메뉴 건너뛰기




Volumn 2016-October, Issue , 2016, Pages 109-116

Smart diagnosis of journal bearing rotor systems: Unsupervised feature extraction scheme by deep learning

Author keywords

[No Author keywords available]

Indexed keywords

EXTRACTION; FAILURE (MECHANICAL); FEATURE EXTRACTION; JOURNAL BEARINGS; SYSTEMS ENGINEERING;

EID: 85030214553     PISSN: 23250178     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (17)
  • 2
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • Gan, M., Wang, C., & Zhu, C. (2016). Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing, vol. 72-73, pp. 92-104. doi:10.1016/j.ymssp.2015.11.014
    • (2016) Mechanical Systems and Signal Processing , vol.72-73 , pp. 92-104
    • Gan, M.1    Wang, C.2    Zhu, C.3
  • 3
    • 84961062588 scopus 로고    scopus 로고
    • Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines
    • Ha, J.M., Youn, B.D., Oh, H., Han, B., Jung, Y., & Park, J. (2016). Autocorrelation-based time synchronous averaging for condition monitoring of planetary gearboxes in wind turbines. Mechanical Systems and Signal Processing, vol. 70-71, pp. 161-175. doi:10.1016/j.ymssp.2015.09.040
    • (2016) Mechanical Systems and Signal Processing , vol.70-71 , pp. 161-175
    • Ha, J.M.1    Youn, B.D.2    Oh, H.3    Han, B.4    Jung, Y.5    Park, J.6
  • 5
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, vol. 18, pp. 1527-1554. doi:10.1162/neco.2006.18.7.1527
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 7
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, vol. 72-73, pp. 303-315. doi:10.1016/j.ymssp.2015.10.025
    • (2016) Mechanical Systems and Signal Processing , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 9
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning Nature, vol. 521, pp. 436-444. doi:10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 10
    • 84887056149 scopus 로고    scopus 로고
    • Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications
    • Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications. Mechanical Systems and Signal Processing, vol. 42, pp. 314-334. doi:10.1016/j.ymssp.2013.06.004
    • (2014) Mechanical Systems and Signal Processing , vol.42 , pp. 314-334
    • Lee, J.1    Wu, F.2    Zhao, W.3    Ghaffari, M.4    Liao, L.5    Siegel, D.6
  • 11
    • 84920160381 scopus 로고    scopus 로고
    • Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review
    • Oh, H., Han, B., McCluskey, P., Han, C., & Youn, B.D. (2015). Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: A review. IEEE Transactions on Power Electronics, vol. 30, pp. 2413-2426. doi:10.1109/tpel.2014.2346485
    • (2015) IEEE Transactions on Power Electronics , vol.30 , pp. 2413-2426
    • Oh, H.1    Han, B.2    McCluskey, P.3    Han, C.4    Youn, B.D.5
  • 13
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • Shao, H., Jiang, H., Zhang, X., & Niu, M. (2015). Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science and Technology, vol. 26, 115002. doi:10.1088/0957-0233/26/11/115002
    • (2015) Measurement Science and Technology , vol.26 , pp. 115002
    • Shao, H.1    Jiang, H.2    Zhang, X.3    Niu, M.4
  • 15
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan, P., & Wang, P. (2013). Failure diagnosis using deep belief learning based health state classification Reliability Engineering & System Safety, vol. 115, pp. 124-135. doi:10.1016/j.ress.2013.02.022
    • (2013) Reliability Engineering & System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 17
    • 27744525373 scopus 로고    scopus 로고
    • Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals
    • Yang, B., & Kim, K.J. (2006). Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mechanical Systems and Signal Processing, vol. 20, pp. 403-420.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 403-420
    • Yang, B.1    Kim, K.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.