메뉴 건너뛰기




Volumn 2016, Issue , 2016, Pages

Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion

Author keywords

[No Author keywords available]

Indexed keywords

BEARINGS (MACHINE PARTS); FAILURE ANALYSIS; ROLLER BEARINGS; TIME DOMAIN ANALYSIS;

EID: 84988735586     PISSN: 10709622     EISSN: None     Source Type: Journal    
DOI: 10.1155/2016/9306205     Document Type: Article
Times cited : (119)

References (26)
  • 1
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • Y. Yang, D. Yu, and J. Cheng, "A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM," Measurement, vol. 40, no. 9-10, pp. 943-950, 2007
    • (2007) Measurement , vol.40 , Issue.9-10 , pp. 943-950
    • Yang, Y.1    Yu, D.2    Cheng, J.3
  • 2
    • 77951207585 scopus 로고    scopus 로고
    • Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference
    • L. Zhang, G. Xiong, H. Liu, H. Zou, and W. Guo, "Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference," Expert Systems with Applications, vol. 37, no. 8, pp. 6077-6085, 2010
    • (2010) Expert Systems with Applications , vol.37 , Issue.8 , pp. 6077-6085
    • Zhang, L.1    Xiong, G.2    Liu, H.3    Zou, H.4    Guo, W.5
  • 3
    • 84925964775 scopus 로고    scopus 로고
    • A summary of fault modelling and predictive health monitoring of rolling element bearings
    • I. El-Thalji and E. Jantunen, "A summary of fault modelling and predictive health monitoring of rolling element bearings," Mechanical Systems and Signal Processing, vol. 60-61, pp. 252-272, 2015
    • (2015) Mechanical Systems and Signal Processing , vol.60-61 , pp. 252-272
    • El-Thalji, I.1    Jantunen, E.2
  • 4
    • 84874155970 scopus 로고    scopus 로고
    • Basic research on machinery fault diagnosis-what is the prescription
    • G. Wang, Z. He, X. Chen, and Y. Lai, "Basic research on machinery fault diagnosis-what is the prescription," Journal of Mechanical Engineering, vol. 49, no. 1, pp. 63-72, 2013
    • (2013) Journal of Mechanical Engineering , vol.49 , Issue.1 , pp. 63-72
    • Wang, G.1    He, Z.2    Chen, X.3    Lai, Y.4
  • 5
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • R. Yan, R. X. Gao, and X. Chen, "Wavelets for fault diagnosis of rotary machines: a review with applications," Signal Processing, vol. 96, pp. 1-15, 2014
    • (2014) Signal Processing , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 6
    • 84907486966 scopus 로고    scopus 로고
    • Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
    • J. Ben Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, and F. Fnaiech, "Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals," Applied Acoustics, vol. 89, no. 3, pp. 16-27, 2015
    • (2015) Applied Acoustics , vol.89 , Issue.3 , pp. 16-27
    • Ben Ali, J.1    Fnaiech, N.2    Saidi, L.3    Chebel-Morello, B.4    Fnaiech, F.5
  • 7
    • 84927621097 scopus 로고    scopus 로고
    • Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm
    • D. Yang, Y. Liu, S. Li, X. Li, and L. Ma, "Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm," Mechanism and MachineTheory, vol. 90, pp. 219-229, 2015
    • (2015) Mechanism and MachineTheory , vol.90 , pp. 219-229
    • Yang, D.1    Liu, Y.2    Li, S.3    Li, X.4    Ma, L.5
  • 8
    • 84876401752 scopus 로고    scopus 로고
    • Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing
    • A. Moosavian, H. Ahmadi, A. Tabatabaeefar, and M. Khazaee, "Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing," Shock and Vibration, vol. 20, no. 2, pp. 263-272, 2013
    • (2013) Shock and Vibration , vol.20 , Issue.2 , pp. 263-272
    • Moosavian, A.1    Ahmadi, H.2    Tabatabaeefar, A.3    Khazaee, M.4
  • 9
    • 84949591577 scopus 로고    scopus 로고
    • Bearing diagnosis using proximity probe and accelerometer
    • P. Shakya, A. K. Darpe, and M. S. Kulkarni, "Bearing diagnosis using proximity probe and accelerometer," Measurement, vol. 80, pp. 190-200, 2016
    • (2016) Measurement , vol.80 , pp. 190-200
    • Shakya, P.1    Darpe, A.K.2    Kulkarni, M.S.3
  • 10
    • 84887493381 scopus 로고    scopus 로고
    • Usingmulti-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
    • M. S. Safizadeh and S. K. Latifi, "Usingmulti-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell," Information Fusion, vol. 18, no. 1, pp. 1-8, 2014
    • (2014) Information Fusion , vol.18 , Issue.1 , pp. 1-8
    • Safizadeh, M.S.1    Latifi, S.K.2
  • 11
    • 79961197072 scopus 로고    scopus 로고
    • Fault diagnosis method based on multi-sensors installed on the base and KPCA
    • X. Li, D. Yang, D. Guo, and L. Jiang, "Fault diagnosis method based on multi-sensors installed on the base and KPCA," Chinese Journal of Scientific Instrument, vol. 32, no. 7, pp. 1551-1557, 2011
    • (2011) Chinese Journal of Scientific Instrument , vol.32 , Issue.7 , pp. 1551-1557
    • Li, X.1    Yang, D.2    Guo, D.3    Jiang, L.4
  • 12
    • 33751094343 scopus 로고    scopus 로고
    • Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis
    • M. Dong and D. He, "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, vol. 178, no. 3, pp. 858-878, 2007
    • (2007) European Journal of Operational Research , vol.178 , Issue.3 , pp. 858-878
    • Dong, M.1    He, D.2
  • 13
    • 84865606945 scopus 로고    scopus 로고
    • Multi-sensor data fusion using support vector machine for motor fault detection
    • T. P. Banerjee and S. Das, "Multi-sensor data fusion using support vector machine for motor fault detection," Information Sciences, vol. 217, no. 24, pp. 96-107, 2012
    • (2012) Information Sciences , vol.217 , Issue.24 , pp. 96-107
    • Banerjee, T.P.1    Das, S.2
  • 14
    • 79952061691 scopus 로고    scopus 로고
    • Gear fault diagnosis based on SVMandmulti-sensor information fusion
    • L.-L. Jiang, Y.-L. Liu, X.-J. Li, and A.-H. Chen, "Gear fault diagnosis based on SVMandmulti-sensor information fusion," Journal of Central South University, vol. 41, no. 6, pp. 2184-2188, 2010
    • (2010) Journal of Central South University , vol.41 , Issue.6 , pp. 2184-2188
    • Jiang, L.-L.1    Liu, Y.-L.2    Li, X.-J.3    Chen, A.-H.4
  • 15
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: an overview," Neural Networks, vol. 61, pp. 85-117, 2015
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 21
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • H. Shao, H. Jiang, X. Zhang, and M. Niu, "Rolling bearing fault diagnosis using an optimization deep belief network," Measurement Science and Technology, vol. 26, no. 11, Article ID 115002, 2015
    • (2015) Measurement Science and Technology , vol.26 , Issue.11
    • Shao, H.1    Jiang, H.2    Zhang, X.3    Niu, M.4
  • 22
    • 84875848937 scopus 로고    scopus 로고
    • Deep belief network based state classification for structural health diagnosis
    • P. Tamilselvan, Y. Wang, and P. Wang, "Deep belief network based state classification for structural health diagnosis," Reliability Engineering and System Safety, vol. 115, no. 3, pp. 124-135, 2013
    • (2013) Reliability Engineering and System Safety , vol.115 , Issue.3 , pp. 124-135
    • Tamilselvan, P.1    Wang, Y.2    Wang, P.3
  • 23
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • M. Gan, C. Wang, and C. Zhu, "Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings," Mechanical Systems and Signal Processing, vol. 72-73, pp. 92-104, 2016
    • (2016) Mechanical Systems and Signal Processing , vol.72-73 , pp. 92-104
    • Gan, M.1    Wang, C.2    Zhu, C.3
  • 24
    • 84949999884 scopus 로고    scopus 로고
    • A deep learning-basedmethod for machinery health monitoring with big data
    • Y. Lei, F. Jia, X. Zhou, and J. Lin, "A deep learning-basedmethod for machinery health monitoring with big data," Journal of Mechanical Engineering, vol. 51, no. 21, pp. 49-56, 2015
    • (2015) Journal of Mechanical Engineering , vol.51 , Issue.21 , pp. 49-56
    • Lei, Y.1    Jia, F.2    Zhou, X.3    Lin, J.4
  • 25
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • V. T. Tran, F. Althobiani, and A. Ball, "An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks," Expert Systems with Applications, vol. 41, no. 9, pp. 4113-4122, 2014
    • (2014) Expert Systems with Applications , vol.41 , Issue.9 , pp. 4113-4122
    • Tran, V.T.1    Althobiani, F.2    Ball, A.3
  • 26
    • 84922253190 scopus 로고    scopus 로고
    • Calculation fordepthof deep belief network
    • G.-Y. Pan,W. Chai, and J.-F. Qiao, "Calculation fordepthof deep belief network," Control and Decision, vol. 30,no. 2, pp. 256-260, 2015.
    • (2015) Control and Decision , vol.30 , Issue.2 , pp. 256-260
    • Pan, G.-Y.1    Chai, W.2    Qiao, J.-F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.