메뉴 건너뛰기




Volumn 99, Issue , 2018, Pages 459-477

Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features

Author keywords

Bearing fault classification; Compressed sensing; Deep neural network; Machine condition monitoring; Sparse autoencoder; Sparse over complete representations

Indexed keywords

BACKPROPAGATION ALGORITHMS; BEARINGS (MACHINE PARTS); COMPRESSED SENSING; DEEP LEARNING; DEEP NEURAL NETWORKS; FAULT DETECTION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MACHINERY; ROLLER BEARINGS; SIGNAL RECONSTRUCTION;

EID: 85026870301     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2017.06.027     Document Type: Article
Times cited : (131)

References (71)
  • 1
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics – a tutorial
    • Randall, R.B., Antoni, J., Rolling element bearing diagnostics – a tutorial. Mech. Syst. Signal Process. 25 (2011), 485–520.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 2
    • 79952317515 scopus 로고    scopus 로고
    • The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery
    • Loutas, T.H., Roulias, D., Pauly, E., Kostopoulos, V., The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery. Mech. Syst. Signal Process. 25:4 (2011), 1339–1352.
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.4 , pp. 1339-1352
    • Loutas, T.H.1    Roulias, D.2    Pauly, E.3    Kostopoulos, V.4
  • 3
    • 85026870043 scopus 로고    scopus 로고
    • Intelligent vibration signal processing for condition monitoring, Surveill. 7 Int. Conf. – Oct. 29-30, 2013 Inst. Technol. Chartres, Fr. Plenary Session
    • A.K. Nandi, C. Liu, M.L.D. Wong, Intelligent vibration signal processing for condition monitoring, Surveill. 7 Int. Conf. – Oct. 29-30, 2013 Inst. Technol. Chartres, Fr. Plenary Session, 2013.
    • (2013)
    • Nandi, A.K.1    Liu, C.2    Wong, M.L.D.3
  • 4
    • 33845434311 scopus 로고    scopus 로고
    • Fault classification using genetic programming
    • Zhang, L., Nandi, A.K., Fault classification using genetic programming. Mech. Syst. Signal Process. 21:3 (2007), 1273–1284.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.3 , pp. 1273-1284
    • Zhang, L.1    Nandi, A.K.2
  • 5
    • 28844433590 scopus 로고    scopus 로고
    • Modified self-organising map for automated novelty detection applied to vibration signal monitoring
    • Wong, M.L.D., Jack, L.B., Nandi, A.K., Modified self-organising map for automated novelty detection applied to vibration signal monitoring. Mech. Syst. Signal Process. 20:3 (2006), 593–610.
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.3 , pp. 593-610
    • Wong, M.L.D.1    Jack, L.B.2    Nandi, A.K.3
  • 6
    • 33646534620 scopus 로고    scopus 로고
    • a review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A.K.S., Lin, D., Banjevic, D., a review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20 (2006), 1483–1510.
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 7
    • 0004068444 scopus 로고    scopus 로고
    • Fundamentals of noise and vibration analysis for engineers
    • Cambridge University Press
    • Norton, Michael Peter, Karczub, Denis G., Fundamentals of noise and vibration analysis for engineers. 2003, Cambridge University Press.
    • (2003)
    • Norton, M.P.1    Karczub, D.G.2
  • 8
    • 0036664241 scopus 로고    scopus 로고
    • Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets
    • Nikolaou, N.G., Antoiadis, I.A., Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets. Mech. Syst. Signal Process. 16 (2002), 677–694.
    • (2002) Mech. Syst. Signal Process. , vol.16 , pp. 677-694
    • Nikolaou, N.G.1    Antoiadis, I.A.2
  • 9
    • 84892675059 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform
    • Pandya, D.H., Upadhyay, S.H., Harsha, S.P., Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform. Soft. Comput. 18 (2014), 255–266.
    • (2014) Soft. Comput. , vol.18 , pp. 255-266
    • Pandya, D.H.1    Upadhyay, S.H.2    Harsha, S.P.3
  • 10
    • 84985038048 scopus 로고    scopus 로고
    • Ann based fault diagnosis of rolling element bearing using time-frequency domain feature
    • Pandya, D.H., Upadhyay, S.H., Harsha, S.P., Ann based fault diagnosis of rolling element bearing using time-frequency domain feature. J. Eng. Sci. Technol. 4 (2012), 2878–2886.
    • (2012) J. Eng. Sci. Technol. , vol.4 , pp. 2878-2886
    • Pandya, D.H.1    Upadhyay, S.H.2    Harsha, S.P.3
  • 11
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Lei, Y.G., Lin, J., He, Z.J., et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35:1–2 (2013), 108–126.
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.1-2 , pp. 108-126
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3
  • 12
    • 0031233479 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a pre-processor
    • Paya, B.A., Esat, I.I., Badi, M.N.M., Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a pre-processor. Mech. Syst. Signal Process. 11 (1997), 751–765.
    • (1997) Mech. Syst. Signal Process. , vol.11 , pp. 751-765
    • Paya, B.A.1    Esat, I.I.2    Badi, M.N.M.3
  • 13
    • 84928394433 scopus 로고    scopus 로고
    • Non-negative EMD manifold for feature extraction in machinery fault diagnosis
    • Wang, C., Gan, M., Zhu, C., Non-negative EMD manifold for feature extraction in machinery fault diagnosis. Meas. J. Int. Meas. Confed. 70 (2015), 188–202.
    • (2015) Meas. J. Int. Meas. Confed. , vol.70 , pp. 188-202
    • Wang, C.1    Gan, M.2    Zhu, C.3
  • 14
    • 84876940227 scopus 로고    scopus 로고
    • Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples
    • Feng, Z., Liang, M., Chu, F., Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech. Syst. Signal Process. 38 (2013), 165–205.
    • (2013) Mech. Syst. Signal Process. , vol.38 , pp. 165-205
    • Feng, Z.1    Liang, M.2    Chu, F.3
  • 15
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: a review with applications
    • Yan, R., Gao, R.X., Chen, X., Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96 (2014), 1–15.
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 16
    • 27744553270 scopus 로고    scopus 로고
    • The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
    • Antoni, Jérôme, Randall, R.B., The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20:2 (2006), 308–331.
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.2 , pp. 308-331
    • Antoni, J.1    Randall, R.B.2
  • 17
    • 78349312373 scopus 로고    scopus 로고
    • The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing
    • Eftekharnejad, B., Carrasco, M.R., Charnley, B., Mba, D., The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing. Mech. Syst. Signal Process. 25:1 (2011), 266–284.
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.1 , pp. 266-284
    • Eftekharnejad, B.1    Carrasco, M.R.2    Charnley, B.3    Mba, D.4
  • 18
    • 0035856984 scopus 로고    scopus 로고
    • Cyclostationary analysis of rolling-element bearing vibration signals
    • Antoniadis, I., Glossiotis, G., Cyclostationary analysis of rolling-element bearing vibration signals. J. Sound Vib. 248:5 (2001), 829–845.
    • (2001) J. Sound Vib. , vol.248 , Issue.5 , pp. 829-845
    • Antoniadis, I.1    Glossiotis, G.2
  • 19
    • 0032027521 scopus 로고    scopus 로고
    • Cyclostationarity in rotating machine vibrations
    • McCormick, A.C., Nandi, A.K., Cyclostationarity in rotating machine vibrations. Mech. Syst. Signal Process. 12:2 (1998), 225–242.
    • (1998) Mech. Syst. Signal Process. , vol.12 , Issue.2 , pp. 225-242
    • McCormick, A.C.1    Nandi, A.K.2
  • 20
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D.L., Compressed sensing. IEEE Trans. Inf. Theory 52 (2006), 1289–1306.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 23
    • 84886657714 scopus 로고    scopus 로고
    • Compressed sensing signal and data acquisition in wireless sensor networks and internet of things
    • Li, S., Da Xu, L., Wang, X., Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans. Ind. Infor. 9 (2013), 2177–2186.
    • (2013) IEEE Trans. Ind. Infor. , vol.9 , pp. 2177-2186
    • Li, S.1    Da Xu, L.2    Wang, X.3
  • 24
    • 77949492044 scopus 로고    scopus 로고
    • reducing data acquisition times in phase-encoded velocity imaging using compressed sensing
    • Holland, D.J., Malioutov, D.M., Blake, A., Sederman, A.J., Gladden, L.F., reducing data acquisition times in phase-encoded velocity imaging using compressed sensing. J. Magn. Reson. 203 (2010), 236–246.
    • (2010) J. Magn. Reson. , vol.203 , pp. 236-246
    • Holland, D.J.1    Malioutov, D.M.2    Blake, A.3    Sederman, A.J.4    Gladden, L.F.5
  • 25
    • 84876713856 scopus 로고    scopus 로고
    • Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI
    • Merlet, S.L., Deriche, R., Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17 (2013), 556–572.
    • (2013) Med. Image Anal. , vol.17 , pp. 556-572
    • Merlet, S.L.1    Deriche, R.2
  • 27
    • 78149452076 scopus 로고    scopus 로고
    • Application of compressive sensing to sparse channel estimation
    • Berger, C.R., Wang, Z., Huang, J., Zhou, S., Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 48 (2010), 164–174.
    • (2010) IEEE Commun. Mag. , vol.48 , pp. 164-174
    • Berger, C.R.1    Wang, Z.2    Huang, J.3    Zhou, S.4
  • 28
    • 84907977633 scopus 로고    scopus 로고
    • Reconstruction of signals drawn from a Gaussian mixture via noisy compressive measurements
    • Renna, F., Calderbank, R., Carin, L., Rodrigues, M.R.D., Reconstruction of signals drawn from a Gaussian mixture via noisy compressive measurements. IEEE Trans. Signal Process. 62 (2014), 2265–2277.
    • (2014) IEEE Trans. Signal Process. , vol.62 , pp. 2265-2277
    • Renna, F.1    Calderbank, R.2    Carin, L.3    Rodrigues, M.R.D.4
  • 29
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • Dai, W., Milenkovic, O., Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55 (2009), 2230–2249.
    • (2009) IEEE Trans. Inf. Theory , vol.55 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 31
    • 84899527553 scopus 로고    scopus 로고
    • an automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment
    • Stanković, S., Orović, I., Stanković, L., an automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment. Signal Process. 104 (2014), 43–50.
    • (2014) Signal Process. , vol.104 , pp. 43-50
    • Stanković, S.1    Orović, I.2    Stanković, L.3
  • 32
    • 84963976707 scopus 로고    scopus 로고
    • Effects of compressed sensing on classification of bearing faults with entropic features
    • IEEE
    • Wong, M.L.D., Zhang, M., Nandi, A.K., Effects of compressed sensing on classification of bearing faults with entropic features. EUSIPCO Proceeding, 2015, IEEE, 2296–2300.
    • (2015) EUSIPCO Proceeding , pp. 2296-2300
    • Wong, M.L.D.1    Zhang, M.2    Nandi, A.K.3
  • 33
    • 84871342984 scopus 로고    scopus 로고
    • Compressed sensing technology applied to fault diagnosis of train rolling bearing
    • Li, X.F., Fan, X.C., Jia, L.M., Compressed sensing technology applied to fault diagnosis of train rolling bearing. Vib. Struct. Eng. Meas. Ii, Pts 1-3 226–228 (2012), 2056–2061.
    • (2012) Vib. Struct. Eng. Meas. Ii, Pts 1-3 , vol.226-228 , pp. 2056-2061
    • Li, X.F.1    Fan, X.C.2    Jia, L.M.3
  • 34
    • 34548269362 scopus 로고    scopus 로고
    • Detection and estimation with compressive measurements
    • Davenport, M.a., Wakin, M.B., Baraniuk, R.G., Detection and estimation with compressive measurements. Comput. Eng, 2007, 1–16.
    • (2007) Comput. Eng , pp. 1-16
    • Davenport, M.A.1    Wakin, M.B.2    Baraniuk, R.G.3
  • 35
    • 84928189410 scopus 로고    scopus 로고
    • Sparse classification of rotating machinery faults based on compressive sensing strategy
    • Tang, G., Yang, Q., Wang, H.Q., Luo, G. gang, Ma, J. wei, Sparse classification of rotating machinery faults based on compressive sensing strategy. Mechatronics 31 (2014), 60–67.
    • (2014) Mechatronics , vol.31 , pp. 60-67
    • Tang, G.1    Yang, Q.2    Wang, H.Q.3    Luo, G.G.4    Ma, J.W.5
  • 36
    • 84938490502 scopus 로고    scopus 로고
    • A bearing fault diagnosis method based on the low-dimensional compressed vibration signal
    • Zhang, X., Hu, N., Hu, L., Chen, L., Cheng, Z., A bearing fault diagnosis method based on the low-dimensional compressed vibration signal. Adv. Mech. Eng. 7 (2015), 1–12.
    • (2015) Adv. Mech. Eng. , vol.7 , pp. 1-12
    • Zhang, X.1    Hu, N.2    Hu, L.3    Chen, L.4    Cheng, Z.5
  • 37
    • 84887486721 scopus 로고    scopus 로고
    • Compressed sensing based on dictionary learning for extracting impulse components
    • Chen, X., Du, Z., Li, J., Li, X., Zhang, H., Compressed sensing based on dictionary learning for extracting impulse components. Signal Process. 96 (2014), 94–109.
    • (2014) Signal Process. , vol.96 , pp. 94-109
    • Chen, X.1    Du, Z.2    Li, J.3    Li, X.4    Zhang, H.5
  • 38
    • 84944096985 scopus 로고    scopus 로고
    • Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals
    • Tang, G., Hou, W., Wang, H., Luo, G., Ma, J., Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals. Sensors (Switzerland) 15 (2015), 25648–25662.
    • (2015) Sensors (Switzerland) , vol.15 , pp. 25648-25662
    • Tang, G.1    Hou, W.2    Wang, H.3    Luo, G.4    Ma, J.5
  • 39
    • 85026887141 scopus 로고    scopus 로고
    • Deep Learning and its applications to machine health monitoring: a survey
    • R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, X. Gao, Deep Learning and its applications to machine health monitoring: a survey, 2016.
    • (2016)
    • Zhao, R.1    Yan, R.2    Chen, Z.3    Mao, K.4    Wang, P.5    Gao, X.6
  • 40
    • 84975229487 scopus 로고    scopus 로고
    • Fault diagnosis using a joint model based on sparse representation and SVM
    • Ren, L., Lv, W., Jiang, S., Xiao, Y., Fault diagnosis using a joint model based on sparse representation and SVM. IEEE Trans. Instrum. Meas., 2016, 1–8.
    • (2016) IEEE Trans. Instrum. Meas. , pp. 1-8
    • Ren, L.1    Lv, W.2    Jiang, S.3    Xiao, Y.4
  • 41
    • 84937851164 scopus 로고    scopus 로고
    • Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis
    • Zhu, H., Wang, X., Zhao, Y., Li, Y., Wang, W., Li, L., Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229 (2015), 2303–2313.
    • (2015) Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. , vol.229 , pp. 2303-2313
    • Zhu, H.1    Wang, X.2    Zhao, Y.3    Li, Y.4    Wang, W.5    Li, L.6
  • 42
    • 84898081265 scopus 로고    scopus 로고
    • Sparse representation based latent components analysis for machinery weak fault detection
    • Tang, H., Chen, J., Dong, G., Sparse representation based latent components analysis for machinery weak fault detection. Mech. Syst. Signal Process. 46 (2014), 373–388.
    • (2014) Mech. Syst. Signal Process. , vol.46 , pp. 373-388
    • Tang, H.1    Chen, J.2    Dong, G.3
  • 43
    • 78649634282 scopus 로고    scopus 로고
    • Adaptive feature extraction using sparse coding for machinery fault diagnosis
    • Liu, H., Liu, C., Huang, Y., Adaptive feature extraction using sparse coding for machinery fault diagnosis. Mech. Syst. Signal Process. 25 (2011), 558–574.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 558-574
    • Liu, H.1    Liu, C.2    Huang, Y.3
  • 44
    • 84919839730 scopus 로고    scopus 로고
    • Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction
    • Fan, W., Cai, G., Zhu, Z.K., Shen, C., Huang, W., Shang, L., Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction. Mech. Syst. Signal Process. 56 (2015), 230–245.
    • (2015) Mech. Syst. Signal Process. , vol.56 , pp. 230-245
    • Fan, W.1    Cai, G.2    Zhu, Z.K.3    Shen, C.4    Huang, W.5    Shang, L.6
  • 45
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki, M.S., Sejnowski, T.J., Learning overcomplete representations. Neural Comput. 12 (2000), 337–365, 10.1162/089976600300015826.
    • (2000) Neural Comput. , vol.12 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 46
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • Olshausen, B.A., Field, D.J., Sparse coding with an overcomplete basis set: A strategy employed by V1?. Vision. Res. 37 (1997), 3311–3325.
    • (1997) Vision. Res. , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 47
    • 56449113213 scopus 로고    scopus 로고
    • A theoretical analysis of robust coding over noisy overcomplete channels
    • Doi, E., Balcan, D., A theoretical analysis of robust coding over noisy overcomplete channels. Adv. Neural. Inf., 2006 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.9617&rep=rep1&type=pdf.
    • (2006) Adv. Neural. Inf.
    • Doi, E.1    Balcan, D.2
  • 48
    • 84856109878 scopus 로고    scopus 로고
    • CS294A lecture notes sparse autoencoder
    • Ng, A., CS294A lecture notes sparse autoencoder. Cs294a, 2011, 1–19.
    • (2011) Cs294a , pp. 1-19
    • Ng, A.1
  • 49
    • 56449086627 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • Lee, H., Ekanadham, C., Ng, A., Sparse deep belief net model for visual area V2. Nips, 2007, 1–8.
    • (2007) Nips , pp. 1-8
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 51
    • 84946600673 scopus 로고    scopus 로고
    • Bearing fault diagnosis method based on stacked autoencoder and softmax regression
    • Chinese Control Conf. CCC. 2015-September
    • S. Tao, T. Zhang, J. Yang, X. Wang, W. Lu, Bearing fault diagnosis method based on stacked autoencoder and softmax regression, in: Chinese Control Conf. CCC. 2015-September; 2015, pp. 6331–6335.
    • (2015) , pp. 6331-6335
    • Tao, S.1    Zhang, T.2    Yang, J.3    Wang, X.4    Lu, W.5
  • 52
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72–73 (2016), 303–315.
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 53
    • 84964855691 scopus 로고    scopus 로고
    • A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    • Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X., A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89 (2016), 171–178.
    • (2016) Measurement , vol.89 , pp. 171-178
    • Sun, W.1    Shao, S.2    Zhao, R.3    Yan, R.4    Zhang, X.5    Chen, X.6
  • 54
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: universal encoding strategies?
    • Candes, E., Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 52:12 (2006), 5406–5425.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.1    Tao, T.2
  • 55
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • Baraniuk, Richard, et al. A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28:3 (2008), 253–263.
    • (2008) Constr. Approx. , vol.28 , Issue.3 , pp. 253-263
    • Baraniuk, R.1
  • 56
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in neural networks: an overview
    • Schmidhuber, J., Deep Learning in neural networks: an overview. Neural Networks 61 (2015), 85–117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 57
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pre-training help deep learning
    • Erhan, D., Courville, A., Vincent, P., Why does unsupervised pre-training help deep learning. J. Mach. Learn. Res. 11 (2010), 625–660.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 625-660
    • Erhan, D.1    Courville, A.2    Vincent, P.3
  • 58
    • 80052395956 scopus 로고    scopus 로고
    • Deep auto-encoder neural networks in reinforcement learning.
    • In: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE; 2010 Jul 18
    • S. Lange, M. Riedmiller, Deep auto-encoder neural networks in reinforcement learning. In: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE; 2010 Jul 18, pp. 1–8.
    • Lange, S.1    Riedmiller, M.2
  • 59
    • 85026887266 scopus 로고    scopus 로고
    • Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
    • Tim Salimans, Diederik P. Kingma, Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks; 2016.
    • (2016)
    • Salimans, T.1    Kingma, D.P.2
  • 60
    • 84977601395 scopus 로고    scopus 로고
    • Applied Logistic Regression
    • John Wiley & Sons
    • Hosmer Jr, David, W., Lemeshow, Stanley, Sturdivant, Rodney X., Applied Logistic Regression. 2013, John Wiley & Sons.
    • (2013)
    • Hosmer1    David, W.2    Lemeshow, S.3    Sturdivant, R.X.4
  • 61
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller, Martin Fodslette, A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6:4 (1993), 525–533.
    • (1993) Neural Netw. , vol.6 , Issue.4 , pp. 525-533
    • Møller, M.F.1
  • 62
    • 84878406415 scopus 로고    scopus 로고
    • Compressive sampling for accelerometer signals in structural health monitoring
    • Bao, Yuequan, Beck, James L., Li, Hui, Compressive sampling for accelerometer signals in structural health monitoring. Struct. Health Monit., 2010.
    • (2010) Struct. Health Monit.
    • Bao, Y.1    Beck, J.L.2    Li, H.3
  • 63
    • 84896322382 scopus 로고    scopus 로고
    • Emerging data technology in structural health monitoring: compressive sensing technology
    • Bao, Yuequan, Li, Hui, Jinping, Ou., Emerging data technology in structural health monitoring: compressive sensing technology. J. Civil Struct. Health Mon. 4:2 (2014), 77–90.
    • (2014) J. Civil Struct. Health Mon. , vol.4 , Issue.2 , pp. 77-90
    • Bao, Y.1    Li, H.2    Jinping, O.3
  • 64
    • 85026887648 scopus 로고    scopus 로고
    • http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/wavelet/ch06_a47.html.
  • 65
    • 85026850230 scopus 로고    scopus 로고
    • On Fundamentals of Models and Sampling in Compressed Sensing, Available: <>.
    • B. Roman, A. Bastounis, B. Adcock, A.C. Hansen, On Fundamentals of Models and Sampling in Compressed Sensing, Available: < http://www.damtp.cam.ac.uk/research/afha/bogdan/ Fundamentals_17.pdf>.
    • Roman, B.1    Bastounis, A.2    Adcock, B.3    Hansen, A.C.4
  • 66
    • 85026882632 scopus 로고    scopus 로고
    • Breaking the Coherence Barrier: A New Theory for Compressed Sensing
    • B. Adcock, A.C. Hansen, C. Poon, B. Roman, Breaking the Coherence Barrier: A New Theory for Compressed Sensing, 2014.
    • (2014)
    • Adcock, B.1    Hansen, A.C.2    Poon, C.3    Roman, B.4
  • 67
    • 85026880135 scopus 로고    scopus 로고
    • On Asymptotic Structure in Compressed Sensing
    • B. Roman, B. Adcock, A. Hansen, On Asymptotic Structure in Compressed Sensing, 2014.
    • (2014)
    • Roman, B.1    Adcock, B.2    Hansen, A.3
  • 68
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: iterative signal recovery from incomplete and inaccurate samples
    • Needell, D., Tropp, J.A., CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26:3 (2009), 301–321.
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 69
    • 85026854869 scopus 로고    scopus 로고
    • Case Western Reserve University Bearing Data Center <>.
    • Case Western Reserve University Bearing Data Center < http://csegroup.case.edu/bearingdatacenter/home>.
  • 70
    • 84937975641 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
    • Smith, Wade A., Randall, Robert B., Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64 (2015), 100–131.
    • (2015) Mech. Syst. Signal Process. , vol.64 , pp. 100-131
    • Smith, W.A.1    Randall, R.B.2
  • 71
    • 84947968205 scopus 로고    scopus 로고
    • Condition-based monitoring system for rolling element bearing using a generic multi-layer perceptron
    • de Almeida, L.F., Bizarria, J.W., Bizarria, F.C., Mathias, M.H., Condition-based monitoring system for rolling element bearing using a generic multi-layer perceptron. J. Vib. Control 21:16 (2015), 3456–3464.
    • (2015) J. Vib. Control , vol.21 , Issue.16 , pp. 3456-3464
    • de Almeida, L.F.1    Bizarria, J.W.2    Bizarria, F.C.3    Mathias, M.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.