메뉴 건너뛰기




Volumn 130, Issue , 2017, Pages 377-388

Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification

Author keywords

Deep learning; Fault diagnosis; Health state identification; Stacked denoising autoencoder

Indexed keywords

FAILURE ANALYSIS; HEALTH; ITERATIVE METHODS; LEARNING SYSTEMS; MACHINERY; ROTATING MACHINERY;

EID: 84982792319     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2016.07.028     Document Type: Article
Times cited : (760)

References (53)
  • 1
    • 54049155665 scopus 로고    scopus 로고
    • Reliability engineering: old problems and new challenges
    • [1] Zio, E., Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Safe. 94 (2009), 125–141.
    • (2009) Reliab. Eng. Syst. Safe. , vol.94 , pp. 125-141
    • Zio, E.1
  • 2
    • 84889096899 scopus 로고    scopus 로고
    • Multiwavelet transform and its applications in mechanical fault diagnosis - a review
    • [2] Sun, H., He, Z., Zi, Y., Yuan, J., Wang, X., Chen, J., He, S., Multiwavelet transform and its applications in mechanical fault diagnosis - a review. Mech. Syst. Signal Process. 43 (2014), 1–24.
    • (2014) Mech. Syst. Signal Process. , vol.43 , pp. 1-24
    • Sun, H.1    He, Z.2    Zi, Y.3    Yuan, J.4    Wang, X.5    Chen, J.6    He, S.7
  • 3
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • [3] Yin, S., Ding, S.X., Haghani, A., Hao, H., Zhang, P., A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process. Contr. 22 (2012), 1567–1581.
    • (2012) J. Process. Contr. , vol.22 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 4
    • 84945579582 scopus 로고    scopus 로고
    • Adaptive signal decomposition based on wavelet ridge and its application
    • [4] Qin, Y., Tang, B., Mao, Y., Adaptive signal decomposition based on wavelet ridge and its application. Signal Process. 120 (2016), 480–494.
    • (2016) Signal Process. , vol.120 , pp. 480-494
    • Qin, Y.1    Tang, B.2    Mao, Y.3
  • 5
    • 77950922575 scopus 로고    scopus 로고
    • Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance
    • [5] Niu, G., Yang, B., Pecht, M., Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Reliab. Eng. Syst. Safe. 95 (2010), 786–796.
    • (2010) Reliab. Eng. Syst. Safe. , vol.95 , pp. 786-796
    • Niu, G.1    Yang, B.2    Pecht, M.3
  • 6
    • 84940461179 scopus 로고    scopus 로고
    • Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques
    • [6] Phuong, N., Kang, M., Kim, J., Ahn, B., Ha, J., Choi, B., Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques. Expert Syst. Appl. 42 (2015), 9024–9032.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 9024-9032
    • Phuong, N.1    Kang, M.2    Kim, J.3    Ahn, B.4    Ha, J.5    Choi, B.6
  • 7
    • 84925964775 scopus 로고    scopus 로고
    • A summary of fault modelling and predictive health monitoring of rolling element bearings
    • [7] El-Thalji, I., Jantunen, E., A summary of fault modelling and predictive health monitoring of rolling element bearings. Mech. Syst. Signal Process. 60–61 (2015), 252–272.
    • (2015) Mech. Syst. Signal Process. , vol.60-61 , pp. 252-272
    • El-Thalji, I.1    Jantunen, E.2
  • 8
    • 60349128109 scopus 로고    scopus 로고
    • Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery
    • [8] Yang, W., Tavner, P.J., Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery. J. Sound Vib. 321 (2009), 1144–1170.
    • (2009) J. Sound Vib. , vol.321 , pp. 1144-1170
    • Yang, W.1    Tavner, P.J.2
  • 9
    • 84944355420 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
    • [9] Zhang, X., Wang, B., Chen, X., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
    • (2015) Knowl.-Based Syst. , vol.89 , pp. 56-85
    • Zhang, X.1    Wang, B.2    Chen, X.3
  • 10
    • 84880562907 scopus 로고    scopus 로고
    • Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm
    • [10] Du, W., Li, A., Ye, P., Liu, C., Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm. Shock Vib. 20 (2013), 781–792.
    • (2013) Shock Vib. , vol.20 , pp. 781-792
    • Du, W.1    Li, A.2    Ye, P.3    Liu, C.4
  • 11
    • 84944031673 scopus 로고    scopus 로고
    • Health assessment and fault classification for hydraulic pump based on LR and softmax regression
    • [11] Ding, Y., Ma, J., Tian, Y., Health assessment and fault classification for hydraulic pump based on LR and softmax regression. J. Vibroeng. 17 (2015), 1805–1816.
    • (2015) J. Vibroeng. , vol.17 , pp. 1805-1816
    • Ding, Y.1    Ma, J.2    Tian, Y.3
  • 13
    • 84884552701 scopus 로고    scopus 로고
    • Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model
    • [13] Lu, C., Yuan, H., Tao, L., Liu, H., Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model. J. Vibroeng. 15 (2013), 1546–1559.
    • (2013) J. Vibroeng. , vol.15 , pp. 1546-1559
    • Lu, C.1    Yuan, H.2    Tao, L.3    Liu, H.4
  • 15
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and ANN
    • [15] Yu, Y., YuDejie, Cheng, J.S., A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294 (2006), 269–277.
    • (2006) J. Sound Vib. , vol.294 , pp. 269-277
    • Yu, Y.1    YuDejie2    Cheng, J.S.3
  • 16
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: a review with applications
    • [16] Yan, R., Gao, R.X., Chen, X., Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96 (2014), 1–15.
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 17
    • 84945209007 scopus 로고    scopus 로고
    • An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data
    • [17] Youssef, A., Delpha, C., Diallo, D., An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data. Signal Process. 120 (2016), 266–279.
    • (2016) Signal Process. , vol.120 , pp. 266-279
    • Youssef, A.1    Delpha, C.2    Diallo, D.3
  • 18
    • 84920120340 scopus 로고    scopus 로고
    • Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II
    • [18] Harmouche, J., Delpha, C., Diallo, D., Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II. Signal Process 109 (2015), 334–344.
    • (2015) Signal Process , vol.109 , pp. 334-344
    • Harmouche, J.1    Delpha, C.2    Diallo, D.3
  • 19
    • 84887056149 scopus 로고    scopus 로고
    • Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
    • [19] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mech. Syst. Signal Process. 42 (2014), 314–334.
    • (2014) Mech. Syst. Signal Process. , vol.42 , pp. 314-334
    • Lee, J.1    Wu, F.2    Zhao, W.3    Ghaffari, M.4    Liao, L.5    Siegel, D.6
  • 20
    • 84922888685 scopus 로고    scopus 로고
    • Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
    • [20] Jegadeeshwaran, R., Sugumaran, V., Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines. Mech. Syst. Signal Process. 52–53 (2015), 436–446.
    • (2015) Mech. Syst. Signal Process. , vol.52-53 , pp. 436-446
    • Jegadeeshwaran, R.1    Sugumaran, V.2
  • 21
    • 84949970024 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
    • [21] Zhang, X., Chen, W., Wang, B., Chen, X., Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing 167 (2015), 260–279.
    • (2015) Neurocomputing , vol.167 , pp. 260-279
    • Zhang, X.1    Chen, W.2    Wang, B.3    Chen, X.4
  • 23
    • 64949202636 scopus 로고    scopus 로고
    • Random forests classifier for machine fault diagnosis
    • [23] Yang, B., Di, X., Han, T., Random forests classifier for machine fault diagnosis. J. Mech. Sci. Technol. 22 (2008), 1716–1725.
    • (2008) J. Mech. Sci. Technol. , vol.22 , pp. 1716-1725
    • Yang, B.1    Di, X.2    Han, T.3
  • 24
    • 83955161121 scopus 로고    scopus 로고
    • On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays
    • [24] Dong, H., Wang, Z., Gao, H., On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays. Signal Process. 92 (2012), 1117–1125.
    • (2012) Signal Process. , vol.92 , pp. 1117-1125
    • Dong, H.1    Wang, Z.2    Gao, H.3
  • 25
    • 84941569673 scopus 로고    scopus 로고
    • Counter propagation auto-associative neural network based data imputation
    • [25] Gautam, C., Ravi, V., Counter propagation auto-associative neural network based data imputation. Inform. Sci. 325 (2015), 288–299.
    • (2015) Inform. Sci. , vol.325 , pp. 288-299
    • Gautam, C.1    Ravi, V.2
  • 26
    • 84940882440 scopus 로고    scopus 로고
    • Diversified learning for continuous hidden Markov models with application to fault diagnosis
    • [26] Li, Z., Fang, H., Huang, M., Diversified learning for continuous hidden Markov models with application to fault diagnosis. Expert Syst. Appl. 42 (2015), 9165–9173.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 9165-9173
    • Li, Z.1    Fang, H.2    Huang, M.3
  • 27
    • 85013387758 scopus 로고    scopus 로고
    • Novel method for performance degradation assessment and prediction of hydraulic servo system
    • [27] Wang, Z., Lu, C., Ma, J., Yuan, H., Chen, Z., Novel method for performance degradation assessment and prediction of hydraulic servo system. Sci. Iran 22 (2015), 1604–1615.
    • (2015) Sci. Iran , vol.22 , pp. 1604-1615
    • Wang, Z.1    Lu, C.2    Ma, J.3    Yuan, H.4    Chen, Z.5
  • 28
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • [28] Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Sig. Process. 72–73 (2016), 303–315.
    • (2016) Mech. Syst. Sig. Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 29
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • [29] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 31
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • [31] Hinton, G.E., Osindero, S., Teh, Y., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 32
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [32] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 33
    • 84889263385 scopus 로고    scopus 로고
    • in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP
    • [33] X. Zhang, J. Wu, Denoising deep neural networks based voice activity detection, in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP,2013, pp. 853–857.
    • (2013) Denoising deep neural networks based voice activity detection , pp. 853-857
    • Zhang, X.1    Wu, J.2
  • 34
    • 84922364946 scopus 로고    scopus 로고
    • Editorial introduction to the Neural Networks special issue on Deep Learning of Representations
    • [34] Bengio, Y., Lee, H., Editorial introduction to the Neural Networks special issue on Deep Learning of Representations. Neural Netw. 64 (2015), 1–3.
    • (2015) Neural Netw. , vol.64 , pp. 1-3
    • Bengio, Y.1    Lee, H.2
  • 35
    • 84938409656 scopus 로고    scopus 로고
    • Efficient large-scale action recognition in videos using extreme learning machines
    • [35] Varol, G., Salah, A.A., Efficient large-scale action recognition in videos using extreme learning machines. Expert Syst. Appl. 42 (2015), 8274–8282.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 8274-8282
    • Varol, G.1    Salah, A.A.2
  • 37
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-a new frontier in artificial intelligence research
    • [37] Arel, I., Rose, D.C., Karnowski, T.P., Deep machine learning-a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5 (2010), 13–18.
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 38
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • [38] Tamilselvan, P., Wang, P., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Safe. 115 (2013), 124–135.
    • (2013) Reliab. Eng. Syst. Safe. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 39
    • 84930201854 scopus 로고    scopus 로고
    • Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification
    • [39] Zhang, Z., Wang, L., Kai, A., Yamada, T., Li, W., Iwahashi, M., Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification. Eurasip. J. Audio Speech, 2015.
    • (2015) Eurasip. J. Audio Speech
    • Zhang, Z.1    Wang, L.2    Kai, A.3    Yamada, T.4    Li, W.5    Iwahashi, M.6
  • 40
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • [40] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 42
    • 79957967845 scopus 로고    scopus 로고
    • Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
    • [42] Wulsin, D.F., Gupta, J.R., Mani, R., Blanco, J.A., Litt, B., Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement. J. Neural Eng., 8, 2011.
    • (2011) J. Neural Eng. , vol.8
    • Wulsin, D.F.1    Gupta, J.R.2    Mani, R.3    Blanco, J.A.4    Litt, B.5
  • 43
    • 8344290493 scopus 로고    scopus 로고
    • Energy-based models for sparse overcomplete representations
    • [43] Teh, Y.W., Welling, M., Osindero, S., Hinton, G.E., Energy-based models for sparse overcomplete representations. J. Mach. Learn. Res. 4 (2004), 1235–1260.
    • (2004) J. Mach. Learn. Res. , vol.4 , pp. 1235-1260
    • Teh, Y.W.1    Welling, M.2    Osindero, S.3    Hinton, G.E.4
  • 45
    • 84977462943 scopus 로고    scopus 로고
    • A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression
    • [45] Yang, J., Bai, Y., Li, G., Liu, M., Liu, X., A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression. Bio-Med. Mater. Eng. 261 (2015), S1549–S1558.
    • (2015) Bio-Med. Mater. Eng. , vol.261 , pp. S1549-S1558
    • Yang, J.1    Bai, Y.2    Li, G.3    Liu, M.4    Liu, X.5
  • 46
    • 84937459583 scopus 로고    scopus 로고
    • An adaptive conjugate gradient algorithm for large-scale unconstrained optimization
    • [46] Andrei, N., An adaptive conjugate gradient algorithm for large-scale unconstrained optimization. J. Comput. Appl. Math. 292 (2016), 83–91.
    • (2016) J. Comput. Appl. Math. , vol.292 , pp. 83-91
    • Andrei, N.1
  • 47
    • 84937975641 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
    • [47] Smith, W.A., Randall, R.B., Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64–65 (2015), 100–131.
    • (2015) Mech. Syst. Signal Process. , vol.64-65 , pp. 100-131
    • Smith, W.A.1    Randall, R.B.2
  • 48
    • 84982848981 scopus 로고    scopus 로고
    • Rasmusbergpalm, Deep Learning Toolbox, 2015 (accessed 16.07.22).
    • [48] Rasmusbergpalm, Deep Learning Toolbox, 〈https://github.com/rasmusbergpalm/DeepLearnToolbox〉, 2015 (accessed 16.07.22).
  • 50
    • 78650170620 scopus 로고    scopus 로고
    • Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
    • [50] Hsieh, C., Lu, R., Lee, N., Chiu, W., Hsu, M., Li, Y.J., Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149 (2011), 87–93.
    • (2011) Surgery , vol.149 , pp. 87-93
    • Hsieh, C.1    Lu, R.2    Lee, N.3    Chiu, W.4    Hsu, M.5    Li, Y.J.6
  • 51
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • [51] Cherkassky, V., Ma, Y.Q., Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17 (2004), 113–126.
    • (2004) Neural Netw. , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.