메뉴 건너뛰기




Volumn 17, Issue 5, 2015, Pages 2379-2392

Multi-layer neural network with deep belief network for gearbox fault diagnosis

Author keywords

Deep belief network; Gearbox; Neural network; Vibratory signal

Indexed keywords

DEEP LEARNING; FAULT DETECTION; FREQUENCY DOMAIN ANALYSIS; GEARS; MULTILAYER NEURAL NETWORKS; NETWORK ARCHITECTURE; NETWORK LAYERS;

EID: 84944323318     PISSN: 13928716     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (89)

References (27)
  • 1
    • 71749106872 scopus 로고    scopus 로고
    • A multidimensional hybrid intelligent method for gear fault diagnosis
    • Lei Y., Zuo M. J., He Z., Zi Y. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Systems with Applications, Vol. 37, 2010, p. 1419-1430.
    • (2010) Expert Systems with Applications , vol.37 , pp. 1419-1430
    • Lei, Y.1    Zuo, M.J.2    He, Z.3    Zi, Y.4
  • 4
    • 84937813448 scopus 로고    scopus 로고
    • Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals
    • Li Chuan, Liang Ming, Wang Tianyang Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals. Mechanical Systems and Signal Processing, 2015.
    • (2015) Mechanical Systems and Signal Processing
    • Chuan, L.1    Ming, L.2    Tianyang, W.3
  • 5
    • 67349227757 scopus 로고    scopus 로고
    • Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
    • Wang D., Miao Q., Kang R. Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition. Journal of Sound and Vibration, Vol. 324, Issues 3-5, 2009, p. 1141-1157.
    • (2009) Journal of Sound and Vibration , vol.324 , Issue.3-5 , pp. 1141-1157
    • Wang, D.1    Miao, Q.2    Kang, R.3
  • 6
    • 6344219501 scopus 로고    scopus 로고
    • Application of acoustic emission to seeded gear fault detection
    • Toutountzakis T., Tan C. K., Mba D. Application of acoustic emission to seeded gear fault detection. NDT&E International, Vol. 38, Issue 1, 2005, p. 27-36.
    • (2005) NDT&E International , vol.38 , Issue.1 , pp. 27-36
    • Toutountzakis, T.1    Tan, C.K.2    Mba, D.3
  • 7
    • 84878288252 scopus 로고    scopus 로고
    • Condition monitoring of gearboxes using synchronously averaged electric motor signals
    • Ottewill J. R., Orkisz M. Condition monitoring of gearboxes using synchronously averaged electric motor signals. Mechanical Systems and Signal Processing, Vol. 38, Issue 2, 2013, p. 482-498.
    • (2013) Mechanical Systems and Signal Processing , vol.38 , Issue.2 , pp. 482-498
    • Ottewill, J.R.1    Orkisz, M.2
  • 8
    • 80054911915 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rotating machinery using infrared thermal image
    • Younus A. M. D., Yang B. S. Intelligent fault diagnosis of rotating machinery using infrared thermal image. Expert Systems with Applications, Vol. 39, Issue 2, 2012, p. 2082-2091.
    • (2012) Expert Systems with Applications , vol.39 , Issue.2 , pp. 2082-2091
    • Younus, A.M.D.1    Yang, B.S.2
  • 9
    • 79960864184 scopus 로고    scopus 로고
    • Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction
    • Li C., Liang M. Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction. Measurement Science and Technology, Vol. 22, Issue 8, 2011, p. 085701.
    • (2011) Measurement Science and Technology , vol.22 , Issue.8
    • Li, C.1    Liang, M.2
  • 11
    • 69249153422 scopus 로고    scopus 로고
    • Rolling bearing fault classification based on envelope spectrum and support vector machine
    • Guo L., Chen J., Li X. Rolling bearing fault classification based on envelope spectrum and support vector machine. Journal of Vibration and Control, Vol. 15, Issue 9, 2009, p. 1349-1363.
    • (2009) Journal of Vibration and Control , vol.15 , Issue.9 , pp. 1349-1363
    • Guo, L.1    Chen, J.2    Li, X.3
  • 12
    • 84870249587 scopus 로고    scopus 로고
    • A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm
    • Chen F., Tang B., Chen R. A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm. Measurement, Vol. 46, Issue 1, 2013, p. 220-232.
    • (2013) Measurement , vol.46 , Issue.1 , pp. 220-232
    • Chen, F.1    Tang, B.2    Chen, R.3
  • 13
    • 84888062344 scopus 로고    scopus 로고
    • Dynamic neural network-based fault diagnosis of gas turbine engines
    • Tayarani-Bathaie S. S., Vanini Z. N. S., Khorasani K. Dynamic neural network-based fault diagnosis of gas turbine engines. Neurocomputing, Vol. 125, Issue 11, 2014, p. 153-165.
    • (2014) Neurocomputing , vol.125 , Issue.11 , pp. 153-165
    • Tayarani-Bathaie, S.S.1    Vanini, Z.N.S.2    Khorasani, K.3
  • 14
    • 84919489106 scopus 로고    scopus 로고
    • A 3D model recognition mechanism based on deep Boltzmann machines
    • Leng B., Zhang X., Yao M., Xiong Z. A 3D model recognition mechanism based on deep Boltzmann machines. Neurocomputing, Vol. 151, 2015, p. 593-602.
    • (2015) Neurocomputing , vol.151 , pp. 593-602
    • Leng, B.1    Zhang, X.2    Yao, M.3    Xiong, Z.4
  • 17
  • 18
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • Tran V. T., Thobiani F. A., Ball A. An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Systems with Applications, Vol. 41, 2014, p. 4113-4122.
    • (2014) Expert Systems with Applications , vol.41 , pp. 4113-4122
    • Tran, V.T.1    Thobiani, F.A.2    Ball, A.3
  • 19
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan P., Wang P. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering and System Safety, Vol. 115, 2013, p. 124-135.
    • (2013) Reliability Engineering and System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D. E., Hinton G. E., Williams R. J. Learning representations by back-propagating errors. Nature, Vol. 323, 1986, p. 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 21
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G. E., Osindero S., Teh Y. A fast learning algorithm for deep belief nets. Neural Computation, Vol. 18, 2006, p. 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 23
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G. E., Salakhutdinov R. R. Reducing the dimensionality of data with neural networks. Science, Vol. 313, 2006, p. 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 24
    • 84899931628 scopus 로고    scopus 로고
    • Restricted Boltzmann machines for neuroimaging: An application in identifying intrinsic networks
    • Hjelma D., Calhouna V., Salakhutdinov R., Allena E., Adali T., Plisa S. Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. Neuroimage, Vol. 96, 2014, p. 245-260.
    • (2014) Neuroimage , vol.96 , pp. 245-260
    • Hjelma, D.1    Calhouna, V.2    Salakhutdinov, R.3    Allena, E.4    Adali, T.5    Plisa, S.6
  • 25
    • 27344460283 scopus 로고    scopus 로고
    • A comparative study of three artificial neural networks for the detection and classification of gear faults
    • Abu-Mahfouz I. A comparative study of three artificial neural networks for the detection and classification of gear faults. International Journal of General Systems, Vol. 34, Issue 3, 2009, p. 261-277.
    • (2009) International Journal of General Systems , vol.34 , Issue.3 , pp. 261-277
    • Abu-Mahfouz, I.1
  • 26
    • 84944323063 scopus 로고    scopus 로고
    • Fault detection and diagnosis using support vector machines-an SVC and SVR comparison
    • Souza D. L., Granzotto M. H., Almeida G. M., Oliveira-Lopes L. C. Fault detection and diagnosis using support vector machines-an SVC and SVR comparison. Journal of Safety Engineering, Vol. 3, Issue 1, 2014, p. 18-29.
    • (2014) Journal of Safety Engineering , vol.3 , Issue.1 , pp. 18-29
    • Souza, D.L.1    Granzotto, M.H.2    Almeida, G.M.3    Oliveira-Lopes, L.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.