메뉴 건너뛰기




Volumn , Issue , 2015, Pages 440-447

On accurate and reliable anomaly detection for gas turbine combustors: A deep learning approach

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHEMICAL DETECTION; DEEP LEARNING; FAULT DETECTION; FEATURE EXTRACTION; GAS TURBINES; GASES; HEALTH; LEARNING ALGORITHMS; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; SPEECH RECOGNITION; SYSTEMS ENGINEERING;

EID: 85016121433     PISSN: 23250178     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (93)

References (40)
  • 2
    • 84927593976 scopus 로고    scopus 로고
    • Graph-based anomaly detection and description: A survey
    • 2014. arXiv:1404.4679
    • Akoglu, L. Tong, H.H and Koutra, D. (2014). Graph-based anomaly detection and description: A survey, Data Mining and Knowledge Discovery, 28(4), 2014. arXiv:1404.4679
    • (2014) Data Mining and Knowledge Discovery , vol.28 , Issue.4
    • Akoglu, L.1    Tong, H.H.2    Koutra, D.3
  • 4
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learnibg - A new frontier in artificial intelligence research
    • Arel, I., Rose, D.C. and Kamowski, T.P. (2010). Deep machine learnibg - a new frontier in artificial intelligence research. IEEE Computer Intelligence Magazine, Vol.5, No. 4, pp13-18.
    • (2010) IEEE Computer Intelligence Magazine , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Kamowski, T.P.3
  • 5
    • 38649133289 scopus 로고    scopus 로고
    • DADICO: Intelligent system for anomaly detection in a combined cycle gas turbine plant
    • Arranz, A., Cruz, A., Sanz-Bobi, M.A., Riuz, P. and Coutino, J. (2007). DADICO: Intelligent system for anomaly detection in a combined cycle gas turbine plant, Expert system with applications, 34(4), pp. 2267-2277.
    • (2007) Expert System with Applications , vol.34 , Issue.4 , pp. 2267-2277
    • Arranz, A.1    Cruz, A.2    Sanz-Bobi, M.A.3    Riuz, P.4    Coutino, J.5
  • 11
  • 12
    • 84920525906 scopus 로고
    • Doctoral dissertation. The Technical University of Napoli, Napoli, Italy
    • Chen, W., (1991). Nonlinear Analysis of Electronic Prognostics. Doctoral dissertation. The Technical University of Napoli, Napoli, Italy.
    • (1991) Nonlinear Analysis of Electronic Prognostics
    • Chen, W.1
  • 13
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • Coates, A., Lee, H., and Ng, A. Y. (2011). An analysis of single-layer networks in unsupervised feature learning. In AIS-TATS 14, 2011.
    • (2011) AIS-TATS 14, 2011
    • Coates, A.1    Lee, H.2    Ng, A.Y.3
  • 15
    • 0019053271 scopus 로고
    • Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken sentences
    • August 1980
    • Davis, S.B. and Mermelstein, P. (1980). Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-28, No.4, August 1980.
    • (1980) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.ASSP-28 , Issue.4
    • Davis, S.B.1    Mermelstein, P.2
  • 17
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10): 78.
    • (2012) Communications of the ACM , vol.55 , Issue.10 , pp. 78
    • Domingos, P.1
  • 18
    • 0032681376 scopus 로고    scopus 로고
    • JSF Prognostics and Health Management
    • March 6-13, Big Sky, MO
    • Ferrell, B. L. (1999), JSF Prognostics and Health Management. Proceedings of IEEE Aerospace Conference. March 6-13, Big Sky, MO. doi: 10.1109/AERO.1999.793190.
    • (1999) Proceedings of IEEE Aerospace Conference
    • Ferrell, B.L.1
  • 20
    • 85016125102 scopus 로고    scopus 로고
    • FeatureForge: A Novel Tool for Visually Supported Feature Engineering and Corpus Revision
    • Posters
    • Heimerl, F., Jochim, C., Koch, S., & Ertl, T. (2012). FeatureForge: A Novel Tool for Visually Supported Feature Engineering and Corpus Revision. In COLING (Posters), pp. 461-470.
    • (2012) COLING , pp. 461-470
    • Heimerl, F.1    Jochim, C.2    Koch, S.3    Ertl, T.4
  • 21
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 23
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Dec. 2006
    • Huang, G.B., Zhu, Q.Y., and Siew, C.K. (2006). Extreme learning machine: Theory and applications, Neurocomputing, vol. 70, no. 1-3, pp. 489-501, Dec. 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 24
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, vol. 22, pp. 679-688. doi:10.1016/j.ijforecast.2006.03.001.
    • (2006) International Journal of Forecasting , vol.22 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 28
    • 84919642556 scopus 로고    scopus 로고
    • Is extreme learning machine feasible? A theoretical assessment (Part I)
    • January 2015
    • Liu, X., Lin, S., Fang, J. & Xu, Z. (2015). Is extreme learning machine feasible? A theoretical assessment (Part I), IEEE Transactions on Neural Networks and Learning Systems, Vol. 25, No. 1, January 2015, pp. 7-19.
    • (2015) IEEE Transactions on Neural Networks and Learning Systems , vol.25 , Issue.1 , pp. 7-19
    • Liu, X.1    Lin, S.2    Fang, J.3    Xu, Z.4
  • 29
    • 84919660197 scopus 로고    scopus 로고
    • Is extreme learning machine feasible? A theoretical assessment (Part II)
    • January 2015
    • Lin, S., Liu, X., Fang, J. & Xu, Z. (2015). Is extreme learning machine feasible? A theoretical assessment (Part II), IEEE Transactions on Neural Networks and Learning Systems, Vol. 25, No. 1, January 2015, pp. 21-34.
    • (2015) IEEE Transactions on Neural Networks and Learning Systems , vol.25 , Issue.1 , pp. 21-34
    • Lin, S.1    Liu, X.2    Fang, J.3    Xu, Z.4
  • 32
    • 85007202759 scopus 로고    scopus 로고
    • Gas Turbine Engine Anomaly Detection Through Computer Simulation Technique of Statistical Correlation
    • Ogbonnaya, E.A., Ugwu, H.U., and Theophilus Johnson, K. (2012). Gas Turbine Engine Anomaly Detection Through Computer Simulation Technique of Statistical Correlation, IOSR Journal of Engineering, 2(4), 544-554.
    • (2012) IOSR Journal of Engineering , vol.2 , Issue.4 , pp. 544-554
    • Ogbonnaya, E.A.1    Ugwu, H.U.2    Theophilus Johnson, K.3
  • 33
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A.Y. (2007). Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML, 2007
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 35
    • 79551480483 scopus 로고    scopus 로고
    • Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.A. (2010). Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion, Journal of Machine Learning Research, 11, pp. 3371-3408.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 36
    • 84958767160 scopus 로고    scopus 로고
    • Relational Stacked Denoising Autoencoder for Tag Recommendation
    • Wang, H., Shi, X., and Yeung, D.-Y. (2015). Relational Stacked Denoising Autoencoder for Tag Recommendation. Proceedings of AAAI '15.
    • (2015) Proceedings of AAAI '15
    • Wang, H.1    Shi, X.2    Yeung, D.-Y.3
  • 38
    • 84871143303 scopus 로고    scopus 로고
    • Feature extraction for bearing prognostics and health management (PHM) - A survey
    • Yan, W., Qiu, H. and Iyer, N. (2008). Feature extraction for bearing prognostics and health management (PHM) - a survey. MFPT 2008, Virginia Beach, Virginia.
    • (2008) MFPT 2008, Virginia Beach, Virginia
    • Yan, W.1    Qiu, H.2    Iyer, N.3
  • 39
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • Zimek, A., Schubert, E., Kriegel, H.-P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 5 (5): 363-387. doi:10.1002/sam.11161.
    • (2012) Statistical Analysis and Data Mining , vol.5 , Issue.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.-P.3
  • 40
    • 70349311540 scopus 로고    scopus 로고
    • Online wind turbine fault detection through automated SCADA data analysis
    • Zaher A, McArthur SDJ, Infield DG, Patel Y. (2009). Online wind turbine fault detection through automated SCADA data analysis. Wind Energy, 12(6): 574-93
    • (2009) Wind Energy , vol.12 , Issue.6 , pp. 574-593
    • Zaher, A.1    McArthur, S.D.J.2    Infield, D.G.3    Patel, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.