메뉴 건너뛰기




Volumn 17, Issue 12, 2016, Pages 1287-1304

Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks

Author keywords

Deep belief networks (DBNs); Engine; Fault diagnosis; Information entropy

Indexed keywords

AIRCRAFT PROPULSION; COMPLEX NETWORKS; ENGINES; FAILURE ANALYSIS; GAS TURBINES; LEARNING SYSTEMS;

EID: 85006380247     PISSN: 20959184     EISSN: 20959230     Source Type: Journal    
DOI: 10.1631/FITEE.1601365     Document Type: Article
Times cited : (26)

References (45)
  • 1
    • 84922309789 scopus 로고    scopus 로고
    • Shannon entropy, Fisher infor-mation and uncertainty relations for log-periodic oscil-lators
    • Aguiar, V., Guedes, I., 2015. Shannon entropy, Fisher infor-mation and uncertainty relations for log-periodic oscil-lators. Phys. A, 423:72–79. http://dx.doi.org/10.1016/j.physa.2014.12.031
    • (2015) Phys. A , vol.423 , pp. 72-79
    • Aguiar, V.1    Guedes, I.2
  • 3
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Bengio, Y., 2012. Practical recommendations for gradient-based training of deep architectures. LNCS, 7700:437–478. http://dx.doi.org/10.1007/978-3-642-35289-8_26
    • (2012) LNCS , vol.7700 , pp. 437-478
    • Bengio, Y.1
  • 4
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: a review and new perspectives. IEEE Trans. Patt. Anal. Mach. Intell., 35(8):1798–1828. http://dx.doi.org/10.1109/TPAMI.2013.50
    • (2013) IEEE Trans. Patt. Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 5
    • 84872521733 scopus 로고    scopus 로고
    • Stochastic gradient descent tricks
    • Bottou, L., 2012. Stochastic gradient descent tricks. LNCS, 7700:421–436. http://dx.doi.org/10.1007/978-3-642-35289-8_25
    • (2012) LNCS , vol.7700 , pp. 421-436
    • Bottou, L.1
  • 6
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classi-fication of hyperspectral data based on deep belief net-work
    • Chen, Y.S., Zhao, X., Jia, X.P., 2015. Spectral-spatial classi-fication of hyperspectral data based on deep belief net-work. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 8(6):2381–2392. http://dx.doi.org/10.1109/JSTARS.2015.2388577
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.S.1    Zhao, X.2    Jia, X.P.3
  • 7
    • 71649087757 scopus 로고    scopus 로고
    • Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method
    • Cui, H.X., Zhang, L.B., Kang, R.Y., et al., 2009. Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method. J. Loss Prevent. Process Ind., 22(6):864–867. http://dx.doi.org/10.1016/j.jlp.2009.08.012
    • (2009) J. Loss Prevent. Process Ind. , vol.22 , Issue.6 , pp. 864-867
    • Cui, H.X.1    Zhang, L.B.2    Kang, R.Y.3
  • 8
    • 84877692843 scopus 로고    scopus 로고
    • Entropy measures and granularity measures for set-valued information systems
    • Dai, J.H., Tian, H.W., 2013. Entropy measures and granularity measures for set-valued information systems. Inform. Sci., 240:72–82. http://dx.doi.org/10.1016/j.ins.2013.03.045
    • (2013) Inform. Sci. , vol.240 , pp. 72-82
    • Dai, J.H.1    Tian, H.W.2
  • 9
    • 57149111273 scopus 로고    scopus 로고
    • Multivariate statistical process control based on principal component analysis (MSPC-PCA): some re-flections and a case study in an autobody assembly pro-cess
    • Ferrer, A., 2007. Multivariate statistical process control based on principal component analysis (MSPC-PCA): some re-flections and a case study in an autobody assembly pro-cess. Qual. Eng., 19(4):311–325. http://dx.doi.org/10.1080/08982110701621304
    • (2007) Qual. Eng. , vol.19 , Issue.4 , pp. 311-325
    • Ferrer, A.1
  • 10
    • 71649102528 scopus 로고    scopus 로고
    • A method of rotating machinery fault diagnosis based on the close degree of information entropy
    • Geng, J.B., Huang, S.H., Jin, J.S., et al., 2006. A method of rotating machinery fault diagnosis based on the close degree of information entropy. Int. J. Plant Eng. Manag., 11(3):137–144. http://dx.doi.org/10.13434/j.ckni.1007-4546.2006.03.002
    • (2006) Int. J. Plant Eng. Manag. , vol.11 , Issue.3 , pp. 137-144
    • Geng, J.B.1    Huang, S.H.2    Jin, J.S.3
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neur. Comput., 18(7):1527–1554. http://dx.doi.org/10.1162/neco.2006.18.7.1527
    • (2006) Neur. Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 13
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
    • Hinton, G.E., Deng, L., Yu, D., et al., 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Pro-cess. Mag., 29(6):82–97. http://dx.doi.org/10.1109/MSP.2012.2205597
    • (2012) IEEE Signal Pro-cess. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.E.1    Deng, L.2    Yu, D.3
  • 14
    • 84901196671 scopus 로고    scopus 로고
    • A generalized fuzzy ID3 algorithm using generalized information entropy
    • Jin, C.X., Li, F.C., Li, Y., 2014. A generalized fuzzy ID3 algorithm using generalized information entropy. Knowl.-Based Syst., 64:13–21. http://dx.doi.org/10.1016/j.knosys.2014.03.014
    • (2014) Knowl.-Based Syst. , vol.64 , pp. 13-21
    • Jin, C.X.1    Li, F.C.2    Li, Y.3
  • 15
    • 80054026530 scopus 로고    scopus 로고
    • Maximum entropy in a nonlinear system with a 1/f power spectrum
    • Koverda, V.P., Skokov, V.N., 2012. Maximum entropy in a nonlinear system with a 1/f power spectrum. Phys. A, 391(1–2):21–28. http://dx.doi.org/10.1016/j.physa.2011.07.015
    • (2012) Phys. A , vol.391 , Issue.1-2 , pp. 21-28
    • Koverda, V.P.1    Skokov, V.N.2
  • 16
    • 59449087310 scopus 로고    scopus 로고
    • Ex-ploring strategies for training deep neural networks
    • Larochelle, H., Bengio, Y., Louradour, J., et al., 2009. Ex-ploring strategies for training deep neural networks. J. Mach. Learn. Res., 10(10):1–40.
    • (2009) J. Mach. Learn. Res. , vol.10 , Issue.10 , pp. 1-40
    • Larochelle, H.1    Bengio, Y.2    Louradour, J.3
  • 17
    • 84949681785 scopus 로고    scopus 로고
    • Feature selection with partition differentiation entropy for large-scale data sets
    • Li, F.C., Zhang, Z., Jin, C.X., 2016. Feature selection with partition differentiation entropy for large-scale data sets. Inform. Sci., 329:690–700. http://dx.doi.org/10.1016/j.ins.2015.10.002
    • (2016) Inform. Sci. , vol.329 , pp. 690-700
    • Li, F.C.1    Zhang, Z.2    Jin, C.X.3
  • 18
    • 84952360853 scopus 로고    scopus 로고
    • Recognition of the optical image based on the wavelet space feature spectrum entropy
    • Li, J., 2015. Recognition of the optical image based on the wavelet space feature spectrum entropy. Optik-Int. J. Light Electron Opt., 126(23):3931–3935. http://dx.doi.org/10.1016/j.ijleo.2015.07.166
    • (2015) Optik-Int. J. Light Electron Opt. , vol.126 , Issue.23 , pp. 3931-3935
    • Li, J.1
  • 19
    • 84904332825 scopus 로고    scopus 로고
    • A new detection approach of transient disturbances combining wavelet packet and Tsallis entropy
    • Liu, Z.G., Hu, Q.L., Cui, Y., et al., 2014. A new detection approach of transient disturbances combining wavelet packet and Tsallis entropy. Neurocomputing, 142:393–407. http://dx.doi.org/10.1016/j.neucom.2014.04.020
    • (2014) Neurocomputing , vol.142 , pp. 393-407
    • Liu, Z.G.1    Hu, Q.L.2    Cui, Y.3
  • 20
    • 84872565347 scopus 로고    scopus 로고
    • Training deep and recurrent networks with Hessian-free optimization
    • Martens, J., Sutskever, I., 2012. Training deep and recurrent networks with Hessian-free optimization. LCNS, 7700:479–535. http://dx.doi.org/10.1007/978-3-642-35289-8_27
    • (2012) LCNS , vol.7700 , pp. 479-535
    • Martens, J.1    Sutskever, I.2
  • 21
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order Boltzmann machine
    • Memisevic, R., Hinton, G.E., 2010. Learning to represent spatial transformations with factored higher-order Boltzmann machine. Neur. Comput., 22(6):1473–1492. http://dx.doi.org/10.1162/neco.2010.01-09-953
    • (2010) Neur. Comput. , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 23
    • 33645025237 scopus 로고    scopus 로고
    • A method for detecting damage-induced nonlinearities in structures using information theory
    • Nichols, J.M., Seaver, M., Trickey, S.T., 2006. A method for detecting damage-induced nonlinearities in structures using information theory. J. Sound Vibr., 297(1–2):1–16. http://dx.doi.org/10.1016/j.jsv.2006.01.025
    • (2006) J. Sound Vibr. , vol.297 , Issue.1-2 , pp. 1-16
    • Nichols, J.M.1    Seaver, M.2    Trickey, S.T.3
  • 24
    • 84922895198 scopus 로고    scopus 로고
    • An improved bilinear deep belief network algorithm for image classification
    • Niu, J., Bu, X.Z., Li, Z., et al., 2014. An improved bilinear deep belief network algorithm for image classification. 10th Int. Conf. on Computational Intelligence and Secu-rity, p.189–192. http://dx.doi.org/10.1109/CIS.2014.38
    • (2014) 10th Int. Conf. on Computational Intelligence and Secu-rity , pp. 189-192
    • Niu, J.1    Bu, X.Z.2    Li, Z.3
  • 25
    • 84924401963 scopus 로고    scopus 로고
    • Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling
    • Nourani, V., Alami, M.T., Vousoughi, F.D., 2015. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J. Hydrol., 524:255–269. http://dx.doi.org/10.1016/j.jhydrol.2015.02.048
    • (2015) J. Hydrol. , vol.524 , pp. 255-269
    • Nourani, V.1    Alami, M.T.2    Vousoughi, F.D.3
  • 26
    • 84921802982 scopus 로고    scopus 로고
    • Dynamic pre-training of deep recurrent neural networks for predicting envi-ronmental monitoring data
    • Ong, B.T., Sugiura, K., Zettsu, K., 2014. Dynamic pre-training of deep recurrent neural networks for predicting envi-ronmental monitoring data. IEEE Int. Conf. on Big Data, p.760–765. http://dx.doi.org/10.1109/BigData.2014.7004302
    • (2014) IEEE Int. Conf. on Big Data , pp. 760-765
    • Ong, B.T.1    Sugiura, K.2    Zettsu, K.3
  • 27
    • 84938099974 scopus 로고    scopus 로고
    • Feedstock molecu-lar reconstruction for secondary reactions of fluid cata-lytic cracking gasoline by maximum information entropy method
    • Pan, Y.B., Yang, B.L., Zhou, X.W., 2015. Feedstock molecu-lar reconstruction for secondary reactions of fluid cata-lytic cracking gasoline by maximum information entropy method. Chem. Eng. J., 281:945–952. http://dx.doi.org/10.1016/j.cej.2015.07.037
    • (2015) Chem. Eng. J. , vol.281 , pp. 945-952
    • Pan, Y.B.1    Yang, B.L.2    Zhou, X.W.3
  • 28
    • 84924137191 scopus 로고    scopus 로고
    • On generalized entropies and infor-mation-theoretic Bell inequalities under decoherence
    • Rastegin, A.E., 2015. On generalized entropies and infor-mation-theoretic Bell inequalities under decoherence. Ann. Phys., 355:241–257. http://dx.doi.org/10.1016/j.aop.2015.02.015
    • (2015) Ann. Phys. , vol.355 , pp. 241-257
    • Rastegin, A.E.1
  • 29
    • 84875235613 scopus 로고    scopus 로고
    • Ap-plication of the Teager-Kaiser energy operator in bearing fault diagnosis
    • Rodríguez, P.H., Alonso, J.B., Ferrer, M.A., et al., 2013. Ap-plication of the Teager-Kaiser energy operator in bearing fault diagnosis. ISA Trans., 52(2):278–284. http://dx.doi.org/10.1016/j.isatra.2012.12.006
    • (2013) ISA Trans. , vol.52 , Issue.2 , pp. 278-284
    • Rodríguez, P.H.1    Alonso, J.B.2    Ferrer, M.A.3
  • 30
    • 78650707295 scopus 로고    scopus 로고
    • Multi component fault diagnosis of rotational me-chanical system based on decision tree and support vector machine
    • Saimurugan, M., Ramachandran, K.I., Sugumaran, V., et al., 2011. Multi component fault diagnosis of rotational me-chanical system based on decision tree and support vector machine. Expert Syst. Appl., 38(4):3819–3826. http://dx.doi.org/10.1016/j.eswa.2010.09.042
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 3819-3826
    • Saimurugan, M.1    Ramachandran, K.I.2    Sugumaran, V.3
  • 31
    • 84886829539 scopus 로고    scopus 로고
    • Opti-mization techniques to improve training speed of deep neural networks for large speech tasks
    • Sainath, T.N., Kingsbury, B., Soltau, H., et al., 2013. Opti-mization techniques to improve training speed of deep neural networks for large speech tasks. IEEE Trans. Au-dio Speech Lang. Process., 21(11):2267–2276. http://dx.doi.org/10.1109/TASL.2013.2284378
    • (2013) IEEE Trans. Au-dio Speech Lang. Process. , vol.21 , Issue.11 , pp. 2267-2276
    • Sainath, T.N.1    Kingsbury, B.2    Soltau, H.3
  • 32
    • 84922343800 scopus 로고    scopus 로고
    • Deep convolutional neural networks for large-scale speech tasks
    • Sainath, T.N., Kingsbury, B., Saon, G., et al., 2015. Deep convolutional neural networks for large-scale speech tasks. Neur. Networks, 64:39–48. http://dx.doi.org/10.1016/j.neunet.2014.08.005
    • (2015) Neur. Networks , vol.64 , pp. 39-48
    • Sainath, T.N.1    Kingsbury, B.2    Saon, G.3
  • 34
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classifi-cation
    • Sermanet, P., Chintala, S., LeCun, Y., 2012. Convolutional neural networks applied to house numbers digit classifi-cation. 21st Int. Conf. on Pattern Recognition, p.3288–3291.
    • (2012) 21st Int. Conf. on Pattern Recognition , pp. 3288-3291
    • Sermanet, P.1    Chintala, S.2    LeCun, Y.3
  • 35
    • 84939936955 scopus 로고    scopus 로고
    • Shannon infor-mation entropy for an infinite circular well
    • Song, X.D., Sun, G.H., Dong, S.H., 2015. Shannon infor-mation entropy for an infinite circular well. Phys. Lett. A, 379(22–23):1402–1408. http://dx.doi.org/10.1016/j.physleta.2015.03.020
    • (2015) Phys. Lett. A , vol.379 , Issue.22-23 , pp. 1402-1408
    • Song, X.D.1    Sun, G.H.2    Dong, S.H.3
  • 36
    • 84919363427 scopus 로고    scopus 로고
    • Developing an entropy-based model of spatial information estimation and its applica-tion in the design of precipitation gauge networks
    • Su, H.T., You, G.J.Y., 2014. Developing an entropy-based model of spatial information estimation and its applica-tion in the design of precipitation gauge networks. J. Hydrol., 519(D):3316–3327. http://dx.doi.org/10.1016/j.jhydrol.2014.10.022
    • (2014) J. Hydrol. , vol.519 , Issue.D , pp. 3316-3327
    • Su, H.T.1    You, G.J.Y.2
  • 37
    • 84882904913 scopus 로고    scopus 로고
    • A non-extensive entropy feature and its application to texture classification
    • Susan, S., Hanmandlu, M., 2013. A non-extensive entropy feature and its application to texture classification. Neu-rocomputing, 120:214–225. http://dx.doi.org/10.1016/j.neucom.2012.08.059
    • (2013) Neu-rocomputing , vol.120 , pp. 214-225
    • Susan, S.1    Hanmandlu, M.2
  • 39
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan, P., Wang, P.F., 2013. Failure diagnosis using deep belief learning based health state classification. Re-liab. Eng. Syst. Safety, 115:124–135. http://dx.doi.org/10.1016/j.ress.2013.02.022
    • (2013) Re-liab. Eng. Syst. Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.F.2
  • 41
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
    • Tran, V.T., AlThobiani, F., Ball, A., 2014. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Syst. Appl., 41(9):4113–4122. http://dx.doi.org/10.1016/j.eswa.2013.12.026
    • (2014) Expert Syst. Appl. , vol.41 , Issue.9 , pp. 4113-4122
    • Tran, V.T.1    AlThobiani, F.2    Ball, A.3
  • 42
    • 84966507757 scopus 로고    scopus 로고
    • A fault diagnosis approach using SVM with data dimension reduction by PCA and LDA method
    • Xie, Y., Zhang, T., 2005. A fault diagnosis approach using SVM with data dimension reduction by PCA and LDA method. Chinese Automation Congress, p.869–874. http://dx.doi.org/10.1109/CAC.2015.7382620
    • (2005) Chinese Automation Congress , pp. 869-874
    • Xie, Y.1    Zhang, T.2
  • 43
    • 84921492033 scopus 로고    scopus 로고
    • Deep convo-lutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang, W.L., Li, R.J., Deng, H.T., et al., 2015. Deep convo-lutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108:214–224. http://dx.doi.org/10.1016/j.neuroimage.2014.12.061
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.L.1    Li, R.J.2    Deng, H.T.3
  • 44
    • 84961057958 scopus 로고    scopus 로고
    • Singular value decomposition packet and its application to extraction of weak fault feature
    • Zhao, X.Z., Ye, B.Y., 2016. Singular value decomposition packet and its application to extraction of weak fault feature. Mech. Syst. Signal Process., 70-71:73–86. http://dx.doi.org/10.1016/j.ymssp.2015.08.033
    • (2016) Mech. Syst. Signal Process. , vol.70-71 , pp. 73-86
    • Zhao, X.Z.1    Ye, B.Y.2
  • 45
    • 85006362021 scopus 로고    scopus 로고
    • Deep adaptive networks for visual data classification
    • Zhou, S.S., Chen, Q.C., Wang, X.L., 2014. Deep adaptive networks for visual data classification. J. Multim., 9(10):1142–1151.
    • (2014) J. Multim. , vol.9 , Issue.10 , pp. 1142-1151
    • Zhou, S.S.1    Chen, Q.C.2    Wang, X.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.