메뉴 건너뛰기




Volumn 66, Issue 7, 2017, Pages 1693-1702

Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network

Author keywords

Bearings; Deep belief network (DBN); Fault diagnosis; Sensor fusion; Sparse autoencoder (SAE)

Indexed keywords

DATA FUSION; FAILURE ANALYSIS; FREQUENCY DOMAIN ANALYSIS; LEARNING SYSTEMS; MACHINERY; TIME DOMAIN ANALYSIS;

EID: 85016125628     PISSN: 00189456     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIM.2017.2669947     Document Type: Article
Times cited : (793)

References (25)
  • 1
    • 84918513007 scopus 로고    scopus 로고
    • Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression
    • Jan.
    • A. Soualhi, K. Medjaher, and N. Zerhouni, "Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression," IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 52-62, Jan. 2015.
    • (2015) IEEE Trans. Instrum. Meas. , vol.64 , Issue.1 , pp. 52-62
    • Soualhi, A.1    Medjaher, K.2    Zerhouni, N.3
  • 2
    • 84944356782 scopus 로고    scopus 로고
    • Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition
    • Sep.
    • D. Cabrera et al., "Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition," Frontiers Mech. Eng., vol. 10, no. 3, pp. 277-286, Sep. 2015.
    • (2015) Frontiers Mech. Eng. , vol.10 , Issue.3 , pp. 277-286
    • Cabrera, D.1
  • 3
    • 84908031632 scopus 로고    scopus 로고
    • Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks
    • Nov.
    • W. Li, A. Monti, and F. Ponci, "Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks," IEEE Trans. Instrum. Meas., vol. 63, no. 11, pp. 2651-2665, Nov. 2014.
    • (2014) IEEE Trans. Instrum. Meas. , vol.63 , Issue.11 , pp. 2651-2665
    • Li, W.1    Monti, A.2    Ponci, F.3
  • 4
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • Sep.
    • H. Shao et al., "Rolling bearing fault diagnosis using an optimization deep belief network," Meas. Sci. Technol., vol. 26, no. 11, pp. 115002-115018, Sep. 2015.
    • (2015) Meas. Sci. Technol. , vol.26 , Issue.11 , pp. 115002-115018
    • Shao, H.1
  • 5
    • 61549095815 scopus 로고    scopus 로고
    • Multisensor-based human detection and tracking for mobile service robots
    • Sep.
    • N. Bellotto and H. Hu, "Multisensor-based human detection and tracking for mobile service robots," IEEE Trans. Syst., Man, Cybern., Syst., vol. 39, no. 1, pp. 167-181, Sep. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern., Syst. , vol.39 , Issue.1 , pp. 167-181
    • Bellotto, N.1    Hu, H.2
  • 6
    • 85017091432 scopus 로고    scopus 로고
    • Multi-leapmotion sensor based demonstration for robotic refine tabletop object manipulation task
    • Jan.
    • H. Jin, Q. Chen, Z. Chen, Y. Hu, and J. Zhang, "Multi-leapmotion sensor based demonstration for robotic refine tabletop object manipulation task," CAAI Trans. Intell. Technol., vol. 1, no. 1, pp. 104-113, Jan. 2016.
    • (2016) CAAI Trans. Intell. Technol. , vol.1 , Issue.1 , pp. 104-113
    • Jin, H.1    Chen, Q.2    Chen, Z.3    Hu, Y.4    Zhang, J.5
  • 7
    • 84952311342 scopus 로고    scopus 로고
    • Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation
    • Dec.
    • Z. S. Wang et al., "Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation," Optik-Int. J. Light Electron Opt., vol. 126, no. 23, pp. 4184-4190, Dec. 2015.
    • (2015) Optik-Int. J. Light Electron Opt. , vol.126 , Issue.23 , pp. 4184-4190
    • Wang, Z.S.1
  • 8
    • 58049136406 scopus 로고    scopus 로고
    • Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques
    • Apr.
    • X. Liu, L. Ma, and J. Mathew, "Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques," Mech. Syst. Signal Process., vol. 23, no. 3, pp. 690-700, Apr. 2009.
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.3 , pp. 690-700
    • Liu, X.1    Ma, L.2    Mathew, J.3
  • 9
    • 84975229487 scopus 로고    scopus 로고
    • Fault diagnosis using a joint model based on sparse representation and SVM
    • Oct.
    • L. Ren, W. Lv, S. Jiang, and Y. Xiao, "Fault diagnosis using a joint model based on sparse representation and SVM," IEEE Trans. Instrum. Meas., vol. 65, no. 10, pp. 2313-2320, Oct. 2016.
    • (2016) IEEE Trans. Instrum. Meas. , vol.65 , Issue.10 , pp. 2313-2320
    • Ren, L.1    Lv, W.2    Jiang, S.3    Xiao, Y.4
  • 10
    • 84866490411 scopus 로고    scopus 로고
    • Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis
    • Oct.
    • L. Hou and N. W. Bergmann, "Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis," IEEE Trans. Instrum. Meas., vol. 61, no. 10, pp. 2787-2798, Oct. 2012.
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.10 , pp. 2787-2798
    • Hou, L.1    Bergmann, N.W.2
  • 11
    • 84979073626 scopus 로고    scopus 로고
    • Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition
    • Sep.
    • M. Haghighat, M. Abdel-Mottaleb, and W. Alhalabi, "Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition," IEEE Trans. Inf. Forensics Security, vol. 11, no. 9, pp. 1984-1996, Sep. 2016.
    • (2016) IEEE Trans. Inf. Forensics Security , vol.11 , Issue.9 , pp. 1984-1996
    • Haghighat, M.1    Abdel-Mottaleb, M.2    Alhalabi, W.3
  • 12
    • 84855465705 scopus 로고    scopus 로고
    • Fuel-type identification using joint probability density arbiter and soft-computing techniques
    • Feb.
    • L. Xu, C. Tan, X. Li, Y. Cheng, and X. Li, "Fuel-type identification using joint probability density arbiter and soft-computing techniques," IEEE Trans. Instrum. Meas., vol. 61, no. 2, pp. 286-296, Feb. 2012.
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.2 , pp. 286-296
    • Xu, L.1    Tan, C.2    Li, X.3    Cheng, Y.4    Li, X.5
  • 13
    • 85006371048 scopus 로고    scopus 로고
    • Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing
    • Jun. [Online]
    • J. Wang, J. Xie, R. Zhao, L. Zhang, and L. Duan, "Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing," Robot. Comput. Integr. Manuf., vol. 45, pp. 47-58, Jun. 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rcim.2016.05.010
    • (2017) Robot. Comput. Integr. Manuf. , vol.45 , pp. 47-58
    • Wang, J.1    Xie, J.2    Zhao, R.3    Zhang, L.4    Duan, L.5
  • 14
    • 78651086215 scopus 로고    scopus 로고
    • Graph-modified neighborhood preserving embedding based on feature fusion
    • Oct.
    • S. Guo and Q. Ruan, "Graph-modified neighborhood preserving embedding based on feature fusion," in Proc. IEEE 10th Int. Conf. Signal Process., Oct. 2010, pp. 1297-1300.
    • (2010) Proc. IEEE 10th Int. Conf. Signal Process. , pp. 1297-1300
    • Guo, S.1    Ruan, Q.2
  • 15
    • 73949142211 scopus 로고    scopus 로고
    • Feature fusion using locally linear embedding for classification
    • Jan.
    • B.-Y. Sun, X.-M. Zhang, J. Li, and X.-M. Mao, "Feature fusion using locally linear embedding for classification," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 163-168, Jan. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.1 , pp. 163-168
    • Sun, B.-Y.1    Zhang, X.-M.2    Li, J.3    Mao, X.-M.4
  • 16
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 17
    • 84964855691 scopus 로고    scopus 로고
    • A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    • Jul.
    • W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, "A sparse auto-encoder-based deep neural network approach for induction motor faults classification," Measurement, vol. 89, pp. 171-178, Jul. 2016.
    • (2016) Measurement , vol.89 , pp. 171-178
    • Sun, W.1    Shao, S.2    Zhao, R.3    Yan, R.4    Zhang, X.5    Chen, X.6
  • 18
    • 85023636747 scopus 로고    scopus 로고
    • Fault detection and classification by unsupervised feature extraction and dimensionality reduction
    • Jan.
    • P. Chopra and S. K. Yadav, "Fault detection and classification by unsupervised feature extraction and dimensionality reduction," Complex Intell. Syst., vol. 1, no. 1, pp. 25-33, Jan. 2015.
    • (2015) Complex Intell. Syst. , vol.1 , Issue.1 , pp. 25-33
    • Chopra, P.1    Yadav, S.K.2
  • 19
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • Dec.
    • F. Althobiani and A. Ball, "An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks," Expert Syst. Appl., vol. 41, no. 9, pp. 4113-4122, Dec. 2013.
    • (2013) Expert Syst. Appl. , vol.41 , Issue.9 , pp. 4113-4122
    • Althobiani, F.1    Ball, A.2
  • 20
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Jul.
    • P. Tamilselvan and P.Wang, "Failure diagnosis using deep belief learning based health state classification," Rel. Eng. Syst. Safety, vol. 115, pp. 124-135, Jul. 2013.
    • (2013) Rel. Eng. Syst. Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 21
    • 84980319980 scopus 로고    scopus 로고
    • Machine fault classification using deep belief network
    • Taipei, Taiwan, May
    • Z. Chen, X. Zeng, W. Li, and G. Liao, "Machine fault classification using deep belief network," in Proc. Int. Conf. Instrum. Meas. Technol., Taipei, Taiwan, May 2016, pp. 1-6.
    • (2016) Proc. Int. Conf. Instrum. Meas. Technol. , pp. 1-6
    • Chen, Z.1    Zeng, X.2    Li, W.3    Liao, G.4
  • 22
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 23
    • 84904687441 scopus 로고    scopus 로고
    • Sparse autoencoder
    • A. Ng, "Sparse autoencoder," CS294A Lect. Notes, vol. 72, pp. 1-19, 2011.
    • (2011) CS294A Lect. Notes , vol.72 , pp. 1-19
    • Ng, A.1
  • 24
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Nov.
    • L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Van der Maaten, L.1    Hinton, G.2
  • 25
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • G. Montavon et al., Eds. Berlin, Germany: Springer
    • G.E. Hinton, "A practical guide to training restricted boltzmann machines," in Neural Networks: Tricks of the Trade (Lecture Notes in Computer Science), vol. 7700, G. Montavon et al., Eds. Berlin, Germany: Springer, 2012, pp. 599-619.
    • (2012) Neural Networks: Tricks of the Trade (Lecture Notes in Computer Science) , vol.7700 , pp. 599-619
    • Hinton, G.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.