-
1
-
-
78049530550
-
The security of machine learning
-
M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar. The security of machine learning. Machine Learning, 81(2):121-148, 2010
-
(2010)
Machine Learning
, vol.81
, Issue.2
, pp. 121-148
-
-
Barreno, M.1
Nelson, B.2
Joseph, A.D.3
Tygar, J.4
-
2
-
-
33845989821
-
Can machine learning be secure
-
ACM
-
M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine learning be secure? In Proceedings of the 2006 ACM Symposium on Information, computer and communications security, pages 16-25. ACM, 2006
-
(2006)
Proceedings of the 2006 ACMSymposium on Information, Computer and Communications Security
, pp. 16-25
-
-
Barreno, M.1
Nelson, B.2
Sears, R.3
Joseph, A.D.4
Tygar, J.D.5
-
4
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
Austin, TX
-
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for scientific computing conference (SciPy), volume 4, page 3. Austin, TX, 2010
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy
, vol.4
, pp. 3
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
5
-
-
84886493283
-
Evasion attacks against machine learning at test time
-
Springer
-
B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndíc, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against machine learning at test time. In Machine Learning and Knowledge Discovery in Databases, pages 387-402. Springer, 2013
-
(2013)
Machine Learning and Knowledge Discovery in Databases
, pp. 387-402
-
-
Biggio, B.1
Corona, I.2
Maiorca, D.3
Nelson, B.4
Šrndíc, N.5
Laskov, P.6
Giacinto, G.7
Roli, F.8
-
6
-
-
84988423255
-
Pattern recognition systems under attack: Design issues and research challenges
-
B. Biggio, G. Fumera, and F. Roli. Pattern recognition systems under attack: Design issues and research challenges. International Journal of Pattern Recognition and Artificial Intelligence, 28(07):1460002, 2014
-
(2014)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.28
, Issue.7
, pp. 1460002
-
-
Biggio, B.1
Fumera, G.2
Roli, F.3
-
7
-
-
84992268362
-
Security evaluation of pattern classifiers under attack
-
B. Biggio, G. Fumera, and F. Roli. Security evaluation of pattern classifiers under attack. IEEE Transactions on Knowledge and Data Engineering, 26(4):984-996, 2014
-
(2014)
IEEE Transactions on Knowledge and Data Engineering
, vol.26
, Issue.4
, pp. 984-996
-
-
Biggio, B.1
Fumera, G.2
Roli, F.3
-
8
-
-
84867112504
-
Support vector machines under adversarial label noise
-
B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise. In ACML, pages 97-112, 2011
-
(2011)
ACML
, pp. 97-112
-
-
Biggio, B.1
Nelson, B.2
Laskov, P.3
-
10
-
-
84937712787
-
Poisoning behavioral malware clustering
-
ACM
-
B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto, and F. Roli. Poisoning behavioral malware clustering. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop, pages 27-36. ACM, 2014
-
(2014)
Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop
, pp. 27-36
-
-
Biggio, B.1
Rieck, K.2
Ariu, D.3
Wressnegger, C.4
Corona, I.5
Giacinto, G.6
Roli, F.7
-
11
-
-
84861776914
-
Multi-column deep neural network for traffic sign classification
-
D. Cirešan, U. Meier, J. Masci, et al. Multi-column deep neural network for traffic sign classification. Neural Networks, 32:333-338, 2012
-
(2012)
Neural Networks
, vol.32
, pp. 333-338
-
-
Cirešan, D.1
Meier, U.2
Masci, J.3
-
13
-
-
84890516914
-
Large-scale malware classification using random projections and neural networks
-
IEEE
-
G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale malware classification using random projections and neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3422-3426. IEEE, 2013
-
(2013)
2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
, pp. 3422-3426
-
-
Dahl, G.E.1
Stokes, J.W.2
Deng, L.3
Yu, D.4
-
14
-
-
84055222005
-
Context-dependent pre-Trained deep neural networks for large-vocabulary speech recognition
-
G. E. Dahl, D. Yu, et al. Context-dependent pre-Trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 20(1):30-42, 2012
-
(2012)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
-
16
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672-2680, 2014
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
-
19
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
20
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, et al. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359-366, 1989
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
-
21
-
-
80955143573
-
Adversarial machine learning
-
ACM
-
L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar. Adversarial machine learning. In Proceedings of the 4th ACM workshop on security and artificial intelligence, pages 43-58. ACM, 2011
-
(2011)
Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence
, pp. 43-58
-
-
Huang, L.1
Joseph, A.D.2
Nelson, B.3
Rubinstein, B.I.4
Tygar, J.5
-
25
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep neural networks. The Journal of Machine Learning Research, 10:1-40, 2009
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
26
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
-
28
-
-
84978028335
-
-
LISA lab. http://deeplearning.net/tutorial/lenet.html, 2010
-
(2010)
LISA Lab
-
-
-
34
-
-
84917742909
-
-
arXiv preprint arXiv
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014
-
(2014)
Going Deeper with Convolutions
, vol.4842
, pp. 1409
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
35
-
-
85083953343
-
Intriguing properties of neural networks
-
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. In Proceedings of the 2014 International Conference on Learning Representations. Computational and Biological Learning Society, 2014
-
(2014)
Proceedings of the 2014 International Conference on Learning Representations. Computational and Biological Learning Society
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
37
-
-
84937508363
-
How transferable are features in deep neural networks
-
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems, pages 3320-3328, 2014
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
|