메뉴 건너뛰기




Volumn 377, Issue , 2016, Pages 331-345

Convolutional Neural Network Based Fault Detection for Rotating Machinery

Author keywords

Condition monitoring; Convolutional neural network; Fault detection; Feature learning; Machine learning; Vibration analysis

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONDITION MONITORING; CONVOLUTION; DECISION TREES; ENGINEERING EDUCATION; FEATURE EXTRACTION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MACHINERY; NEURAL NETWORKS; ROTATING MACHINERY; VIBRATION ANALYSIS;

EID: 84973470244     PISSN: 0022460X     EISSN: 10958568     Source Type: Journal    
DOI: 10.1016/j.jsv.2016.05.027     Document Type: Article
Times cited : (1100)

References (38)
  • 2
    • 84904565651 scopus 로고    scopus 로고
    • An overview of bearing vibration analysis
    • [2] Lacey, J., An overview of bearing vibration analysis. Maintenance & asset management 23:6 (2008), 32–42.
    • (2008) Maintenance & asset management , vol.23 , Issue.6 , pp. 32-42
    • Lacey, J.1
  • 3
    • 84937975641 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics using the case western reserve university data: a benchmark study
    • [3] Smith, W.A., Randall, R.B., Rolling element bearing diagnostics using the case western reserve university data: a benchmark study. Mechanical Systems and Signal Processing 64-65 (2015), 100–131.
    • (2015) Mechanical Systems and Signal Processing , vol.64-65 , pp. 100-131
    • Smith, W.A.1    Randall, R.B.2
  • 4
    • 77955655247 scopus 로고    scopus 로고
    • Detection of lubrication starved bearings in electrical motors by means of vibration analysis
    • [4] Boškoski, P., Petrovčič, J., Musizza, B., Juričić, Dani, Detection of lubrication starved bearings in electrical motors by means of vibration analysis. Tribology International 43:9 (2010), 1683–1692.
    • (2010) Tribology International , vol.43 , Issue.9 , pp. 1683-1692
    • Boškoski, P.1    Petrovčič, J.2    Musizza, B.3    Juričić, D.4
  • 5
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [5] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 6
    • 84988719656 scopus 로고    scopus 로고
    • The use of orbitals and full spectra to identify misalignment
    • in: IMAC XXXII, Proceedings, Springer International Publishing
    • [6] M. Monte, F. Verbelen, B. Vervisch, The use of orbitals and full spectra to identify misalignment, in: IMAC XXXII, Proceedings, Springer International Publishing, 2014, pp. 215–222.
    • (2014) , pp. 215-222
    • Monte, M.1    Verbelen, F.2    Vervisch, B.3
  • 7
    • 84858168682 scopus 로고    scopus 로고
    • Rolling element bearing analysis
    • [7] Graney, B.P., Starry, K., Rolling element bearing analysis. Materials Evaluation 70:1 (2012), 78–85.
    • (2012) Materials Evaluation , vol.70 , Issue.1 , pp. 78-85
    • Graney, B.P.1    Starry, K.2
  • 8
    • 0031674597 scopus 로고    scopus 로고
    • Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition
    • [8] Heng, R., Nor, M., Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition. Applied Acoustics 53:1–3 (1998), 211–226.
    • (1998) Applied Acoustics , vol.53 , Issue.1-3 , pp. 211-226
    • Heng, R.1    Nor, M.2
  • 9
    • 84903774422 scopus 로고    scopus 로고
    • Vibration and acoustic emission measurements evaluating the separation of the balls and raceways with lubricating film in a linear bearing under grease lubrication
    • Journal of Tribology 135 (4).
    • [9] H. Ohta, Y. Nakajima, S. Kato, H. Tajimi, Vibration and acoustic emission measurements evaluating the separation of the balls and raceways with lubricating film in a linear bearing under grease lubrication, Journal of Tribology 135 (4).
    • Ohta, H.1    Nakajima, Y.2    Kato, S.3    Tajimi, H.4
  • 10
    • 84903219942 scopus 로고    scopus 로고
    • A data mining approach for fault diagnosis: an application of anomaly detection algorithm
    • [10] Purarjomandlangrudi, A., Ghapanchi, A.H., Esmalifalak, M., A data mining approach for fault diagnosis: an application of anomaly detection algorithm. Measurement 55 (2014), 343–352.
    • (2014) Measurement , vol.55 , pp. 343-352
    • Purarjomandlangrudi, A.1    Ghapanchi, A.H.2    Esmalifalak, M.3
  • 11
    • 77957886543 scopus 로고    scopus 로고
    • Data-driven approaches in health condition monitoring – a comparative study
    • in: 8th IEEE International Conference on Control and Automation (ICCA)
    • [11] O. Geramifard, J. Xu, C. Pang, J. Zhou, X. Li, Data-driven approaches in health condition monitoring – a comparative study, in: 8th IEEE International Conference on Control and Automation (ICCA), 2010, pp. 1618–1622.
    • (2010) , pp. 1618-1622
    • Geramifard, O.1    Xu, J.2    Pang, C.3    Zhou, J.4    Li, X.5
  • 12
    • 78650490727 scopus 로고    scopus 로고
    • A probabilistic description scheme for rotating machinery health evaluation
    • [12] Miao, Q., Wang, D., Pecht, M., A probabilistic description scheme for rotating machinery health evaluation. Journal of Mechanical Science and Technology 24:12 (2010), 2421–2430.
    • (2010) Journal of Mechanical Science and Technology , vol.24 , Issue.12 , pp. 2421-2430
    • Miao, Q.1    Wang, D.2    Pecht, M.3
  • 13
    • 84878881315 scopus 로고    scopus 로고
    • Modeling and prediction of gearbox faults with data-mining algorithms
    • [13] Verma, A., Zhang, Z., Kusiak, A., Modeling and prediction of gearbox faults with data-mining algorithms. Journal of Solar Energy Engineering 135:3 (2013), 1–11.
    • (2013) Journal of Solar Energy Engineering , vol.135 , Issue.3 , pp. 1-11
    • Verma, A.1    Zhang, Z.2    Kusiak, A.3
  • 15
    • 84907486966 scopus 로고    scopus 로고
    • Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
    • [15] Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B., Fnaiech, F., Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Applied Acoustics 89 (2015), 16–27.
    • (2015) Applied Acoustics , vol.89 , pp. 16-27
    • Ali, J.B.1    Fnaiech, N.2    Saidi, L.3    Chebel-Morello, B.4    Fnaiech, F.5
  • 16
    • 78049528234 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using machine learning methods
    • [16] Kankar, P., Sharma, S.C., Harsha, S., Fault diagnosis of ball bearings using machine learning methods. Expert Systems with Applications 38:3 (2011), 1876–1886.
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 1876-1886
    • Kankar, P.1    Sharma, S.C.2    Harsha, S.3
  • 17
    • 84976898934 scopus 로고    scopus 로고
    • The hidden dangers of lubricant starvation, Online, 〈〉2012.
    • [17] J. Fitch, The hidden dangers of lubricant starvation, Online, 〈 http://www.machinerylubrication.com/Read/29040/lubricant-starvation-dangers〉2012.
    • Fitch, J.1
  • 18
    • 84946065766 scopus 로고    scopus 로고
    • Detection of coupling misalignment by extended orbits
    • in: Experimental Techniques, Rotating Machinery, and Acoustics
    • [18] M. Monte, F. Verbelen, B. Vervisch, Detection of coupling misalignment by extended orbits, in: Experimental Techniques, Rotating Machinery, and Acoustics, Volume 8, Springer, 2015, pp. 243–250.
    • (2015) , vol.8 , pp. 243-250
    • Monte, M.1    Verbelen, F.2    Vervisch, B.3
  • 19
    • 33750383209 scopus 로고    scopus 로고
    • K -svd: an algorithm for designing overcomplete dictionaries for sparse representation
    • [19] Aharon, M., Elad, M., Bruckstein, A., K -svd: an algorithm for designing overcomplete dictionaries for sparse representation. Signal Processing, IEEE Transactions on 54:11 (2006), 4311–4322.
    • (2006) Signal Processing, IEEE Transactions on , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 20
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM
    • [20] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, 2009, pp. 689–696.
    • (2009) , pp. 689-696
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 21
    • 84861312883 scopus 로고    scopus 로고
    • Greedy sparsity-constrained optimization
    • in: Signals, Systems and Computers (ASILOMAR), Conference Record of the Forty Fifth Asilomar Conference on, 2011
    • [21] S. Bahmani, P. Boufounos, B. Raj, Greedy sparsity-constrained optimization, in: Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on, 2011, pp. 1148–1152.
    • (2011) , pp. 1148-1152
    • Bahmani, S.1    Boufounos, P.2    Raj, B.3
  • 23
    • 85043716150 scopus 로고    scopus 로고
    • Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory
    • [23] Wang, C., Gan, M., Zhu, C., Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory. Journal of Intelligent Manufacturing, 2015, 1–15.
    • (2015) Journal of Intelligent Manufacturing , pp. 1-15
    • Wang, C.1    Gan, M.2    Zhu, C.3
  • 24
    • 84928051223 scopus 로고    scopus 로고
    • Impulse feature extraction method for machinery fault detection using fusion sparse coding and online dictionary learning
    • [24] Deng, S., Jing, B., Sheng, S., Huang, Y., Zhou, H., Impulse feature extraction method for machinery fault detection using fusion sparse coding and online dictionary learning. Chinese Journal of Aeronautics 28:2 (2015), 488–498.
    • (2015) Chinese Journal of Aeronautics , vol.28 , Issue.2 , pp. 488-498
    • Deng, S.1    Jing, B.2    Sheng, S.3    Huang, Y.4    Zhou, H.5
  • 25
    • 84888870402 scopus 로고    scopus 로고
    • Intelligent condition based monitoring of rotating machines using sparse auto-encoders
    • in: IEEE Conference on Prognostics and Health Management (PHM)
    • [25] N. Verma, V. Gupta, M. Sharma, R. Sevakula, Intelligent condition based monitoring of rotating machines using sparse auto-encoders, in: IEEE Conference on Prognostics and Health Management (PHM), 2013, pp. 1–7.
    • (2013) , pp. 1-7
    • Verma, N.1    Gupta, V.2    Sharma, M.3    Sevakula, R.4
  • 26
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • [26] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proceedings of the IEEE 86:11 (1998), 2278–2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • in: Advances in neural information processing systems
    • [27] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, 2012, pp. 1097–1105.
    • (2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 84936124348 scopus 로고    scopus 로고
    • Rotation-invariant convolutional neural networks for galaxy morphology prediction
    • [30] Dieleman, S., Willett, K.W., Dambre, J., Rotation-invariant convolutional neural networks for galaxy morphology prediction. Monthly Notices of the Royal Astronomical Society 450:2 (2015), 1441–1459.
    • (2015) Monthly Notices of the Royal Astronomical Society , vol.450 , Issue.2 , pp. 1441-1459
    • Dieleman, S.1    Willett, K.W.2    Dambre, J.3
  • 31
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox fault identification and classification with convolutional neural networks
    • Shock and Vibration, (2015) 10
    • [31] Z. Chen, C. Li, R.-V. Sanchez, Gearbox fault identification and classification with convolutional neural networks, Shock and Vibration, 2015 (2015) 10.
    • (2015)
    • Chen, Z.1    Li, C.2    Sanchez, R.-V.3
  • 32
    • 84976889801 scopus 로고    scopus 로고
    • SKF, Spherical roller bearings, Online October
    • [32] SKF, Spherical roller bearings, Online October 2009.
    • (2009)
  • 33
    • 84976868223 scopus 로고    scopus 로고
    • Schaeffler, Fag split plummer block housings of series snv, Online
    • [33] Schaeffler, Fag split plummer block housings of series snv, Online 2015.
    • (2015)
  • 35
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • [35] Breiman, L., Bagging predictors. Machine Learning 24:2 (1996), 123–140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 36
    • 84962910954 scopus 로고    scopus 로고
    • Hyperspectral image classification with convolutional neural networks
    • in: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, MM׳15
    • [36] V. Slavkovikj, S. Verstockt, W. De Neve, S. Van Hoecke, R. Van de Walle, Hyperspectral image classification with convolutional neural networks, in: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, MM׳15, 2015, pp. 1159–1162.
    • (2015) , pp. 1159-1162
    • Slavkovikj, V.1    Verstockt, S.2    De Neve, W.3    Van Hoecke, S.4    Van de Walle, R.5
  • 37
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • in: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
    • [37] I. Sutskever, J. Martens, G.E. Dahl, G.E. Hinton, On the importance of initialization and momentum in deep learning, in: Proceedings of the 30th International Conference on Machine Learning (ICML-13), Vol. 28, 2013, pp. 1139–1147.
    • (2013) , vol.28 , pp. 1139-1147
    • Sutskever, I.1    Martens, J.2    Dahl, G.E.3    Hinton, G.E.4
  • 38
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • in: Computer VisionECCV 2014, Lecture Notes in Computer Science, Springer International Publishing
    • [38] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: Computer VisionECCV 2014, Lecture Notes in Computer Science, Springer International Publishing, 2014, pp. 818–833.
    • (2014) , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.