-
1
-
-
84885647697
-
Ensemble neural network-based particle filtering for prognostics
-
Baraldi, P., Compare, M., Sauco, S., & Zio, E. (2013). Ensemble neural network-based particle filtering for prognostics. Mechanical Systems and Signal Processing, vol. 41, no. 1, pp. 288-300.
-
(2013)
Mechanical Systems and Signal Processing
, vol.41
, Issue.1
, pp. 288-300
-
-
Baraldi, P.1
Compare, M.2
Sauco, S.3
Zio, E.4
-
2
-
-
84870554246
-
A kalman filterbased ensemble approach with application to turbin creep prognostics
-
Baraldi, P., Mangili, F., & Zio, E. (2012). A kalman filterbased ensemble approach with application to turbin creep prognostics. IEEE Transactions Reliability, vol. 61, pp. 966 - 977.
-
(2012)
IEEE Transactions Reliability
, vol.61
, pp. 966-977
-
-
Baraldi, P.1
Mangili, F.2
Zio, E.3
-
3
-
-
84920517067
-
A state space model for vibration based prognostics
-
Portland, OR, October
-
Bechhoefer, E., Clark, S., & He, D. (2010). A state space model for vibration based prognostics. Proceedings of the 2010 Annual Conference of the Prognostics and Health Management Society, Portland, OR, October 10-16.
-
(2010)
Proceedings of the 2010 Annual Conference of the Prognostics and Health Management Society
, pp. 10-16
-
-
Bechhoefer, E.1
Clark, S.2
He, D.3
-
4
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A. & Vincent, P. (2013). Representation learning: A review and new perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
5
-
-
80051722734
-
Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering
-
Chen, C., Zhang, B., Vachtsevanos, G., & Orchard, M. (2011). Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering. IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4353-4364.
-
(2011)
IEEE Transactions on Industrial Electronics
, vol.58
, Issue.9
, pp. 4353-4364
-
-
Chen, C.1
Zhang, B.2
Vachtsevanos, G.3
Orchard, M.4
-
6
-
-
84980319980
-
Machine fault classification using deep belief network
-
Taipei, Taiwan
-
Chen, Z., Zeng, X., Li, W., & Liao, G (2016). Machine fault classification using deep belief network, 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, pp. 1-6.
-
(2016)
2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings
, pp. 1-6
-
-
Chen, Z.1
Zeng, X.2
Li, W.3
Liao, G.4
-
7
-
-
84887081561
-
Model-based prognostics with concurrent damage progression processes
-
Daigle, M. J. and Goebel, K. (2013). Model-based prognostics with concurrent damage progression processes. IEEE Transactions on Systems, Man, Cybernetics, vol. 43, no. 3, pp. 535-546.
-
(2013)
IEEE Transactions on Systems, Man, Cybernetics
, vol.43
, Issue.3
, pp. 535-546
-
-
Daigle, M.J.1
Goebel, K.2
-
9
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E, Osindero, S., & The, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computing, vol. 18, no. 7, pp.1527-1554.
-
(2006)
Neural Computing
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
The, Y.-W.3
-
10
-
-
84950990635
-
Forecasting the weather of Nevada: A deep learning approach
-
Hossain, M., Rekabdar, B., Louis, S. J., & Dascalu, S. (2015). Forecasting the weather of Nevada: A deep learning approach. International Joint Conference on Neural Networks (IJCNN), vol., no., pp.1-6.
-
(2015)
International Joint Conference on Neural Networks (IJCNN)
, pp. 1-6
-
-
Hossain, M.1
Rekabdar, B.2
Louis, S.J.3
Dascalu, S.4
-
12
-
-
84871216534
-
Hybrid ceramic bearing prognostics using particle filtering
-
Huntsville, AL, April 13 - 15
-
Li, R., Ma, J., Panyala, A., & He, D. (2010). Hybrid ceramic bearing prognostics using particle filtering. Proceedings of the 2010 Conference of the Society for Machinery Failure Prevention Technology, Huntsville, AL, April 13 - 15, pp. 57 - 69.
-
(2010)
Proceedings of the 2010 Conference of the Society for Machinery Failure Prevention Technology
, pp. 57-69
-
-
Li, R.1
Ma, J.2
Panyala, A.3
He, D.4
-
13
-
-
84920540888
-
Estimation of remaining useful life based on switching kalman filter neural network ensemble
-
Fort Worth, TX
-
Lim, P., Goh, C. K., Tan, K. C., & Dutta, P. (2014). Estimation of remaining useful life based on switching kalman filter neural network ensemble. Proceedings of the 2014 Annual Conference of the Prognostics and Health Management Society, Fort Worth, TX, pp. 2-9.
-
(2014)
Proceedings of the 2014 Annual Conference of the Prognostics and Health Management Society
, pp. 2-9
-
-
Lim, P.1
Goh, C.K.2
Tan, K.C.3
Dutta, P.4
-
14
-
-
85027926799
-
Traffic flow prediction with big data: A deep learning approach
-
Lv, Y., Duan, Y., Kang, W. Li, Z., Fei-Yue Wang, F.-Y. (2015). Traffic flow prediction with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation Systems, vol.16, no.2, pp.865-873.
-
(2015)
IEEE Transactions on Intelligent Transportation Systems
, vol.16
, Issue.2
, pp. 865-873
-
-
Lv, Y.1
Duan, Y.2
Kang Li, W.Z.3
Fei-Yue Wang, F.-Y.4
-
15
-
-
79951660524
-
Prognosis of defect propagation based on recurrent neural networks
-
Malhi, A., Yan, R., & Gao, R. X. (2011). Prognosis of defect propagation based on recurrent neural networks. IEEE Transactions on Instrument and Measurement, vol. 60, no. 3, pp. 703-711.
-
(2011)
IEEE Transactions on Instrument and Measurement
, vol.60
, Issue.3
, pp. 703-711
-
-
Malhi, A.1
Yan, R.2
Gao, R.X.3
-
16
-
-
84906738648
-
Multilayer perceptron and stacked autoencoder for Internet traffic prediction
-
Oliveira, T. P., Barbar, J. S., Soares, A. S. (2014). Multilayer perceptron and stacked autoencoder for Internet traffic prediction. Network and Parallel Computing, vol. 8707 of the series Lecture Notes in Computer Science, pp. 61-71.
-
(2014)
Network and Parallel Computing, Vol 8707 of the Series Lecture Notes in Computer Science
, pp. 61-71
-
-
Oliveira, T.P.1
Barbar, J.S.2
Soares, A.S.3
-
17
-
-
84946064662
-
Rolling bearing fault diagnosis using an optimization deep belief network
-
Shao, H., Jiang, H., Zhang, X., & Niu, M. (2015). Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science and Technology, Volume 26, Number 11.
-
(2015)
Measurement Science and Technology
, vol.26
, Issue.11
-
-
Shao, H.1
Jiang, H.2
Zhang, X.3
Niu, M.4
-
18
-
-
84983098281
-
Wind power prediction and pattern feature based on deep learning method
-
Tao, Y., Chen, H., & Qiu, C. (2014). Wind power prediction and pattern feature based on deep learning method. Power and Energy Engineering Conference (APPEEC), 2014 IEEE PES Asia-Pacific, vol., no., pp.1-4.
-
(2014)
Power and Energy Engineering Conference (APPEEC), 2014 IEEE PES Asia-Pacific
, pp. 1-4
-
-
Tao, Y.1
Chen, H.2
Qiu, C.3
-
19
-
-
84889325467
-
-
Hoboken, NJ: John Wiley & Sons, Inc
-
Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., & Wu, B. (2006). Intelligent fault diagnosis and prognosis for engineering system. Hoboken, NJ: John Wiley & Sons, Inc.
-
(2006)
Intelligent Fault Diagnosis and Prognosis for Engineering System
-
-
Vachtsevanos, G.1
Lewis, F.L.2
Roemer, M.3
Hess, A.4
Wu, B.5
|