-
1
-
-
84926319635
-
Big data for modern industry: Challenges and trends [point of view]
-
Feb.
-
S. Yin and O. Kaynak, "Big data for modern industry: Challenges and trends [point of view], " Proc. IEEE, vol. 103, no. 2, pp. 143-146, Feb. 2015.
-
(2015)
Proc. IEEE
, vol.103
, Issue.2
, pp. 143-146
-
-
Yin, S.1
Kaynak, O.2
-
2
-
-
84877789646
-
Convolutional-recursive deep learning for 3D object classification
-
R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng, "Convolutional-recursive deep learning for 3D object classification, " in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 665-673.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 665-673
-
-
Socher, R.1
Huval, B.2
Bath, B.3
Manning, C.D.4
Ng, A.Y.5
-
3
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning, " Nature, vol. 521, no. 7553, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
4
-
-
84890491198
-
Recent advances in deep learning for speech research at Microsoft
-
May
-
L. Deng et al., "Recent advances in deep learning for speech research at Microsoft, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2013, pp. 8604-8608.
-
(2013)
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP)
, pp. 8604-8608
-
-
Deng, L.1
-
5
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov.
-
G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, " IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
6
-
-
84982792319
-
Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
-
Jan.
-
C. Lu, Z.-Y. Wang, W.-L. Qin, and J. Ma, "Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification, " Signal Process., vol. 130, pp. 377-388, Jan. 2017.
-
(2017)
Signal Process.
, vol.130
, pp. 377-388
-
-
Lu, C.1
Wang, Z.-Y.2
Qin, W.-L.3
Ma, J.4
-
7
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
May
-
F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, " Mech. Syst. Signal Process., vols. 72-73, pp. 303-315, May 2016.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
8
-
-
84978805885
-
Fault diag-nosis of hydraulic pump based on stacked autoencoders
-
Jul.
-
Z. Huijie, R. Ting, W. Xinqing, Z. You, and F. Husheng, "Fault diag-nosis of hydraulic pump based on stacked autoencoders, " in Proc. 12th IEEE Int. Conf. Electron. Meas. Instrum. (ICEMI), vol. 1. Jul. 2015, pp. 58-62.
-
(2015)
Proc. 12th IEEE Int. Conf. Electron. Meas. Instrum. (ICEMI)
, vol.1
, pp. 58-62
-
-
Huijie, Z.1
Ting, R.2
Xinqing, W.3
You, Z.4
Husheng, F.5
-
9
-
-
84962118969
-
Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitor-ing
-
Jan.
-
L. Guo, H. Gao, H. Huang, X. He, and S. Li, "Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitor-ing, " Shock Vibrat., vol. 2016, Jan. 2016, Art. no. 4632562.
-
(2016)
Shock Vibrat.
, vol.2016
-
-
Guo, L.1
Gao, H.2
Huang, H.3
He, X.4
Li, S.5
-
10
-
-
84888870402
-
Intelli-Gent condition based monitoring of rotating machines using sparse auto-encoders
-
Jun.
-
N. K. Verma, V. K. Gupta, M. Sharma, and R. K. Sevakula, "Intelli-gent condition based monitoring of rotating machines using sparse auto-encoders, " in Proc. IEEE Conf. Prognostics Health Manage. (PHM), Jun. 2013, pp. 1-7.
-
(2013)
Proc. IEEE Conf. Prognostics Health Manage. (PHM)
, pp. 1-7
-
-
Verma, N.K.1
Gupta, V.K.2
Sharma, M.3
Sevakula, R.K.4
-
11
-
-
85013858722
-
A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
-
W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, "A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals, " Sensors, vol. 17, no. 2, p. 425, 2017.
-
(2017)
Sensors
, vol.17
, Issue.2
, pp. 425
-
-
Zhang, W.1
Peng, G.2
Li, C.3
Chen, Y.4
Zhang, Z.5
-
12
-
-
84919933755
-
Vibration spectrum imag-ing: A novel bearing fault classification approach
-
Jan.
-
M. Amar, I. Gondal, and C. Wilson, "Vibration spectrum imag-ing: A novel bearing fault classification approach, " IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 494-502, Jan. 2015.
-
(2015)
IEEE Trans. Ind. Electron.
, vol.62
, Issue.1
, pp. 494-502
-
-
Amar, M.1
Gondal, I.2
Wilson, C.3
-
13
-
-
84992499952
-
Merging Kalman filtering and zonotopic state bounding for robust fault detection under noisy environment
-
C. Combastel, "Merging Kalman filtering and zonotopic state bounding for robust fault detection under noisy environment, " IFAC-PapersOnLine, vol. 48, no. 21, pp. 289-295, 2015.
-
(2015)
IFAC-PapersOnLine
, vol.48
, Issue.21
, pp. 289-295
-
-
Combastel, C.1
-
15
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Feb.
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, "Why does unsupervised pre-training help deep learning?" J. Mach. Learn. Res., vol. 11, pp. 625-660, Feb. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
Jun.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84944735469
-
-
1st ed. Cambridge, MA, USA: MIT Press
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st ed. Cambridge, MA, USA: MIT Press, 2017.
-
(2017)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
19
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Jul.
-
P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, "Extracting and composing robust features with denoising autoencoders, " in Proc. ACM 25th Int. Conf. Mach. Learn., Jul. 2008, pp. 1096-1103.
-
(2008)
Proc. ACM 25th Int. Conf. Mach. Learn.
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
-
20
-
-
84862294866
-
Deep sparse rectifier neural net-works
-
Apr.
-
X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural net-works, " in Proc. Aistats, Apr. 2011, vol. 15. no. 106, pp. 315-323.
-
(2011)
Proc. Aistats
, vol.15
, Issue.106
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
21
-
-
2942525326
-
Bearing fault diagnosis based on wavelet transform and fuzzy inference
-
X. Lou and K. A. Loparo, "Bearing fault diagnosis based on wavelet transform and fuzzy inference, " Mech. Syst. Signal Process., vol. 18, no. 5, pp. 1077-1095, 2004.
-
(2004)
Mech. Syst. Signal Process.
, vol.18
, Issue.5
, pp. 1077-1095
-
-
Lou, X.1
Loparo, K.A.2
|