-
1
-
-
84887056149
-
Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
-
Jan
-
J. Lee, F. J. Wu, W. Y. Zhao, M. Ghaffari, L. X. Liao, and D. Siegel, "Prognostics and health management design for rotary machinery systems-reviews, methodology and applications, " Mech. Syst. Signal Process., vol. 42, nos. 1-2, pp. 314-334, Jan. 2014.
-
(2014)
Mech. Syst. Signal Process
, vol.42
, Issue.1-2
, pp. 314-334
-
-
Lee, J.1
Wu, F.J.2
Zhao, W.Y.3
Ghaffari, M.4
Liao, L.X.5
Siegel, D.6
-
2
-
-
84955715720
-
Particle filter-based prognostics: Review, discussion and perspectives
-
May
-
M. Jouin, R. Gouriveau, D. Hissel, M.-C. Péra, and N. Zerhouni, "Particle filter-based prognostics: Review, discussion and perspectives, " Mech. Syst. Signal Process., vols. 72-73, pp. 2-31, May 2016.
-
(2016)
Mech. Syst. Signal Process
, vol.72-73
, pp. 2-31
-
-
Jouin, M.1
Gouriveau, R.2
Hissel, D.3
Péra, M.-C.4
Zerhouni, N.5
-
3
-
-
84908430541
-
Practical options for selecting datadriven or physics-based prognostics algorithms with reviews
-
Jan
-
D. An, N. H. Kim, and J. H. Choi, "Practical options for selecting datadriven or physics-based prognostics algorithms with reviews, " Rel. Eng., Syst. Safety, vol. 133, pp. 223-236, Jan. 2015.
-
(2015)
Rel. Eng., Syst. Safety
, vol.133
, pp. 223-236
-
-
An, D.1
Kim, N.H.2
Choi, J.H.3
-
4
-
-
58049190180
-
Rotating machinery prognostics: State of the art, challenges and opportunities
-
A. Heng, S. Zhang, A. C. C. Tan, and J. Mathew, "Rotating machinery prognostics: State of the art, challenges and opportunities, " Mech. Syst. Signal Process., vol. 23, no. 3, pp. 724-739, 2009.
-
(2009)
Mech. Syst. Signal Process
, vol.23
, Issue.3
, pp. 724-739
-
-
Heng, A.1
Zhang, S.2
Tan, A.C.C.3
Mathew, J.4
-
5
-
-
63149182784
-
Residual life predictions in the absence of prior degradation knowledge
-
Mar
-
N. Gebraeel, A. Elwany, and J. Pan, "Residual life predictions in the absence of prior degradation knowledge, " IEEE Trans. Rel., vol. 58, no. 1, pp. 106-117, Mar. 2009.
-
(2009)
IEEE Trans. Rel
, vol.58
, Issue.1
, pp. 106-117
-
-
Gebraeel, N.1
Elwany, A.2
Pan, J.3
-
6
-
-
84943142930
-
Fault diagnosis of bearing running status using mutual information
-
M. Meng, L. Ruonan, H. Yushan, and C. Xuefeng, "Fault diagnosis of bearing running status using mutual information, " in Proc. Prognostics Syst. Health Manage. Conf. (PHM-Hunan), 2014, pp. 135-139.
-
(2014)
Proc. Prognostics Syst. Health Manage. Conf. (PHM-Hunan
, pp. 135-139
-
-
Meng, M.1
Ruonan, L.2
Yushan, H.3
Xuefeng, C.4
-
7
-
-
33644792723
-
Prognostics and health management of electronics
-
Mar
-
N. M. Vichare and M. G. Pecht, "Prognostics and health management of electronics, " IEEE Trans. Compon. Packag. Technol., vol. 29, no. 1, pp. 222-229, Mar. 2006.
-
(2006)
IEEE Trans. Compon. Packag. Technol
, vol.29
, Issue.1
, pp. 222-229
-
-
Vichare, N.M.1
Pecht, M.G.2
-
8
-
-
85019021465
-
Locally linear embedding on Grassmann manifold for performance degradation assessment of bearings
-
Jun
-
M. Ma, X. F. Chen, X. L. Zhang, B. Q. Ding, and S. B. Wang, "Locally linear embedding on Grassmann manifold for performance degradation assessment of bearings, " IEEE Trans. Rel., vol. 66, no. 2, pp. 467-477, Jun. 2017.
-
(2017)
IEEE Trans. Rel
, vol.66
, Issue.2
, pp. 467-477
-
-
Ma, M.1
Chen, X.F.2
Zhang, X.L.3
Ding, B.Q.4
Wang, S.B.5
-
9
-
-
79953899252
-
Prognostic modelling options for remaining useful life estimation by industry
-
Jul
-
J. Z. Sikorska, M. Hodkiewicz, and L. Ma, "Prognostic modelling options for remaining useful life estimation by industry, " Mech. Syst. Signal Process., vol. 25, no. 5, pp. 1803-1836, Jul. 2011.
-
(2011)
Mech. Syst. Signal Process
, vol.25
, Issue.5
, pp. 1803-1836
-
-
Sikorska, J.Z.1
Hodkiewicz, M.2
Ma, L.3
-
10
-
-
84860375483
-
Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
-
Jul
-
C. Hu, B. D. Youn, P. Wang, and J. T. Yoon, "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life, " Rel. Eng. Syst. Safety, vol. 103, pp. 120-135, Jul. 2012.
-
(2012)
Rel. Eng. Syst. Safety
, vol.103
, pp. 120-135
-
-
Hu, C.1
Youn, B.D.2
Wang, P.3
Yoon, J.T.4
-
11
-
-
33750051081
-
Sensory-updated residual life distributions for components with exponential degradation patterns
-
Oct
-
N. Gebraeel and N. Gebraeel, "Sensory-updated residual life distributions for components with exponential degradation patterns, " IEEE Trans. Autom. Sci. Eng., vol. 3, no. 4, pp. 382-393, Oct. 2006.
-
(2006)
IEEE Trans. Autom. Sci. Eng
, vol.3
, Issue.4
, pp. 382-393
-
-
Gebraeel, N.1
Gebraeel, N.2
-
12
-
-
84890506301
-
Matching demodulation transform and synchrosqueezing in time-frequency analysis
-
Jan
-
S. Wang, X. Chen, G. Cai, B. Chen, X. Li, and Z. He, "Matching demodulation transform and synchrosqueezing in time-frequency analysis, " IEEE Trans. Signal Process., vol. 62, no. 1, pp. 69-84, Jan. 2014.
-
(2014)
IEEE Trans. Signal Process
, vol.62
, Issue.1
, pp. 69-84
-
-
Wang, S.1
Chen, X.2
Cai, G.3
Chen, B.4
Li, X.5
He, Z.6
-
13
-
-
85001070140
-
Matching synchrosqueezing wavelet transform and application to aeroengine vibration monitoring
-
Feb
-
S. B. Wang, X. F. Chen, C. W. Tong, and Z. B. Zhao, "Matching synchrosqueezing wavelet transform and application to aeroengine vibration monitoring, " IEEE Trans. Instrum. Meas., vol. 66, no. 2, pp. 360-372, Feb. 2017.
-
(2017)
IEEE Trans. Instrum. Meas
, vol.66
, Issue.2
, pp. 360-372
-
-
Wang, S.B.1
Chen, X.F.2
Tong, C.W.3
Zhao, Z.B.4
-
14
-
-
84963799358
-
Markov nonlinear system estimation for engine performance tracking
-
Sep
-
P. Wang and R. X. Gao, "Markov nonlinear system estimation for engine performance tracking, " J. Eng. Gas Turbines Power-Trans., vol. 138, no. 9, Sep. 2016.
-
(2016)
J. Eng. Gas Turbines Power-Trans
, vol.138
, Issue.9
-
-
Wang, P.1
Gao, R.X.2
-
15
-
-
84941343835
-
Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis
-
Oct
-
Z. Du, X. Chen, H. Zhang, and R. Yan, "Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis, " IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6594-6605, Oct. 2015.
-
(2015)
IEEE Trans. Ind. Electron
, vol.62
, Issue.10
, pp. 6594-6605
-
-
Du, Z.1
Chen, X.2
Zhang, H.3
Yan, R.4
-
16
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
Jul
-
P. Tamilselvan and P. F. Wang, "Failure diagnosis using deep belief learning based health state classification, " Rel. Eng., Syst. Safety, vol. 115, pp. 124-135, Jul. 2013.
-
(2013)
Rel. Eng., Syst. Safety
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.F.2
-
17
-
-
84957801663
-
Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing
-
Apr
-
C. Sun, Z. S. Zhang, X. Luo, T. Guo, J. X. Qu, and B. Li, "Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing, " J. Sound Vibrat., vol. 368, pp. 249-263, Apr. 2016.
-
(2016)
J. Sound Vibrat
, vol.368
, pp. 249-263
-
-
Sun, C.1
Zhang, Z.S.2
Luo, X.3
Guo, T.4
Qu, J.X.5
Li, B.6
-
18
-
-
84876054877
-
Semisupervised distance-preserving selforganizing map for machine-defect detection and classification
-
May
-
W. Li, S. Zhang, and G. He, "Semisupervised distance-preserving selforganizing map for machine-defect detection and classification, " IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 869-879, May 2013.
-
(2013)
IEEE Trans. Instrum. Meas
, vol.62
, Issue.5
, pp. 869-879
-
-
Li, W.1
Zhang, S.2
He, G.3
-
19
-
-
85027227048
-
Sparse signal reconstruction based on time-frequency manifold for rolling element bearing fault signature enhancement
-
Feb
-
Q. B. He, H. Y. Song, and X. X. Ding, "Sparse signal reconstruction based on time-frequency manifold for rolling element bearing fault signature enhancement, " IEEE Trans. Instrum. Meas., vol. 65, no. 2, pp. 482-491, Feb. 2016.
-
(2016)
IEEE Trans. Instrum. Meas
, vol.65
, Issue.2
, pp. 482-491
-
-
He, Q.B.1
Song, H.Y.2
Ding, X.X.3
-
20
-
-
84963934380
-
A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics
-
May
-
M. Kang, M. R. Islam, J. Kim, J. M. Kim, and M. Pecht, "A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics, " IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3299-3310, May 2016.
-
(2016)
IEEE Trans. Ind. Electron
, vol.63
, Issue.5
, pp. 3299-3310
-
-
Kang, M.1
Islam, M.R.2
Kim, J.3
Kim, J.M.4
Pecht, M.5
-
21
-
-
77958488310
-
Deep machine learning-A new Frontier in artificial intelligence research
-
Nov
-
I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning-A new Frontier in artificial intelligence research, " IEEE Comput. Intell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.
-
(2010)
IEEE Comput. Intell. Mag
, vol.5
, Issue.4
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
22
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
May
-
F. Jia, Y. G. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, " Mech. Syst. Signal Process., vols. 72-73, pp. 303-315, May 2016.
-
(2016)
Mech. Syst. Signal Process
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.G.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
23
-
-
85010504049
-
Learning features from vibration signals for induction motor fault diagnosis
-
Aug
-
S. Shao, W. Sun, P. Wang, R. X. Gao, and R. Yan, "Learning features from vibration signals for induction motor fault diagnosis, " in Proc. IEEE Int. Symp. Flexible Autom. (ISFA), Aug. 2016, pp. 71-76.
-
(2016)
Proc IEEE Int. Symp. Flexible Autom. (ISFA
, pp. 71-76
-
-
Shao, S.1
Sun, W.2
Wang, P.3
Gao, R.X.4
Yan, R.5
-
24
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
25
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
26
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Jan
-
J. Schmidhuber, "Deep learning in neural networks: An overview, " Neural Netw., vol. 61, pp. 85-117, Jan. 2015.
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
27
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov
-
G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, " IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
28
-
-
79958842816
-
Discriminative deep belief networks for visual data classification
-
Oct-Nov
-
Y. Liu, S. S. Zhou, and Q. C. Chen, "Discriminative deep belief networks for visual data classification, " Pattern Recognit., vol. 44, nos. 10-11, pp. 2287-2296, Oct-Nov. 2011.
-
(2011)
Pattern Recognit
, vol.44
, Issue.10-11
, pp. 2287-2296
-
-
Liu, Y.1
Zhou, S.S.2
Chen, Q.C.3
-
29
-
-
84920116176
-
Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis
-
May
-
M. Kang, J. Kim, J.-M. Kim, A. C. C. Tan, E. Y. Kim, and B.-K. Choi, "Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis, " IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2786-2797, May 2015.
-
(2015)
IEEE Trans. Power Electron
, vol.30
, Issue.5
, pp. 2786-2797
-
-
Kang, M.1
Kim, J.2
Kim, J.-M.3
Tan, A.C.C.4
Kim, E.Y.5
Choi, B.-K.6
-
30
-
-
79551685695
-
Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
-
W. Shen, X. Guo, C. Wu, and D. Wu, "Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm, " Knowl.-Based Syst., vol. 24, no. 3, pp. 378-385, 2011.
-
(2011)
Knowl.-Based Syst
, vol.24
, Issue.3
, pp. 378-385
-
-
Shen, W.1
Guo, X.2
Wu, C.3
Wu, D.4
-
31
-
-
84946064662
-
Rolling bearing fault diagnosis using an optimization deep belief network
-
Nov
-
H. D. Shao, H. K. Jiang, X. Zhang, and M. G. Niu, "Rolling bearing fault diagnosis using an optimization deep belief network, " Meas. Sci. Technol., vol. 26, no. 11, p. 115002, Nov. 2015.
-
(2015)
Meas. Sci. Technol
, vol.26
, Issue.11
, pp. 115002
-
-
Shao, H.D.1
Jiang, H.K.2
Zhang, X.3
Niu, M.G.4
-
32
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Dec
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn. Res., vol. 11, no. 12, pp. 3371-3408, Dec. 2010.
-
(2010)
J. Mach. Learn. Res
, vol.11
, Issue.12
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
33
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
34
-
-
78650195131
-
An ACO-based algorithm for parameter optimization of support vector machines
-
Sep
-
X. L. Zhang, X. F. Chen, and Z. J. He, "An ACO-based algorithm for parameter optimization of support vector machines, " Expert Syst. Appl., vol. 37, no. 9, pp. 6618-6628, Sep. 2010.
-
(2010)
Expert Syst. Appl
, vol.37
, Issue.9
, pp. 6618-6628
-
-
Zhang, X.L.1
Chen, X.F.2
He, Z.J.3
-
35
-
-
2942659638
-
Residual life, predictions from vibration-based degradation signals: A neural network approach
-
Jun
-
N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran, "Residual life, predictions from vibration-based degradation signals: A neural network approach, " IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 694-700, Jun. 2004.
-
(2004)
IEEE Trans. Ind. Electron
, vol.51
, Issue.3
, pp. 694-700
-
-
Gebraeel, N.1
Lawley, M.2
Liu, R.3
Parmeshwaran, V.4
-
36
-
-
58449121109
-
Damage propagation modeling for aircraft engine run-To-failure simulation
-
A. Saxena, K. Goebel, D. Simon, and N. Eklund, "Damage propagation modeling for aircraft engine run-To-failure simulation, " in Proc. Int. Conf. Prognostics Health Manage. (PHM), 2008, pp. 1-9.
-
(2008)
Proc. Int. Conf. Prognostics Health Manage. (PHM
, pp. 1-9
-
-
Saxena, A.1
Goebel, K.2
Simon, D.3
Eklund, N.4
-
37
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks, " in Proc. Adv. Neural Inf. Process. Syst., vol. 19. 2007, pp. 153-160.
-
(2007)
Proc. Adv. Neural Inf. Process. Syst
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
|