메뉴 건너뛰기




Volumn 2016, Issue , 2016, Pages

Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning and Sound Signals

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; BEARINGS (MACHINE PARTS); CHARACTER RECOGNITION; CLASSIFICATION (OF INFORMATION); FACE RECOGNITION; FAILURE ANALYSIS; FOURIER SERIES; IMAGE CLASSIFICATION; IMAGE RECOGNITION; LEARNING SYSTEMS; ROLLER BEARINGS; SPEECH RECOGNITION; TEXT PROCESSING;

EID: 84988723839     PISSN: 10709622     EISSN: None     Source Type: Journal    
DOI: 10.1155/2016/6127479     Document Type: Article
Times cited : (196)

References (26)
  • 1
    • 0033747150 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery through visualisation of sound signals
    • K. Shibata, A. Takahashi, and T. Shirai, "Fault diagnosis of rotating machinery through visualisation of sound signals," Mechanical Systems and Signal Processing, vol. 14,no. 2, pp. 229-241, 2000
    • (2000) Mechanical Systems and Signal Processing , vol.14 , Issue.2 , pp. 229-241
    • Shibata, K.1    Takahashi, A.2    Shirai, T.3
  • 2
    • 0035148056 scopus 로고    scopus 로고
    • Feature extraction of machine sound using wavelet and its application in fault diagnosis
    • J. Lin, "Feature extraction of machine sound using wavelet and its application in fault diagnosis," NDT & E International, vol. 34, no. 1, pp. 25-30, 2001
    • (2001) NDT & e International , vol.34 , Issue.1 , pp. 25-30
    • Lin, J.1
  • 3
    • 4344660716 scopus 로고    scopus 로고
    • Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings
    • D. Yu, J. Cheng, and Y. Yang, "Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings," Mechanical Systems and Signal Processing, vol. 19, no. 2, pp. 259-270, 2005
    • (2005) Mechanical Systems and Signal Processing , vol.19 , Issue.2 , pp. 259-270
    • Yu, D.1    Cheng, J.2    Yang, Y.3
  • 4
    • 84862998489 scopus 로고    scopus 로고
    • A new wind turbine fault diagnosis method based on the local mean decomposition
    • W. Y. Liu, W. H. Zhang, J. G. Han, and G. F. Wang, "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, vol. 48, pp. 411-415, 2012
    • (2012) Renewable Energy , vol.48 , pp. 411-415
    • Liu, W.Y.1    Zhang, W.H.2    Han, J.G.3    Wang, G.F.4
  • 5
    • 84925960336 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis based on LCD-TEO and multifractal detrended fluctuation analysis
    • H. Liu, X. Wang, and C. Lu, "Rolling bearing fault diagnosis based on LCD-TEO and multifractal detrended fluctuation analysis," Mechanical Systems and Signal Processing, vol. 60, pp. 273-288, 2015
    • (2015) Mechanical Systems and Signal Processing , vol.60 , pp. 273-288
    • Liu, H.1    Wang, X.2    Lu, C.3
  • 6
    • 33845472656 scopus 로고    scopus 로고
    • Decision tree and PCA-based fault diagnosis of rotatingmachinery
    • W. Sun, J. Chen, and J. Li, "Decision tree and PCA-based fault diagnosis of rotatingmachinery,"Mechanical Systems and Signal Processing, vol. 21, no. 3, pp. 1300-1317, 2007
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.3 , pp. 1300-1317
    • Sun, W.1    Chen, J.2    Li, J.3
  • 8
    • 78650320165 scopus 로고    scopus 로고
    • The fault diagnosis approach for gears using multidimensional features and intelligent classifier
    • Z. Li, X. Yan, C. Yuan, J. Zhao, and Z. Peng, "The fault diagnosis approach for gears using multidimensional features and intelligent classifier," Noise & Vibration Worldwide, vol. 41, no. 10, pp. 76-86, 2010
    • (2010) Noise & Vibration Worldwide , vol.41 , Issue.10 , pp. 76-86
    • Li, Z.1    Yan, X.2    Yuan, C.3    Zhao, J.4    Peng, Z.5
  • 9
    • 77950976748 scopus 로고    scopus 로고
    • Fault diagnosis approach based on fractal dimension LLE and Fisher discriminant
    • Z. Wei, Z. Weijia, and L. Bin, "Fault diagnosis approach based on fractal dimension LLE and Fisher discriminant," Chinese Journal of Scientific Instrument, vol. 31, no. 2, pp. 325-333, 2010
    • (2010) Chinese Journal of Scientific Instrument , vol.31 , Issue.2 , pp. 325-333
    • Wei, Z.1    Weijia, Z.2    Bin, L.3
  • 10
    • 78650903150 scopus 로고    scopus 로고
    • Fault diagnosis method based on supervised incremental local tangent space alignment and SVM
    • G. B. Wang, X. Q. Zhao, and Y. H. He, "Fault diagnosis method based on supervised incremental local tangent space alignment and SVM," Applied Mechanics and Materials, vol. 34-35, pp. 1233-1237, 2010
    • (2010) Applied Mechanics and Materials , vol.34-35 , pp. 1233-1237
    • Wang G, B.1    Zhao, X.Q.2    He, Y.H.3
  • 12
    • 78649601452 scopus 로고    scopus 로고
    • Application of data mining and feature extraction on intelligent fault diagnosis by artificial neural network and k-nearest neighbor
    • IEEE, Rome, Italy, September
    • B. Bagheri, H. Ahmadi, and R. Labbafi, "Application of data mining and feature extraction on intelligent fault diagnosis by artificial neural network and k-nearest neighbor," in Proceedings of the 19th International Conference on Electrical Machines (ICEM '10), pp. 1-7, IEEE, Rome, Italy, September 2010
    • (2010) Proceedings of the 19th International Conference on Electrical Machines (ICEM '10) , pp. 1-7
    • Bagheri, B.1    Ahmadi, H.2    Labbafi, R.3
  • 13
    • 2342561881 scopus 로고    scopus 로고
    • A method for intelligent fault diagnosis of rotating machinery
    • C. Chen and C. Mo, "A method for intelligent fault diagnosis of rotating machinery," Digital Signal Processing, vol. 14, no. 3, pp. 203-217, 2004
    • (2004) Digital Signal Processing , vol.14 , Issue.3 , pp. 203-217
    • Chen, C.1    Mo, C.2
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 16844376435 scopus 로고    scopus 로고
    • Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application
    • M. K. Kymk, I. Güler, A. Dizibüyük, and M. Akin, "Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application," Computers in Biology and Medicine, vol. 35, no. 7, pp. 603-616, 2005
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.7 , pp. 603-616
    • Kymk, M.K.1    Güler, I.2    Dizibüyük, A.3    Akin, M.4
  • 16
    • 0037189707 scopus 로고    scopus 로고
    • Comparison between discrete STFT and wavelets for the analysis of power quality events
    • F. Jurado and J. R. Saenz, "Comparison between discrete STFT and wavelets for the analysis of power quality events," Electric Power Systems Research, vol. 62, no. 3, pp. 183-190, 2002
    • (2002) Electric Power Systems Research , vol.62 , Issue.3 , pp. 183-190
    • Jurado, F.1    Saenz, J.R.2
  • 17
    • 0027588975 scopus 로고
    • Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model
    • L. Deng and I. Kheirallah, "Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model," IEEE Transactions on Biomedical Engineering, vol. 40, no. 5, pp. 456-467, 1993
    • (1993) IEEE Transactions on Biomedical Engineering , vol.40 , Issue.5 , pp. 456-467
    • Deng, L.1    Kheirallah, I.2
  • 18
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, no. 6088, pp. 533-536, 1986
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 19
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Y. Bengio and Y. LeCun, "Scaling learning algorithms towards AI," Large-Scale Kernel Machines, vol. 34, no. 5, pp. 1-41, 2007
    • (2007) Large-Scale Kernel Machines , vol.34 , Issue.5 , pp. 1-41
    • Bengio, Y.1    LeCun, Y.2
  • 22
    • 84988706843 scopus 로고    scopus 로고
    • Unsupervised Feature Learning and Deep Learning (UFLDL)
    • Unsupervised Feature Learning and Deep Learning (UFLDL), 2011, http://deeplearning. stanford. edu/wiki/index. php/UFLDL Tutorial
    • (2011)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.