-
1
-
-
54049155665
-
Reliability engineering: old problems and new challenges
-
[1] Zio, E., Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Safe. 94 (2009), 125–141.
-
(2009)
Reliab. Eng. Syst. Safe.
, vol.94
, pp. 125-141
-
-
Zio, E.1
-
2
-
-
84889096899
-
Multiwavelet transform and its applications in mechanical fault diagnosis - a review
-
[2] Sun, H., He, Z., Zi, Y., Yuan, J., Wang, X., Chen, J., He, S., Multiwavelet transform and its applications in mechanical fault diagnosis - a review. Mech. Syst. Signal Process. 43 (2014), 1–24.
-
(2014)
Mech. Syst. Signal Process.
, vol.43
, pp. 1-24
-
-
Sun, H.1
He, Z.2
Zi, Y.3
Yuan, J.4
Wang, X.5
Chen, J.6
He, S.7
-
3
-
-
84866069902
-
A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
-
[3] Yin, S., Ding, S.X., Haghani, A., Hao, H., Zhang, P., A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process. Contr. 22 (2012), 1567–1581.
-
(2012)
J. Process. Contr.
, vol.22
, pp. 1567-1581
-
-
Yin, S.1
Ding, S.X.2
Haghani, A.3
Hao, H.4
Zhang, P.5
-
4
-
-
84945579582
-
Adaptive signal decomposition based on wavelet ridge and its application
-
[4] Qin, Y., Tang, B., Mao, Y., Adaptive signal decomposition based on wavelet ridge and its application. Signal Process. 120 (2016), 480–494.
-
(2016)
Signal Process.
, vol.120
, pp. 480-494
-
-
Qin, Y.1
Tang, B.2
Mao, Y.3
-
5
-
-
77950922575
-
Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance
-
[5] Niu, G., Yang, B., Pecht, M., Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Reliab. Eng. Syst. Safe. 95 (2010), 786–796.
-
(2010)
Reliab. Eng. Syst. Safe.
, vol.95
, pp. 786-796
-
-
Niu, G.1
Yang, B.2
Pecht, M.3
-
6
-
-
84940461179
-
Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques
-
[6] Phuong, N., Kang, M., Kim, J., Ahn, B., Ha, J., Choi, B., Robust condition monitoring of rolling element bearings using de-noising and envelope analysis with signal decomposition techniques. Expert Syst. Appl. 42 (2015), 9024–9032.
-
(2015)
Expert Syst. Appl.
, vol.42
, pp. 9024-9032
-
-
Phuong, N.1
Kang, M.2
Kim, J.3
Ahn, B.4
Ha, J.5
Choi, B.6
-
7
-
-
84925964775
-
A summary of fault modelling and predictive health monitoring of rolling element bearings
-
[7] El-Thalji, I., Jantunen, E., A summary of fault modelling and predictive health monitoring of rolling element bearings. Mech. Syst. Signal Process. 60–61 (2015), 252–272.
-
(2015)
Mech. Syst. Signal Process.
, vol.60-61
, pp. 252-272
-
-
El-Thalji, I.1
Jantunen, E.2
-
8
-
-
60349128109
-
Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery
-
[8] Yang, W., Tavner, P.J., Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery. J. Sound Vib. 321 (2009), 1144–1170.
-
(2009)
J. Sound Vib.
, vol.321
, pp. 1144-1170
-
-
Yang, W.1
Tavner, P.J.2
-
9
-
-
84944355420
-
Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
-
[9] Zhang, X., Wang, B., Chen, X., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
-
(2015)
Knowl.-Based Syst.
, vol.89
, pp. 56-85
-
-
Zhang, X.1
Wang, B.2
Chen, X.3
-
10
-
-
84880562907
-
Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm
-
[10] Du, W., Li, A., Ye, P., Liu, C., Fault diagnosis of plunger pump in truck crane based on relevance vector machine with particle swarm optimization algorithm. Shock Vib. 20 (2013), 781–792.
-
(2013)
Shock Vib.
, vol.20
, pp. 781-792
-
-
Du, W.1
Li, A.2
Ye, P.3
Liu, C.4
-
11
-
-
84944031673
-
Health assessment and fault classification for hydraulic pump based on LR and softmax regression
-
[11] Ding, Y., Ma, J., Tian, Y., Health assessment and fault classification for hydraulic pump based on LR and softmax regression. J. Vibroeng. 17 (2015), 1805–1816.
-
(2015)
J. Vibroeng.
, vol.17
, pp. 1805-1816
-
-
Ding, Y.1
Ma, J.2
Tian, Y.3
-
12
-
-
84901303447
-
Optimized artificial neural network for the detection of incipient faults in power transformer
-
in:
-
[12] F. Zakaria, D. Johari, I. Musirin, Optimized artificial neural network for the detection of incipient faults in power transformer, in: Proceedings of the 2014 IEEE 8th International Power Engineering And Optimization Conference (PEOCO), 2014, pp. 635–640.
-
(2014)
Proceedings of the 2014 IEEE 8th International Power Engineering And Optimization Conference (PEOCO)
, pp. 635-640
-
-
Zakaria, F.1
Johari, D.2
Musirin, I.3
-
13
-
-
84884552701
-
Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model
-
[13] Lu, C., Yuan, H., Tao, L., Liu, H., Performance assessment of hydraulic servo system based on bi-step neural network and autoregressive model. J. Vibroeng. 15 (2013), 1546–1559.
-
(2013)
J. Vibroeng.
, vol.15
, pp. 1546-1559
-
-
Lu, C.1
Yuan, H.2
Tao, L.3
Liu, H.4
-
14
-
-
78649543495
-
A qualitative agent-based approach to power quality monitoring and diagnosis
-
[14] Santofimia, M.J., Del Toro, X., Roncero-Sanchez, P., Moya, F., Martinez, M.A., Lopez, J.C., A qualitative agent-based approach to power quality monitoring and diagnosis. Integr. Comput.-Aid E 17 (2010), 305–319.
-
(2010)
Integr. Comput.-Aid E
, vol.17
, pp. 305-319
-
-
Santofimia, M.J.1
Del Toro, X.2
Roncero-Sanchez, P.3
Moya, F.4
Martinez, M.A.5
Lopez, J.C.6
-
15
-
-
33646519024
-
A roller bearing fault diagnosis method based on EMD energy entropy and ANN
-
[15] Yu, Y., YuDejie, Cheng, J.S., A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294 (2006), 269–277.
-
(2006)
J. Sound Vib.
, vol.294
, pp. 269-277
-
-
Yu, Y.1
YuDejie2
Cheng, J.S.3
-
16
-
-
84887433963
-
Wavelets for fault diagnosis of rotary machines: a review with applications
-
[16] Yan, R., Gao, R.X., Chen, X., Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96 (2014), 1–15.
-
(2014)
Signal Process.
, vol.96
, pp. 1-15
-
-
Yan, R.1
Gao, R.X.2
Chen, X.3
-
17
-
-
84945209007
-
An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data
-
[17] Youssef, A., Delpha, C., Diallo, D., An optimal fault detection threshold for early detection using Kullback–Leibler Divergence for unknown distribution data. Signal Process. 120 (2016), 266–279.
-
(2016)
Signal Process.
, vol.120
, pp. 266-279
-
-
Youssef, A.1
Delpha, C.2
Diallo, D.3
-
18
-
-
84920120340
-
Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II
-
[18] Harmouche, J., Delpha, C., Diallo, D., Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: part II. Signal Process 109 (2015), 334–344.
-
(2015)
Signal Process
, vol.109
, pp. 334-344
-
-
Harmouche, J.1
Delpha, C.2
Diallo, D.3
-
19
-
-
84887056149
-
Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
-
[19] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mech. Syst. Signal Process. 42 (2014), 314–334.
-
(2014)
Mech. Syst. Signal Process.
, vol.42
, pp. 314-334
-
-
Lee, J.1
Wu, F.2
Zhao, W.3
Ghaffari, M.4
Liao, L.5
Siegel, D.6
-
20
-
-
84922888685
-
Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
-
[20] Jegadeeshwaran, R., Sugumaran, V., Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines. Mech. Syst. Signal Process. 52–53 (2015), 436–446.
-
(2015)
Mech. Syst. Signal Process.
, vol.52-53
, pp. 436-446
-
-
Jegadeeshwaran, R.1
Sugumaran, V.2
-
21
-
-
84949970024
-
Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
-
[21] Zhang, X., Chen, W., Wang, B., Chen, X., Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing 167 (2015), 260–279.
-
(2015)
Neurocomputing
, vol.167
, pp. 260-279
-
-
Zhang, X.1
Chen, W.2
Wang, B.3
Chen, X.4
-
23
-
-
64949202636
-
Random forests classifier for machine fault diagnosis
-
[23] Yang, B., Di, X., Han, T., Random forests classifier for machine fault diagnosis. J. Mech. Sci. Technol. 22 (2008), 1716–1725.
-
(2008)
J. Mech. Sci. Technol.
, vol.22
, pp. 1716-1725
-
-
Yang, B.1
Di, X.2
Han, T.3
-
24
-
-
83955161121
-
On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays
-
[24] Dong, H., Wang, Z., Gao, H., On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays. Signal Process. 92 (2012), 1117–1125.
-
(2012)
Signal Process.
, vol.92
, pp. 1117-1125
-
-
Dong, H.1
Wang, Z.2
Gao, H.3
-
25
-
-
84941569673
-
Counter propagation auto-associative neural network based data imputation
-
[25] Gautam, C., Ravi, V., Counter propagation auto-associative neural network based data imputation. Inform. Sci. 325 (2015), 288–299.
-
(2015)
Inform. Sci.
, vol.325
, pp. 288-299
-
-
Gautam, C.1
Ravi, V.2
-
26
-
-
84940882440
-
Diversified learning for continuous hidden Markov models with application to fault diagnosis
-
[26] Li, Z., Fang, H., Huang, M., Diversified learning for continuous hidden Markov models with application to fault diagnosis. Expert Syst. Appl. 42 (2015), 9165–9173.
-
(2015)
Expert Syst. Appl.
, vol.42
, pp. 9165-9173
-
-
Li, Z.1
Fang, H.2
Huang, M.3
-
27
-
-
85013387758
-
Novel method for performance degradation assessment and prediction of hydraulic servo system
-
[27] Wang, Z., Lu, C., Ma, J., Yuan, H., Chen, Z., Novel method for performance degradation assessment and prediction of hydraulic servo system. Sci. Iran 22 (2015), 1604–1615.
-
(2015)
Sci. Iran
, vol.22
, pp. 1604-1615
-
-
Wang, Z.1
Lu, C.2
Ma, J.3
Yuan, H.4
Chen, Z.5
-
28
-
-
84955693855
-
Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
[28] Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Sig. Process. 72–73 (2016), 303–315.
-
(2016)
Mech. Syst. Sig. Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
29
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
[29] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
31
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
[31] Hinton, G.E., Osindero, S., Teh, Y., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
32
-
-
84930630277
-
Deep learning
-
[32] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
33
-
-
84889263385
-
-
in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP
-
[33] X. Zhang, J. Wu, Denoising deep neural networks based voice activity detection, in: Proceedings of the International Conference on Acoustics Speech and Signal Processing ICASSP,2013, pp. 853–857.
-
(2013)
Denoising deep neural networks based voice activity detection
, pp. 853-857
-
-
Zhang, X.1
Wu, J.2
-
34
-
-
84922364946
-
Editorial introduction to the Neural Networks special issue on Deep Learning of Representations
-
[34] Bengio, Y., Lee, H., Editorial introduction to the Neural Networks special issue on Deep Learning of Representations. Neural Netw. 64 (2015), 1–3.
-
(2015)
Neural Netw.
, vol.64
, pp. 1-3
-
-
Bengio, Y.1
Lee, H.2
-
35
-
-
84938409656
-
Efficient large-scale action recognition in videos using extreme learning machines
-
[35] Varol, G., Salah, A.A., Efficient large-scale action recognition in videos using extreme learning machines. Expert Syst. Appl. 42 (2015), 8274–8282.
-
(2015)
Expert Syst. Appl.
, vol.42
, pp. 8274-8282
-
-
Varol, G.1
Salah, A.A.2
-
36
-
-
84982788853
-
-
M. Lee A. Hirose Z. Hou R.M. Kil Springer Berlin Heidelberg
-
[36] Lee, M., Hirose, A., Hou, Z., Kil, R.M., Song, H.A., Lee, S., Lee, M., Hirose, A., Hou, Z., Kil, R.M., (eds.) Hierarchical Representation Using NMF, 2013, Springer Berlin Heidelberg, 466–473.
-
(2013)
Hierarchical Representation Using NMF
, pp. 466-473
-
-
Lee, M.1
Hirose, A.2
Hou, Z.3
Kil, R.M.4
Song, H.A.5
Lee, S.6
-
37
-
-
77958488310
-
Deep machine learning-a new frontier in artificial intelligence research
-
[37] Arel, I., Rose, D.C., Karnowski, T.P., Deep machine learning-a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5 (2010), 13–18.
-
(2010)
IEEE Comput. Intell. Mag.
, vol.5
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
38
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
[38] Tamilselvan, P., Wang, P., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Safe. 115 (2013), 124–135.
-
(2013)
Reliab. Eng. Syst. Safe.
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.2
-
39
-
-
84930201854
-
Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification
-
[39] Zhang, Z., Wang, L., Kai, A., Yamada, T., Li, W., Iwahashi, M., Deep neural network-based bottleneck feature and denoising autoencoder-based dereverberation for distant-talking speaker identification. Eurasip. J. Audio Speech, 2015.
-
(2015)
Eurasip. J. Audio Speech
-
-
Zhang, Z.1
Wang, L.2
Kai, A.3
Yamada, T.4
Li, W.5
Iwahashi, M.6
-
40
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
[40] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.5
-
41
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
[41] Bengio, Y., Simard, P., Frasconi, P., Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc. 5 (1994), 157–166.
-
(1994)
IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc.
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
42
-
-
79957967845
-
Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
-
[42] Wulsin, D.F., Gupta, J.R., Mani, R., Blanco, J.A., Litt, B., Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement. J. Neural Eng., 8, 2011.
-
(2011)
J. Neural Eng.
, vol.8
-
-
Wulsin, D.F.1
Gupta, J.R.2
Mani, R.3
Blanco, J.A.4
Litt, B.5
-
43
-
-
8344290493
-
Energy-based models for sparse overcomplete representations
-
[43] Teh, Y.W., Welling, M., Osindero, S., Hinton, G.E., Energy-based models for sparse overcomplete representations. J. Mach. Learn. Res. 4 (2004), 1235–1260.
-
(2004)
J. Mach. Learn. Res.
, vol.4
, pp. 1235-1260
-
-
Teh, Y.W.1
Welling, M.2
Osindero, S.3
Hinton, G.E.4
-
44
-
-
84894115810
-
Using Different Cost Functions to Train Stacked Auto-encoders
-
in: F. Castro, A. Gelbukh, M.G. Mendoza (Eds.)
-
[44] T. Amaral, L.M. Silva, L.A. Alexandre, C. Kandaswamy, J.M. Santos, J.M. de Sa, Using Different Cost Functions to Train Stacked Auto-encoders, in: F. Castro, A. Gelbukh, M.G. Mendoza (Eds.) Mexican International Conference on Artificial Intelligence-MICAI,2013, pp. 114-120.
-
(2013)
Mexican International Conference on Artificial Intelligence-MICAI
, pp. 114-120
-
-
Amaral, T.1
Silva, L.M.2
Alexandre, L.A.3
Kandaswamy, C.4
Santos, J.M.5
de Sa, J.M.6
-
45
-
-
84977462943
-
A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression
-
[45] Yang, J., Bai, Y., Li, G., Liu, M., Liu, X., A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression. Bio-Med. Mater. Eng. 261 (2015), S1549–S1558.
-
(2015)
Bio-Med. Mater. Eng.
, vol.261
, pp. S1549-S1558
-
-
Yang, J.1
Bai, Y.2
Li, G.3
Liu, M.4
Liu, X.5
-
46
-
-
84937459583
-
An adaptive conjugate gradient algorithm for large-scale unconstrained optimization
-
[46] Andrei, N., An adaptive conjugate gradient algorithm for large-scale unconstrained optimization. J. Comput. Appl. Math. 292 (2016), 83–91.
-
(2016)
J. Comput. Appl. Math.
, vol.292
, pp. 83-91
-
-
Andrei, N.1
-
47
-
-
84937975641
-
Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
-
[47] Smith, W.A., Randall, R.B., Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64–65 (2015), 100–131.
-
(2015)
Mech. Syst. Signal Process.
, vol.64-65
, pp. 100-131
-
-
Smith, W.A.1
Randall, R.B.2
-
48
-
-
84982848981
-
-
Rasmusbergpalm, Deep Learning Toolbox, 2015 (accessed 16.07.22).
-
[48] Rasmusbergpalm, Deep Learning Toolbox, 〈https://github.com/rasmusbergpalm/DeepLearnToolbox〉, 2015 (accessed 16.07.22).
-
-
-
-
50
-
-
78650170620
-
Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
-
[50] Hsieh, C., Lu, R., Lee, N., Chiu, W., Hsu, M., Li, Y.J., Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149 (2011), 87–93.
-
(2011)
Surgery
, vol.149
, pp. 87-93
-
-
Hsieh, C.1
Lu, R.2
Lee, N.3
Chiu, W.4
Hsu, M.5
Li, Y.J.6
-
51
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
[51] Cherkassky, V., Ma, Y.Q., Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17 (2004), 113–126.
-
(2004)
Neural Netw.
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.Q.2
-
52
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
[52] Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., A comparison of decision tree ensemble creation techniques. IEEE Trans. Pattern Anal. 29 (2007), 173–180.
-
(2007)
IEEE Trans. Pattern Anal.
, vol.29
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
53
-
-
30344471525
-
Random Forests for land cover classification
-
[53] Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R., Random Forests for land cover classification. Pattern. Recogn. Lett. 27 (2006), 294–300.
-
(2006)
Pattern. Recogn. Lett.
, vol.27
, pp. 294-300
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Sveinsson, J.R.3
|