-
1
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 1798-1828. doi:10.1109/tpami.2013.50
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
2
-
-
84955504842
-
Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
-
Gan, M., Wang, C., & Zhu, C. (2016). Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing, vol. 72-73, pp. 92-104. doi:10.1016/j.ymssp.2015.11.014
-
(2016)
Mechanical Systems and Signal Processing
, vol.72-73
, pp. 92-104
-
-
Gan, M.1
Wang, C.2
Zhu, C.3
-
3
-
-
84961062588
-
Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines
-
Ha, J.M., Youn, B.D., Oh, H., Han, B., Jung, Y., & Park, J. (2016). Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines. Mechanical Systems and Signal Processing, vol. 70-71, pp. 161-175. doi:10.1016/j.ymssp.2015.09.040
-
(2016)
Mechanical Systems and Signal Processing
, vol.70-71
, pp. 161-175
-
-
Ha, J.M.1
Youn, B.D.2
Oh, H.3
Han, B.4
Jung, Y.5
Park, J.6
-
5
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, vol. 18, pp. 1527-1554. doi:10.1162/neco.2006.18.7.1527
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
6
-
-
84942741407
-
Datum unit optimization for robustness of a journal bearing diagnosis system
-
Jeon, B.C., Jung, J.H., Youn, B.D., Kim, Y.-W., & Bae, Y.-C. (2015). Datum unit optimization for robustness of a journal bearing diagnosis system. International Journal of Precision Engineering and Manufacturing, vol. 16, 2411-2425. doi:10.1007/s12541-015-0311-y
-
(2015)
International Journal of Precision Engineering and Manufacturing
, vol.16
, pp. 2411-2425
-
-
Jeon, B.C.1
Jung, J.H.2
Youn, B.D.3
Kim, Y.-W.4
Bae, Y.-C.5
-
7
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, vol. 72-73, pp. 303-315. doi:10.1016/j.ymssp.2015.10.025
-
(2016)
Mechanical Systems and Signal Processing
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
8
-
-
85016090430
-
Omni-directional regeneration (ODR) of gap sensor signal for journal bearing system diagnosis
-
October 18-22. Coronado, CA
-
Jung, J.H., Jeon, B.C., Youn, B.D., Kim, D., & Kim, Y. (2015) Omni-directional regeneration (ODR) of gap sensor signal for journal bearing system diagnosis, In Proceedings of the 7th Annual Conference of the Prognostics and Health Management Society, October 18-22. Coronado, CA
-
(2015)
Proceedings of the 7th Annual Conference of the Prognostics and Health Management Society
-
-
Jung, J.H.1
Jeon, B.C.2
Youn, B.D.3
Kim, D.4
Kim, Y.5
-
9
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning Nature, vol. 521, pp. 436-444. doi:10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
10
-
-
84887056149
-
Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications
-
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications. Mechanical Systems and Signal Processing, vol. 42, pp. 314-334. doi:10.1016/j.ymssp.2013.06.004
-
(2014)
Mechanical Systems and Signal Processing
, vol.42
, pp. 314-334
-
-
Lee, J.1
Wu, F.2
Zhao, W.3
Ghaffari, M.4
Liao, L.5
Siegel, D.6
-
11
-
-
84920160381
-
Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review
-
Oh, H., Han, B., McCluskey, P., Han, C., & Youn, B.D. (2015). Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review. IEEE Transactions on Power Electronics, vol. 30, pp. 2413-2426. doi:10.1109/tpel.2014.2346485
-
(2015)
IEEE Transactions on Power Electronics
, vol.30
, pp. 2413-2426
-
-
Oh, H.1
Han, B.2
McCluskey, P.3
Han, C.4
Youn, B.D.5
-
12
-
-
85016118286
-
Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis
-
October 18-22. Coronado, CA
-
Sarkar, S., Lore, K., Sarkar, S., Ramanan, V., Chakravarthy, S., Phoha, S., & Ray, A. (2015). Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis, In Proceedings of the 7th Annual Conference of the Prognostics and Health Management Society, October 18-22. Coronado, CA
-
(2015)
Proceedings of the 7th Annual Conference of the Prognostics and Health Management Society
-
-
Sarkar, S.1
Lore, K.2
Sarkar, S.3
Ramanan, V.4
Chakravarthy, S.5
Phoha, S.6
Ray, A.7
-
13
-
-
84946064662
-
Rolling bearing fault diagnosis using an optimization deep belief network
-
Shao, H., Jiang, H., Zhang, X., & Niu, M. (2015). Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science and Technology, vol. 26, 115002. doi:10.1088/0957-0233/26/11/115002
-
(2015)
Measurement Science and Technology
, vol.26
, pp. 115002
-
-
Shao, H.1
Jiang, H.2
Zhang, X.3
Niu, M.4
-
15
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
Tamilselvan, P., & Wang, P. (2013). Failure diagnosis using deep belief learning based health state classification Reliability Engineering & System Safety, vol. 115, pp. 124-135. doi:10.1016/j.ress.2013.02.022
-
(2013)
Reliability Engineering & System Safety
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.2
-
17
-
-
27744525373
-
Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals
-
Yang, B., & Kim, K.J. (2006). Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mechanical Systems and Signal Processing, vol. 20, pp. 403-420.
-
(2006)
Mechanical Systems and Signal Processing
, vol.20
, pp. 403-420
-
-
Yang, B.1
Kim, K.J.2
|