331-6335
-
-
Tao, S.1
Zhang, T.2
Yang, J.3
Wang, X.4
Lu, W.5
-
52
-
-
84955693855
-
Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72–73 (2016), 303–315.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
53
-
-
84964855691
-
A sparse auto-encoder-based deep neural network approach for induction motor faults classification
-
Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X., A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89 (2016), 171–178.
-
(2016)
Measurement
, vol.89
, pp. 171-178
-
-
Sun, W.1
Shao, S.2
Zhao, R.3
Yan, R.4
Zhang, X.5
Chen, X.6
-
54
-
-
33947416035
-
Near-optimal signal recovery from random projections: universal encoding strategies?
-
Candes, E., Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 52:12 (2006), 5406–5425.
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.12
, pp. 5406-5425
-
-
Candes, E.1
Tao, T.2
-
55
-
-
55649115527
-
A simple proof of the restricted isometry property for random matrices
-
Baraniuk, Richard, et al. A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28:3 (2008), 253–263.
-
(2008)
Constr. Approx.
, vol.28
, Issue.3
, pp. 253-263
-
-
Baraniuk, R.1
-
56
-
-
84910651844
-
Deep Learning in neural networks: an overview
-
Schmidhuber, J., Deep Learning in neural networks: an overview. Neural Networks 61 (2015), 85–117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
57
-
-
77949522811
-
Why does unsupervised pre-training help deep learning
-
Erhan, D., Courville, A., Vincent, P., Why does unsupervised pre-training help deep learning. J. Mach. Learn. Res. 11 (2010), 625–660.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Courville, A.2
Vincent, P.3
-
58
-
-
80052395956
-
Deep auto-encoder neural networks in reinforcement learning.
-
In: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE; 2010 Jul 18
-
S. Lange, M. Riedmiller, Deep auto-encoder neural networks in reinforcement learning. In: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE; 2010 Jul 18, pp. 1–8.
-
-
-
Lange, S.1
Riedmiller, M.2
-
59
-
-
85026887266
-
-
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
-
Tim Salimans, Diederik P. Kingma, Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks; 2016.
-
(2016)
-
-
Salimans, T.1
Kingma, D.P.2
-
60
-
-
84977601395
-
Applied Logistic Regression
-
John Wiley & Sons
-
Hosmer Jr, David, W., Lemeshow, Stanley, Sturdivant, Rodney X., Applied Logistic Regression. 2013, John Wiley & Sons.
-
(2013)
-
-
Hosmer1
David, W.2
Lemeshow, S.3
Sturdivant, R.X.4
-
61
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Møller, Martin Fodslette, A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6:4 (1993), 525–533.
-
(1993)
Neural Netw.
, vol.6
, Issue.4
, pp. 525-533
-
-
Møller, M.F.1
-
62
-
-
84878406415
-
Compressive sampling for accelerometer signals in structural health monitoring
-
Bao, Yuequan, Beck, James L., Li, Hui, Compressive sampling for accelerometer signals in structural health monitoring. Struct. Health Monit., 2010.
-
(2010)
Struct. Health Monit.
-
-
Bao, Y.1
Beck, J.L.2
Li, H.3
-
63
-
-
84896322382
-
Emerging data technology in structural health monitoring: compressive sensing technology
-
Bao, Yuequan, Li, Hui, Jinping, Ou., Emerging data technology in structural health monitoring: compressive sensing technology. J. Civil Struct. Health Mon. 4:2 (2014), 77–90.
-
(2014)
J. Civil Struct. Health Mon.
, vol.4
, Issue.2
, pp. 77-90
-
-
Bao, Y.1
Li, H.2
Jinping, O.3
-
64
-
-
85026887648
-
-
http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/wavelet/ch06_a47.html.
-
-
-
-
65
-
-
85026850230
-
-
On Fundamentals of Models and Sampling in Compressed Sensing, Available: <>.
-
B. Roman, A. Bastounis, B. Adcock, A.C. Hansen, On Fundamentals of Models and Sampling in Compressed Sensing, Available: < http://www.damtp.cam.ac.uk/research/afha/bogdan/ Fundamentals_17.pdf>.
-
-
-
Roman, B.1
Bastounis, A.2
Adcock, B.3
Hansen, A.C.4
-
66
-
-
85026882632
-
-
Breaking the Coherence Barrier: A New Theory for Compressed Sensing
-
B. Adcock, A.C. Hansen, C. Poon, B. Roman, Breaking the Coherence Barrier: A New Theory for Compressed Sensing, 2014.
-
(2014)
-
-
Adcock, B.1
Hansen, A.C.2
Poon, C.3
Roman, B.4
-
67
-
-
85026880135
-
-
On Asymptotic Structure in Compressed Sensing
-
B. Roman, B. Adcock, A. Hansen, On Asymptotic Structure in Compressed Sensing, 2014.
-
(2014)
-
-
Roman, B.1
Adcock, B.2
Hansen, A.3
-
68
-
-
62749175137
-
CoSaMP: iterative signal recovery from incomplete and inaccurate samples
-
Needell, D., Tropp, J.A., CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26:3 (2009), 301–321.
-
(2009)
Appl. Comput. Harmon. Anal.
, vol.26
, Issue.3
, pp. 301-321
-
-
Needell, D.1
Tropp, J.A.2
-
69
-
-
85026854869
-
-
Case Western Reserve University Bearing Data Center <>.
-
Case Western Reserve University Bearing Data Center < http://csegroup.case.edu/bearingdatacenter/home>.
-
-
-
-
70
-
-
84937975641
-
Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
-
Smith, Wade A., Randall, Robert B., Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64 (2015), 100–131.
-
(2015)
Mech. Syst. Signal Process.
, vol.64
, pp. 100-131
-
-
Smith, W.A.1
Randall, R.B.2
-
71
-
-
84947968205
-
Condition-based monitoring system for rolling element bearing using a generic multi-layer perceptron
-
de Almeida, L.F., Bizarria, J.W., Bizarria, F.C., Mathias, M.H., Condition-based monitoring system for rolling element bearing using a generic multi-layer perceptron. J. Vib. Control 21:16 (2015), 3456–3464.
-
(2015)
J. Vib. Control
, vol.21
, Issue.16
, pp. 3456-3464
-
-
de Almeida, L.F.1
Bizarria, J.W.2
Bizarria, F.C.3
Mathias, M.H.4
|