메뉴 건너뛰기




Volumn 238, Issue , 2017, Pages 13-23

Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis

Author keywords

Aircraft fuel system; Deep belief network; Failure mode; Fault diagnosis; Quantum inspired neural network

Indexed keywords

AIRCRAFT; AIRCRAFT FUELING; AIRCRAFT FUELS; DEEP NEURAL NETWORKS; FAILURE ANALYSIS; FAILURE MODES; FAULT DETECTION; FUEL SYSTEMS;

EID: 85011575282     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2017.01.032     Document Type: Article
Times cited : (85)

References (47)
  • 3
    • 0042154177 scopus 로고    scopus 로고
    • Model-based system monitoring and diagnosis of failures using Statecharts and fault trees
    • [3] Papadopoulos, Y., Model-based system monitoring and diagnosis of failures using Statecharts and fault trees. Reliab. Eng. Syst. Saf. 81 (2003), 325–341.
    • (2003) Reliab. Eng. Syst. Saf. , vol.81 , pp. 325-341
    • Papadopoulos, Y.1
  • 4
    • 61349149278 scopus 로고    scopus 로고
    • Integrated system fault diagnostics utilising digraph and fault tree-based approaches
    • [4] Bartlett, L.M., Hurdle, E.E., Kelly, E.M., Integrated system fault diagnostics utilising digraph and fault tree-based approaches. Reliab. Eng. Syst. Saf. 94 (2009), 1107–1115.
    • (2009) Reliab. Eng. Syst. Saf. , vol.94 , pp. 1107-1115
    • Bartlett, L.M.1    Hurdle, E.E.2    Kelly, E.M.3
  • 5
    • 60149111840 scopus 로고    scopus 로고
    • Practical implementation of diagnosis systems using timed failure propagation graph models
    • [5] Abdelwahed, S., Karsai, G., Mahadevan, N., Ofsthun, S.C., Practical implementation of diagnosis systems using timed failure propagation graph models. IEEE Trans. Instrum. Meas. 58 (2008), 240–247.
    • (2008) IEEE Trans. Instrum. Meas. , vol.58 , pp. 240-247
    • Abdelwahed, S.1    Karsai, G.2    Mahadevan, N.3    Ofsthun, S.C.4
  • 7
    • 0029272121 scopus 로고
    • On quantum neural computing
    • [7] Kak, S., On quantum neural computing. Inf. Sci. 83 (1995), 143–160.
    • (1995) Inf. Sci. , vol.83 , pp. 143-160
    • Kak, S.1
  • 8
    • 0033688636 scopus 로고    scopus 로고
    • A network model based on qubit like neuron corresponding to quantum circuit
    • [8] Matsui, N., Takai, M., Nishimura, H., A network model based on qubit like neuron corresponding to quantum circuit. Electron. Commun. Jpn. 83:10 (2000), 67–73.
    • (2000) Electron. Commun. Jpn. , vol.83 , Issue.10 , pp. 67-73
    • Matsui, N.1    Takai, M.2    Nishimura, H.3
  • 9
    • 39649102562 scopus 로고    scopus 로고
    • Learning algorithm and application of quantum bp neural networks based on universal quantum gates
    • [9] Li, P., Li, S., Learning algorithm and application of quantum bp neural networks based on universal quantum gates. J. Syst. Eng. Electron. 19:1 (2008), 167–174.
    • (2008) J. Syst. Eng. Electron. , vol.19 , Issue.1 , pp. 167-174
    • Li, P.1    Li, S.2
  • 10
    • 84880926625 scopus 로고    scopus 로고
    • Single-hidden-layer feed-forward quantum neural network based on grover learning
    • [10] Liu, C., Chen, C., Chang, C., Shih, L., Single-hidden-layer feed-forward quantum neural network based on grover learning. Neural Netw.(45), 2013, 144–150.
    • (2013) Neural Netw. , Issue.45 , pp. 144-150
    • Liu, C.1    Chen, C.2    Chang, C.3    Shih, L.4
  • 11
    • 84940614757 scopus 로고    scopus 로고
    • Evaluating quantum neural network filtered motor imagery brain-computer interface using multiple classification techniques
    • [11] Gandhi, V., Prasad, G., Coyle, D., Behera, L., McGinnity, T., Evaluating quantum neural network filtered motor imagery brain-computer interface using multiple classification techniques. Neurocomputing 170 (2015), 161–167.
    • (2015) Neurocomputing , vol.170 , pp. 161-167
    • Gandhi, V.1    Prasad, G.2    Coyle, D.3    Behera, L.4    McGinnity, T.5
  • 12
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • [12] Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 13
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • [13] Salakhutdinov, R., Hinton, G., An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24:8 (2012), 1967–2006.
    • (2012) Neural Comput. , vol.24 , Issue.8 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • [14] Hinton, G.E., Osindero, S., Teh, Y., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 15
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • [15] Tamilselvan, P., Wang, P., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013), 124–135.
    • (2013) Reliab. Eng. Syst. Saf. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • [16] Hinton, G., Salakhutdinov, R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 17
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann machines and deep belief networks
    • [17] Roux, N., Bengio, Y., Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 20:6 (2008), 1631–1649.
    • (2008) Neural Comput. , vol.20 , Issue.6 , pp. 1631-1649
    • Roux, N.1    Bengio, Y.2
  • 18
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • [18] Ackley, D., Hinton, G., Sejnowski, T., A learning algorithm for Boltzmann machines. Cogn. Sci. 9 (1985), 147–169.
    • (1985) Cogn. Sci. , vol.9 , pp. 147-169
    • Ackley, D.1    Hinton, G.2    Sejnowski, T.3
  • 19
    • 84927125365 scopus 로고    scopus 로고
    • Identifying informative risk factors and predicting bone disease progression via deep belief networks
    • [19] Li, H., Li, X., Ramanathan, M., Zhang, A., Identifying informative risk factors and predicting bone disease progression via deep belief networks. Methods 69 (2014), 257–265.
    • (2014) Methods , vol.69 , pp. 257-265
    • Li, H.1    Li, X.2    Ramanathan, M.3    Zhang, A.4
  • 20
    • 84907500988 scopus 로고    scopus 로고
    • Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
    • [20] Huang, W., Song, G., Hong, H., Xie, K., Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15 (2014), 2191–2201.
    • (2014) IEEE Trans. Intell. Transp. Syst. , vol.15 , pp. 2191-2201
    • Huang, W.1    Song, G.2    Hong, H.3    Xie, K.4
  • 21
    • 84941568219 scopus 로고    scopus 로고
    • Quantized H infinity filtering for continuous-time markovian jump systems with deficient mode information
    • [21] Wei, Y., Qiu, J., Karimi, H., Quantized H infinity filtering for continuous-time markovian jump systems with deficient mode information. Asian J Control. 17 (2015), 1914–1923.
    • (2015) Asian J Control. , vol.17 , pp. 1914-1923
    • Wei, Y.1    Qiu, J.2    Karimi, H.3
  • 22
    • 84934438129 scopus 로고    scopus 로고
    • Model approximation for two-dimensional markovian jump systems with state-delays and imperfect mode information
    • [22] Wei, Y., Qiu, J., Karimi, H., Wang, M., Model approximation for two-dimensional markovian jump systems with state-delays and imperfect mode information. Multid. Syst. Sign Process. 26 (2015), 575–597.
    • (2015) Multid. Syst. Sign Process. , vol.26 , pp. 575-597
    • Wei, Y.1    Qiu, J.2    Karimi, H.3    Wang, M.4
  • 23
    • 84908240052 scopus 로고    scopus 로고
    • New results on H infinity dynamic output feedback control for markovian jump systems with time-varying delay and defective mode information
    • [23] Wei, Y., Qiu, J., Karimi, H., Wang, M., New results on H infinity dynamic output feedback control for markovian jump systems with time-varying delay and defective mode information. Optim. Control appl. Met. 35 (2014), 656–675.
    • (2014) Optim. Control appl. Met. , vol.35 , pp. 656-675
    • Wei, Y.1    Qiu, J.2    Karimi, H.3    Wang, M.4
  • 24
    • 0001044763 scopus 로고    scopus 로고
    • Nonlinear quantum mechanics implies polynomial-time solution for np-complete and #p problems
    • [24] Abrams, D., Lloyd, S., Nonlinear quantum mechanics implies polynomial-time solution for np-complete and #p problems. Phys. Rev. Lett. 18 (1998), 3992–3995.
    • (1998) Phys. Rev. Lett. , vol.18 , pp. 3992-3995
    • Abrams, D.1    Lloyd, S.2
  • 25
    • 84957590698 scopus 로고    scopus 로고
    • Quantum perceptron over a field and neural network architecture selection in a quantum computer
    • [25] da Silva, A., Ludermir, T., de Oliveira, W., Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Netw. 76 (2016), 55–64.
    • (2016) Neural Netw. , vol.76 , pp. 55-64
    • da Silva, A.1    Ludermir, T.2    de Oliveira, W.3
  • 26
    • 82455199211 scopus 로고    scopus 로고
    • Classical and superposed learning for quantum weightless neural networks
    • [26] da Silva, A., de Oliveira, W., Ludermir, T., Classical and superposed learning for quantum weightless neural networks. Neurocomputing 75 (2012), 52–60.
    • (2012) Neurocomputing , vol.75 , pp. 52-60
    • da Silva, A.1    de Oliveira, W.2    Ludermir, T.3
  • 28
    • 84958602535 scopus 로고    scopus 로고
    • Weightless neural network parameters and architecture selection in a quantum computer
    • [28] da Silva, A., de Oliveira, W., Ludermir, T., Weightless neural network parameters and architecture selection in a quantum computer. Neurocomputing 183 (2016), 13–22.
    • (2016) Neurocomputing , vol.183 , pp. 13-22
    • da Silva, A.1    de Oliveira, W.2    Ludermir, T.3
  • 29
    • 84878909063 scopus 로고    scopus 로고
    • A hybrid quantum-inspired neural networks with sequence inputs
    • [29] Li, P., Xiao, H., Shang, F., Tong, X., X. Li, M.C., A hybrid quantum-inspired neural networks with sequence inputs. Neurocomputing 117 (2013), 81–90.
    • (2013) Neurocomputing , vol.117 , pp. 81-90
    • Li, P.1    Xiao, H.2    Shang, F.3    Tong, X.4    X. Li, M.C.5
  • 30
    • 22244451025 scopus 로고    scopus 로고
    • Qubit neural network and its learning efficiency
    • [30] Kouda, N., Matsui, N., Nishimura, H., Peper, F., Qubit neural network and its learning efficiency. Neural Comput. Appl. 14:2 (2013), 114–121.
    • (2013) Neural Comput. Appl. , vol.14 , Issue.2 , pp. 114-121
    • Kouda, N.1    Matsui, N.2    Nishimura, H.3    Peper, F.4
  • 31
    • 33750577197 scopus 로고    scopus 로고
    • Model and training of qnn with weight
    • [31] Righi, Z., Nan, J., Qiulin, D., Model and training of qnn with weight. Neural Process. Lett. 24:3 (2006), 261–269.
    • (2006) Neural Process. Lett. , vol.24 , Issue.3 , pp. 261-269
    • Righi, Z.1    Nan, J.2    Qiulin, D.3
  • 32
    • 0031142488 scopus 로고    scopus 로고
    • Quantum neural networks QNN's: inherently fuzzy feedforward neural networks
    • [32] Purushothaman, G., Karayiannis, N., Quantum neural networks QNN's: inherently fuzzy feedforward neural networks. IEEE Trans. Neural Netw. 8:3 (1997), 679–693.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.3 , pp. 679-693
    • Purushothaman, G.1    Karayiannis, N.2
  • 33
    • 77955087595 scopus 로고    scopus 로고
    • New delay-dependent exponential h-infinity synchronization for uncertain neural networks with mixed time delays
    • [33] Karimi, H., Gao, H., New delay-dependent exponential h-infinity synchronization for uncertain neural networks with mixed time delays. IEEE Trans. Syst. Man Cyber. 40 (2011), 173–185.
    • (2011) IEEE Trans. Syst. Man Cyber. , vol.40 , pp. 173-185
    • Karimi, H.1    Gao, H.2
  • 36
    • 0035659877 scopus 로고    scopus 로고
    • Learning efficiency improvement of back-propagation algorithm by error saturation prevention method
    • [36] Lee, H., Chen, C., Huang, T., Learning efficiency improvement of back-propagation algorithm by error saturation prevention method. Neurocomputing 41 (2002), 125–143.
    • (2002) Neurocomputing , vol.41 , pp. 125-143
    • Lee, H.1    Chen, C.2    Huang, T.3
  • 37
    • 84888062344 scopus 로고    scopus 로고
    • Dynamic neural network-based fault diagnosis of gas turbine engines
    • [37] Bathaie, S., Vanini, Z., Khorasani, K., Dynamic neural network-based fault diagnosis of gas turbine engines. Neurocomputing 125 (2014), 153–165.
    • (2014) Neurocomputing , vol.125 , pp. 153-165
    • Bathaie, S.1    Vanini, Z.2    Khorasani, K.3
  • 38
    • 84904768905 scopus 로고    scopus 로고
    • Fault detection, isolation, and tolerant control of vehicles using soft computing methods
    • [38] Karimi, H., Chadl, M., Shi, P., Fault detection, isolation, and tolerant control of vehicles using soft computing methods. IET Control Theory A. 8 (2014), 655–657.
    • (2014) IET Control Theory A. , vol.8 , pp. 655-657
    • Karimi, H.1    Chadl, M.2    Shi, P.3
  • 40
    • 0003408496 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases
    • Department of Information and Computer Sciences, University of California, Irvine, USA
    • [40] Blake, C., Merz, C., UCI Repository of Machine Learning Databases. 1998, Department of Information and Computer Sciences, University of California, Irvine, USA http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998)
    • Blake, C.1    Merz, C.2
  • 42
    • 85014473122 scopus 로고    scopus 로고
    • Model based diagnostic of motor and pumps, Doctoral Dissertation
    • Texas University
    • [42] Choi, J., Model based diagnostic of motor and pumps, Doctoral Dissertation. 12, 2006, Texas University, 32–35.
    • (2006) , vol.12 , pp. 32-35
    • Choi, J.1
  • 43
    • 84940118603 scopus 로고    scopus 로고
    • Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis
    • [43] Wong, P.K., Zhong, J.H., Yang, Z.X., Vong, C.M., Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis. Neurocomputing 174 (2016), 331–343.
    • (2016) Neurocomputing , vol.174 , pp. 331-343
    • Wong, P.K.1    Zhong, J.H.2    Yang, Z.X.3    Vong, C.M.4
  • 44
    • 84947036429 scopus 로고    scopus 로고
    • A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion
    • [44] Qu, J., Zhang, Z.S., Gong, T., A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion. Neurocomputing 171 (2016), 837–853.
    • (2016) Neurocomputing , vol.171 , pp. 837-853
    • Qu, J.1    Zhang, Z.S.2    Gong, T.3
  • 46
    • 84921481430 scopus 로고    scopus 로고
    • Passivity of switched recurrent neural networks with time-varying delays
    • [46] Lian, J., Wang, J., Passivity of switched recurrent neural networks with time-varying delays. IEEE Trans. Neural Netw. 26 (2015), 357–366.
    • (2015) IEEE Trans. Neural Netw. , vol.26 , pp. 357-366
    • Lian, J.1    Wang, J.2
  • 47
    • 84949034478 scopus 로고    scopus 로고
    • Fault detection for switched positive systems under successive packet dropouts with application to the leslie matrix model
    • [47] Wang, D., Wang, Z., Li, G., Wang, W., Fault detection for switched positive systems under successive packet dropouts with application to the leslie matrix model. Int. J. Robust Nonlin. 26 (2016), 2807–2823.
    • (2016) Int. J. Robust Nonlin. , vol.26 , pp. 2807-2823
    • Wang, D.1    Wang, Z.2    Li, G.3    Wang, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.