메뉴 건너뛰기




Volumn 13, Issue 3, 2017, Pages 1360-1368

Wind Turbine Gearbox Failure Identification with Deep Neural Networks

Author keywords

Condition monitoring; data mining; deep neural network (DNN); lubricant pressure; wind turbine gearbox

Indexed keywords

CONDITION MONITORING; DATA ACQUISITION; DATA MINING; GEARS; NEAREST NEIGHBOR SEARCH; REGRESSION ANALYSIS; WIND POWER; WIND TURBINES;

EID: 85027729414     PISSN: 15513203     EISSN: None     Source Type: Journal    
DOI: 10.1109/TII.2016.2607179     Document Type: Article
Times cited : (309)

References (41)
  • 1
    • 33947708442 scopus 로고    scopus 로고
    • Maintenance management of wind power systems using condition monitoring systems-Life cycle cost analysis for two case studies
    • Mar
    • J. Nilsson and L. Bertling, "Maintenance management of wind power systems using condition monitoring systems-Life cycle cost analysis for two case studies, " IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 223-229, Mar. 2007.
    • (2007) IEEE Trans. Energy Convers , vol.22 , Issue.1 , pp. 223-229
    • Nilsson, J.1    Bertling, L.2
  • 2
    • 84894244759 scopus 로고    scopus 로고
    • How does wind farm performance decline with age?
    • I. Staffell and R. Green, "How does wind farm performance decline with age?" Renewable Energy, vol. 66, pp. 775-786, 2014.
    • (2014) Renewable Energy , vol.66 , pp. 775-786
    • Staffell, I.1    Green, R.2
  • 3
    • 70349311540 scopus 로고    scopus 로고
    • Online wind turbine fault detection through automated SCADA data analysis
    • A. Zaher, S. McArthur, D. Infield, and Y. Patel, "Online wind turbine fault detection through automated SCADA data analysis, " Wind Energy, vol. 12, no. 6, pp. 574-593, 2009.
    • (2009) Wind Energy , vol.12 , Issue.6 , pp. 574-593
    • Zaher, A.1    McArthur, S.2    Infield, D.3    Patel, Y.4
  • 4
    • 84875232125 scopus 로고    scopus 로고
    • Study of weather and location effects on wind turbine failure rates
    • P. Tavner et al., "Study of weather and location effects on wind turbine failure rates, " Wind Energy, vol. 16, no. 2, pp. 175-187, 2013.
    • (2013) Wind Energy , vol.16 , Issue.2 , pp. 175-187
    • Tavner, P.1
  • 5
    • 53049083760 scopus 로고    scopus 로고
    • Condition monitoring and fault detection of wind turbines and related algorithms: A review
    • Z. Hameed, Y. Hong, Y. Cho, S. Ahn, and C. Song, "Condition monitoring and fault detection of wind turbines and related algorithms: A review, " Renewable Sustainable Energy Rev., vol. 13, no. 1, pp. 1-39, 2009.
    • (2009) Renewable Sustainable Energy Rev , vol.13 , Issue.1 , pp. 1-39
    • Hameed, Z.1    Hong, Y.2    Cho, Y.3    Ahn, S.4    Song, C.5
  • 6
    • 77950788518 scopus 로고    scopus 로고
    • A review of recent advances in wind turbine condition monitoring and fault diagnosis
    • B. Lu, Y. Li, X. Wu, and Z. Yang, "A review of recent advances in wind turbine condition monitoring and fault diagnosis, " in Proc. IEEE Power Electron. Mach. Wind Appl., 2009, pp. 1-7.
    • (2009) Proc IEEE Power Electron. Mach. Wind Appl , pp. 1-7
    • Lu, B.1    Li, Y.2    Wu, X.3    Yang, Z.4
  • 7
    • 84942469566 scopus 로고    scopus 로고
    • Condition monitoring techniques of the wind turbines gearbox and rotor
    • A. A. Salem, A. Abu-Siada, and S. Islam, "Condition monitoring techniques of the wind turbines gearbox and rotor, " Int. J. Elect. Energy, vol. 2, no. 1, pp. 53-56, 2014.
    • (2014) Int. J. Elect. Energy , vol.2 , Issue.1 , pp. 53-56
    • Salem, A.A.1    Abu-Siada, A.2    Islam, S.3
  • 8
    • 84921277836 scopus 로고    scopus 로고
    • The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review
    • W. Liu et al., "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review, " Renewable Sustainable Energy Rev., vol. 44, pp. 466-472, 2015.
    • (2015) Renewable Sustainable Energy Rev , vol.44 , pp. 466-472
    • Liu, W.1
  • 9
    • 84876936237 scopus 로고    scopus 로고
    • Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
    • Y. Lei, D. Han, J. Lin, and Z. He, "Planetary gearbox fault diagnosis using an adaptive stochastic resonance method, " Mech. Syst. Signal Process., vol. 38, no. 1, pp. 113-124, 2013.
    • (2013) Mech. Syst. Signal Process , vol.38 , Issue.1 , pp. 113-124
    • Lei, Y.1    Han, D.2    Lin, J.3    He, Z.4
  • 10
    • 84877340574 scopus 로고    scopus 로고
    • A new noise-controlled secondorder enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis
    • J. Li, X. Chen, Z. Du, Z. Fang, and Z. He, "A new noise-controlled secondorder enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis, " Renewable Energy, vol. 60, pp. 7-19, 2013.
    • (2013) Renewable Energy , vol.60 , pp. 7-19
    • Li, J.1    Chen, X.2    Du, Z.3    Fang, Z.4    He, Z.5
  • 11
    • 84937973020 scopus 로고    scopus 로고
    • A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions
    • I. Antoniadou, G. Manson, W. Staszewski, T. Barszcz, and K. Worden, "A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions, " Mech. Syst. Signal Process., vol. 64, pp. 188-216, 2015.
    • (2015) Mech. Syst. Signal Process , vol.64 , pp. 188-216
    • Antoniadou, I.1    Manson, G.2    Staszewski, W.3    Barszcz, T.4    Worden, K.5
  • 12
    • 84897577189 scopus 로고    scopus 로고
    • Effective and accurate approaches for wind turbine gearbox condition monitoring
    • H. Luo et al., "Effective and accurate approaches for wind turbine gearbox condition monitoring, " Wind Energy, vol. 17, no. 5, pp. 715-728, 2014.
    • (2014) Wind Energy , vol.17 , Issue.5 , pp. 715-728
    • Luo, H.1
  • 13
    • 84893056423 scopus 로고    scopus 로고
    • Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis
    • Z. Feng and M. Liang, "Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis, " Renewable Energy, vol. 66, pp. 468-477, 2014.
    • (2014) Renewable Energy , vol.66 , pp. 468-477
    • Feng, Z.1    Liang, M.2
  • 14
    • 84960922300 scopus 로고    scopus 로고
    • Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform
    • W. Teng, X. Ding, X. Zhang, Y. Liu, and Z. Ma, "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform, " Renewable Energy, vol. 93, pp. 591-598, 2016.
    • (2016) Renewable Energy , vol.93 , pp. 591-598
    • Teng, W.1    Ding, X.2    Zhang, X.3    Liu, Y.4    Ma, Z.5
  • 15
    • 33846850208 scopus 로고    scopus 로고
    • Intelligent condition monitoring of a gearbox using artificial neural network
    • J. Rafiee, F. Arvani, A. Harifi, and M. Sadeghi, "Intelligent condition monitoring of a gearbox using artificial neural network, " Mech. Syst. Signal Process., vol. 21, no. 4, pp. 1746-1754, 2007.
    • (2007) Mech. Syst. Signal Process , vol.21 , Issue.4 , pp. 1746-1754
    • Rafiee, J.1    Arvani, F.2    Harifi, A.3    Sadeghi, M.4
  • 16
    • 84861456396 scopus 로고    scopus 로고
    • Fault analysis and condition monitoring of the wind turbine gearbox
    • Jun
    • Z. Zhang, A. Verma, and A. Kusiak, "Fault analysis and condition monitoring of the wind turbine gearbox, " IEEE Trans. Energy Covers., vol. 27, no. 2, pp. 526-535, Jun. 2012.
    • (2012) IEEE Trans. Energy Covers , vol.27 , Issue.2 , pp. 526-535
    • Zhang, Z.1    Verma, A.2    Kusiak, A.3
  • 19
    • 33746237617 scopus 로고    scopus 로고
    • SIMAP: Intelligent system for predictive maintenance: Application to the health condition monitoring of awindturbine gearbox
    • M. C. Garcia, M. A. Sanz-Bobi, and J. del Pico, "SIMAP: Intelligent system for predictive maintenance: Application to the health condition monitoring of awindturbine gearbox, " Comput. Ind., vol. 57, no. 6, pp. 552-568, 2006.
    • (2006) Comput. Ind , vol.57 , Issue.6 , pp. 552-568
    • Garcia, M.C.1    Sanz-Bobi, M.A.2    Del Pico, J.3
  • 20
    • 84879676409 scopus 로고    scopus 로고
    • Supervisory control and data acquisition databased non-linear state estimation technique for wind turbine gearbox condition monitoring
    • Y. Wang and D. Infield, "Supervisory control and data acquisition databased non-linear state estimation technique for wind turbine gearbox condition monitoring, " IET Renewable Power Generation, vol. 7, no. 4, pp. 350-358, 2013.
    • (2013) IET Renewable Power Generation , vol.7 , Issue.4 , pp. 350-358
    • Wang, Y.1    Infield, D.2
  • 21
    • 84938856283 scopus 로고    scopus 로고
    • Deep learning for regulatory genomics
    • Y. Park and M. Kellis, "Deep learning for regulatory genomics, " Nature Biotechnol., vol. 33, no. 8, pp. 825-826, 2015.
    • (2015) Nature Biotechnol , vol.33 , Issue.8 , pp. 825-826
    • Park, Y.1    Kellis, M.2
  • 22
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • V. Mnih et al., "Human-level control through deep reinforcement learning, " Nature, vol. 518, no. 7540, pp. 529-533, 2015.
    • (2015) Nature , vol.518 , Issue.7540 , pp. 529-533
    • Mnih, V.1
  • 23
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning, " Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 24
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-And RNA-binding proteins by deep learning
    • B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, "Predicting the sequence specificities of DNA-And RNA-binding proteins by deep learning, " Nature Biotechnol., vol. 33, pp. 831-838, 2015.
    • (2015) Nature Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 25
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of go with deep neural networks and tree search
    • D. Silver et al., "Mastering the game of go with deep neural networks and tree search, " Nature, vol. 529, no. 7587, pp. 484-489, 2016.
    • (2016) Nature , vol.529 , Issue.7587 , pp. 484-489
    • Silver, D.1
  • 27
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • N. Srivastava et al., "Dropout: A simple way to prevent neural networks from overfitting, " J Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
    • (2014) J Mach. Learn. Res , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1
  • 28
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • N. S. Altman, "An introduction to kernel and nearest-neighbor nonparametric regression, " Amer. Statistician, vol. 46, no. 3, pp. 175-185, 1992.
    • (1992) Amer. Statistician , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 29
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso, " J. Roy. Statistical Soc. Series B, vol. 73, pp. 267-288, 1996.
    • (1996) J. Roy. Statistical Soc. Series B , vol.73 , pp. 267-288
    • Tibshirani, R.1
  • 30
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems, " Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 33
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Berlin, Germany Springer
    • T. G. Dietterich, "Ensemble methods in machine learning, " in Multiple Classifier Systems. Berlin, Germany: Springer, 2000, pp. 1-15.
    • (2000) Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.G.1
  • 35
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Berlin, Germany Springer
    • Y. Bengio, "Practical recommendations for gradient-based training of deep architectures, " in Neural Networks: Tricks of the Trade. Berlin, Germany: Springer, 2012, pp. 437-478.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1
  • 36
    • 85162467517 scopus 로고    scopus 로고
    • Hogwild: A lock-free approach to parallelizing stochastic gradient descent
    • B. Recht, C. Re, S. Wright, and F. Niu, "Hogwild: A lock-free approach to parallelizing stochastic gradient descent, " in Proc. Adv. Neural Inf. Process Syst., 2011, vol. 24, pp. 693-701.
    • (2011) Proc. Adv. Neural Inf. Process Syst , vol.24 , pp. 693-701
    • Recht, B.1    Re, C.2    Wright, S.3    Niu, F.4
  • 37
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model, " Ann. Statist., vol. 6, no. 2, pp. 461-464, 1978.
    • (1978) Ann. Statist , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 38
    • 84872012577 scopus 로고    scopus 로고
    • Degrees of freedom in lasso problems
    • R. J. Tibshirani and J. Taylor, "Degrees of freedom in lasso problems, " Ann. Statist., vol. 40, no. 2, pp. 1198-1232, 2012.
    • (2012) Ann. Statist , vol.40 , Issue.2 , pp. 1198-1232
    • Tibshirani, R.J.1    Taylor, J.2
  • 40
    • 0030819313 scopus 로고    scopus 로고
    • Designing a multivariate EWMA control chart
    • S. S. Prabhu and G. C. Runger, "Designing a multivariate EWMA control chart, " J. Quality Technol., vol. 29, no. 1, pp. 8-15, 1997.
    • (1997) J. Quality Technol , vol.29 , Issue.1 , pp. 8-15
    • Prabhu, S.S.1    Runger, G.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.