-
1
-
-
84922309789
-
Shannon entropy, Fisher infor-mation and uncertainty relations for log-periodic oscil-lators
-
Aguiar, V., Guedes, I., 2015. Shannon entropy, Fisher infor-mation and uncertainty relations for log-periodic oscil-lators. Phys. A, 423:72–79. http://dx.doi.org/10.1016/j.physa.2014.12.031
-
(2015)
Phys. A
, vol.423
, pp. 72-79
-
-
Aguiar, V.1
Guedes, I.2
-
3
-
-
84872577736
-
Practical recommendations for gradient-based training of deep architectures
-
Bengio, Y., 2012. Practical recommendations for gradient-based training of deep architectures. LNCS, 7700:437–478. http://dx.doi.org/10.1007/978-3-642-35289-8_26
-
(2012)
LNCS
, vol.7700
, pp. 437-478
-
-
Bengio, Y.1
-
4
-
-
84879854889
-
Representation learning: a review and new perspectives
-
Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: a review and new perspectives. IEEE Trans. Patt. Anal. Mach. Intell., 35(8):1798–1828. http://dx.doi.org/10.1109/TPAMI.2013.50
-
(2013)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
5
-
-
84872521733
-
Stochastic gradient descent tricks
-
Bottou, L., 2012. Stochastic gradient descent tricks. LNCS, 7700:421–436. http://dx.doi.org/10.1007/978-3-642-35289-8_25
-
(2012)
LNCS
, vol.7700
, pp. 421-436
-
-
Bottou, L.1
-
6
-
-
85027942618
-
Spectral-spatial classi-fication of hyperspectral data based on deep belief net-work
-
Chen, Y.S., Zhao, X., Jia, X.P., 2015. Spectral-spatial classi-fication of hyperspectral data based on deep belief net-work. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 8(6):2381–2392. http://dx.doi.org/10.1109/JSTARS.2015.2388577
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.S.1
Zhao, X.2
Jia, X.P.3
-
7
-
-
71649087757
-
Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method
-
Cui, H.X., Zhang, L.B., Kang, R.Y., et al., 2009. Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method. J. Loss Prevent. Process Ind., 22(6):864–867. http://dx.doi.org/10.1016/j.jlp.2009.08.012
-
(2009)
J. Loss Prevent. Process Ind.
, vol.22
, Issue.6
, pp. 864-867
-
-
Cui, H.X.1
Zhang, L.B.2
Kang, R.Y.3
-
8
-
-
84877692843
-
Entropy measures and granularity measures for set-valued information systems
-
Dai, J.H., Tian, H.W., 2013. Entropy measures and granularity measures for set-valued information systems. Inform. Sci., 240:72–82. http://dx.doi.org/10.1016/j.ins.2013.03.045
-
(2013)
Inform. Sci.
, vol.240
, pp. 72-82
-
-
Dai, J.H.1
Tian, H.W.2
-
9
-
-
57149111273
-
Multivariate statistical process control based on principal component analysis (MSPC-PCA): some re-flections and a case study in an autobody assembly pro-cess
-
Ferrer, A., 2007. Multivariate statistical process control based on principal component analysis (MSPC-PCA): some re-flections and a case study in an autobody assembly pro-cess. Qual. Eng., 19(4):311–325. http://dx.doi.org/10.1080/08982110701621304
-
(2007)
Qual. Eng.
, vol.19
, Issue.4
, pp. 311-325
-
-
Ferrer, A.1
-
10
-
-
71649102528
-
A method of rotating machinery fault diagnosis based on the close degree of information entropy
-
Geng, J.B., Huang, S.H., Jin, J.S., et al., 2006. A method of rotating machinery fault diagnosis based on the close degree of information entropy. Int. J. Plant Eng. Manag., 11(3):137–144. http://dx.doi.org/10.13434/j.ckni.1007-4546.2006.03.002
-
(2006)
Int. J. Plant Eng. Manag.
, vol.11
, Issue.3
, pp. 137-144
-
-
Geng, J.B.1
Huang, S.H.2
Jin, J.S.3
-
12
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neur. Comput., 18(7):1527–1554. http://dx.doi.org/10.1162/neco.2006.18.7.1527
-
(2006)
Neur. Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
13
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
-
Hinton, G.E., Deng, L., Yu, D., et al., 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Pro-cess. Mag., 29(6):82–97. http://dx.doi.org/10.1109/MSP.2012.2205597
-
(2012)
IEEE Signal Pro-cess. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.E.1
Deng, L.2
Yu, D.3
-
14
-
-
84901196671
-
A generalized fuzzy ID3 algorithm using generalized information entropy
-
Jin, C.X., Li, F.C., Li, Y., 2014. A generalized fuzzy ID3 algorithm using generalized information entropy. Knowl.-Based Syst., 64:13–21. http://dx.doi.org/10.1016/j.knosys.2014.03.014
-
(2014)
Knowl.-Based Syst.
, vol.64
, pp. 13-21
-
-
Jin, C.X.1
Li, F.C.2
Li, Y.3
-
15
-
-
80054026530
-
Maximum entropy in a nonlinear system with a 1/f power spectrum
-
Koverda, V.P., Skokov, V.N., 2012. Maximum entropy in a nonlinear system with a 1/f power spectrum. Phys. A, 391(1–2):21–28. http://dx.doi.org/10.1016/j.physa.2011.07.015
-
(2012)
Phys. A
, vol.391
, Issue.1-2
, pp. 21-28
-
-
Koverda, V.P.1
Skokov, V.N.2
-
16
-
-
59449087310
-
Ex-ploring strategies for training deep neural networks
-
Larochelle, H., Bengio, Y., Louradour, J., et al., 2009. Ex-ploring strategies for training deep neural networks. J. Mach. Learn. Res., 10(10):1–40.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, Issue.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
-
17
-
-
84949681785
-
Feature selection with partition differentiation entropy for large-scale data sets
-
Li, F.C., Zhang, Z., Jin, C.X., 2016. Feature selection with partition differentiation entropy for large-scale data sets. Inform. Sci., 329:690–700. http://dx.doi.org/10.1016/j.ins.2015.10.002
-
(2016)
Inform. Sci.
, vol.329
, pp. 690-700
-
-
Li, F.C.1
Zhang, Z.2
Jin, C.X.3
-
18
-
-
84952360853
-
Recognition of the optical image based on the wavelet space feature spectrum entropy
-
Li, J., 2015. Recognition of the optical image based on the wavelet space feature spectrum entropy. Optik-Int. J. Light Electron Opt., 126(23):3931–3935. http://dx.doi.org/10.1016/j.ijleo.2015.07.166
-
(2015)
Optik-Int. J. Light Electron Opt.
, vol.126
, Issue.23
, pp. 3931-3935
-
-
Li, J.1
-
19
-
-
84904332825
-
A new detection approach of transient disturbances combining wavelet packet and Tsallis entropy
-
Liu, Z.G., Hu, Q.L., Cui, Y., et al., 2014. A new detection approach of transient disturbances combining wavelet packet and Tsallis entropy. Neurocomputing, 142:393–407. http://dx.doi.org/10.1016/j.neucom.2014.04.020
-
(2014)
Neurocomputing
, vol.142
, pp. 393-407
-
-
Liu, Z.G.1
Hu, Q.L.2
Cui, Y.3
-
20
-
-
84872565347
-
Training deep and recurrent networks with Hessian-free optimization
-
Martens, J., Sutskever, I., 2012. Training deep and recurrent networks with Hessian-free optimization. LCNS, 7700:479–535. http://dx.doi.org/10.1007/978-3-642-35289-8_27
-
(2012)
LCNS
, vol.7700
, pp. 479-535
-
-
Martens, J.1
Sutskever, I.2
-
21
-
-
77953520240
-
Learning to represent spatial transformations with factored higher-order Boltzmann machine
-
Memisevic, R., Hinton, G.E., 2010. Learning to represent spatial transformations with factored higher-order Boltzmann machine. Neur. Comput., 22(6):1473–1492. http://dx.doi.org/10.1162/neco.2010.01-09-953
-
(2010)
Neur. Comput.
, vol.22
, Issue.6
, pp. 1473-1492
-
-
Memisevic, R.1
Hinton, G.E.2
-
22
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
Mohamed, A.R., Dahl, G.E., Hinton, G.E., 2012. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process., 20(1):14–22. http://dx.doi.org/10.1109/TASL.2011.2109382
-
(2012)
IEEE Trans. Audio Speech Lang. Process.
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.R.1
Dahl, G.E.2
Hinton, G.E.3
-
23
-
-
33645025237
-
A method for detecting damage-induced nonlinearities in structures using information theory
-
Nichols, J.M., Seaver, M., Trickey, S.T., 2006. A method for detecting damage-induced nonlinearities in structures using information theory. J. Sound Vibr., 297(1–2):1–16. http://dx.doi.org/10.1016/j.jsv.2006.01.025
-
(2006)
J. Sound Vibr.
, vol.297
, Issue.1-2
, pp. 1-16
-
-
Nichols, J.M.1
Seaver, M.2
Trickey, S.T.3
-
24
-
-
84922895198
-
An improved bilinear deep belief network algorithm for image classification
-
Niu, J., Bu, X.Z., Li, Z., et al., 2014. An improved bilinear deep belief network algorithm for image classification. 10th Int. Conf. on Computational Intelligence and Secu-rity, p.189–192. http://dx.doi.org/10.1109/CIS.2014.38
-
(2014)
10th Int. Conf. on Computational Intelligence and Secu-rity
, pp. 189-192
-
-
Niu, J.1
Bu, X.Z.2
Li, Z.3
-
25
-
-
84924401963
-
Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling
-
Nourani, V., Alami, M.T., Vousoughi, F.D., 2015. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J. Hydrol., 524:255–269. http://dx.doi.org/10.1016/j.jhydrol.2015.02.048
-
(2015)
J. Hydrol.
, vol.524
, pp. 255-269
-
-
Nourani, V.1
Alami, M.T.2
Vousoughi, F.D.3
-
26
-
-
84921802982
-
Dynamic pre-training of deep recurrent neural networks for predicting envi-ronmental monitoring data
-
Ong, B.T., Sugiura, K., Zettsu, K., 2014. Dynamic pre-training of deep recurrent neural networks for predicting envi-ronmental monitoring data. IEEE Int. Conf. on Big Data, p.760–765. http://dx.doi.org/10.1109/BigData.2014.7004302
-
(2014)
IEEE Int. Conf. on Big Data
, pp. 760-765
-
-
Ong, B.T.1
Sugiura, K.2
Zettsu, K.3
-
27
-
-
84938099974
-
Feedstock molecu-lar reconstruction for secondary reactions of fluid cata-lytic cracking gasoline by maximum information entropy method
-
Pan, Y.B., Yang, B.L., Zhou, X.W., 2015. Feedstock molecu-lar reconstruction for secondary reactions of fluid cata-lytic cracking gasoline by maximum information entropy method. Chem. Eng. J., 281:945–952. http://dx.doi.org/10.1016/j.cej.2015.07.037
-
(2015)
Chem. Eng. J.
, vol.281
, pp. 945-952
-
-
Pan, Y.B.1
Yang, B.L.2
Zhou, X.W.3
-
28
-
-
84924137191
-
On generalized entropies and infor-mation-theoretic Bell inequalities under decoherence
-
Rastegin, A.E., 2015. On generalized entropies and infor-mation-theoretic Bell inequalities under decoherence. Ann. Phys., 355:241–257. http://dx.doi.org/10.1016/j.aop.2015.02.015
-
(2015)
Ann. Phys.
, vol.355
, pp. 241-257
-
-
Rastegin, A.E.1
-
29
-
-
84875235613
-
Ap-plication of the Teager-Kaiser energy operator in bearing fault diagnosis
-
Rodríguez, P.H., Alonso, J.B., Ferrer, M.A., et al., 2013. Ap-plication of the Teager-Kaiser energy operator in bearing fault diagnosis. ISA Trans., 52(2):278–284. http://dx.doi.org/10.1016/j.isatra.2012.12.006
-
(2013)
ISA Trans.
, vol.52
, Issue.2
, pp. 278-284
-
-
Rodríguez, P.H.1
Alonso, J.B.2
Ferrer, M.A.3
-
30
-
-
78650707295
-
Multi component fault diagnosis of rotational me-chanical system based on decision tree and support vector machine
-
Saimurugan, M., Ramachandran, K.I., Sugumaran, V., et al., 2011. Multi component fault diagnosis of rotational me-chanical system based on decision tree and support vector machine. Expert Syst. Appl., 38(4):3819–3826. http://dx.doi.org/10.1016/j.eswa.2010.09.042
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.4
, pp. 3819-3826
-
-
Saimurugan, M.1
Ramachandran, K.I.2
Sugumaran, V.3
-
31
-
-
84886829539
-
Opti-mization techniques to improve training speed of deep neural networks for large speech tasks
-
Sainath, T.N., Kingsbury, B., Soltau, H., et al., 2013. Opti-mization techniques to improve training speed of deep neural networks for large speech tasks. IEEE Trans. Au-dio Speech Lang. Process., 21(11):2267–2276. http://dx.doi.org/10.1109/TASL.2013.2284378
-
(2013)
IEEE Trans. Au-dio Speech Lang. Process.
, vol.21
, Issue.11
, pp. 2267-2276
-
-
Sainath, T.N.1
Kingsbury, B.2
Soltau, H.3
-
32
-
-
84922343800
-
Deep convolutional neural networks for large-scale speech tasks
-
Sainath, T.N., Kingsbury, B., Saon, G., et al., 2015. Deep convolutional neural networks for large-scale speech tasks. Neur. Networks, 64:39–48. http://dx.doi.org/10.1016/j.neunet.2014.08.005
-
(2015)
Neur. Networks
, vol.64
, pp. 39-48
-
-
Sainath, T.N.1
Kingsbury, B.2
Saon, G.3
-
34
-
-
84874575248
-
Convolutional neural networks applied to house numbers digit classifi-cation
-
Sermanet, P., Chintala, S., LeCun, Y., 2012. Convolutional neural networks applied to house numbers digit classifi-cation. 21st Int. Conf. on Pattern Recognition, p.3288–3291.
-
(2012)
21st Int. Conf. on Pattern Recognition
, pp. 3288-3291
-
-
Sermanet, P.1
Chintala, S.2
LeCun, Y.3
-
35
-
-
84939936955
-
Shannon infor-mation entropy for an infinite circular well
-
Song, X.D., Sun, G.H., Dong, S.H., 2015. Shannon infor-mation entropy for an infinite circular well. Phys. Lett. A, 379(22–23):1402–1408. http://dx.doi.org/10.1016/j.physleta.2015.03.020
-
(2015)
Phys. Lett. A
, vol.379
, Issue.22-23
, pp. 1402-1408
-
-
Song, X.D.1
Sun, G.H.2
Dong, S.H.3
-
36
-
-
84919363427
-
Developing an entropy-based model of spatial information estimation and its applica-tion in the design of precipitation gauge networks
-
Su, H.T., You, G.J.Y., 2014. Developing an entropy-based model of spatial information estimation and its applica-tion in the design of precipitation gauge networks. J. Hydrol., 519(D):3316–3327. http://dx.doi.org/10.1016/j.jhydrol.2014.10.022
-
(2014)
J. Hydrol.
, vol.519
, Issue.D
, pp. 3316-3327
-
-
Su, H.T.1
You, G.J.Y.2
-
37
-
-
84882904913
-
A non-extensive entropy feature and its application to texture classification
-
Susan, S., Hanmandlu, M., 2013. A non-extensive entropy feature and its application to texture classification. Neu-rocomputing, 120:214–225. http://dx.doi.org/10.1016/j.neucom.2012.08.059
-
(2013)
Neu-rocomputing
, vol.120
, pp. 214-225
-
-
Susan, S.1
Hanmandlu, M.2
-
38
-
-
84858768256
-
The recurrent temporal restricted Boltzmann machine
-
Sutskever, I., Hinton, G.E., Taylor, G.W., 2008. The recurrent temporal restricted Boltzmann machine. Proc. 22nd An-nual Conf. on Neural Information Processing Systems, p.1601–1608.
-
(2008)
Proc. 22nd An-nual Conf. on Neural Information Processing Systems
, pp. 1601-1608
-
-
Sutskever, I.1
Hinton, G.E.2
Taylor, G.W.3
-
39
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
Tamilselvan, P., Wang, P.F., 2013. Failure diagnosis using deep belief learning based health state classification. Re-liab. Eng. Syst. Safety, 115:124–135. http://dx.doi.org/10.1016/j.ress.2013.02.022
-
(2013)
Re-liab. Eng. Syst. Safety
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.F.2
-
40
-
-
84863569708
-
Multi-sensor health diagnosis using deep belief network based state classification
-
Tamilselvan, P., Wang, P.F., Youn, B.D., 2011. Multi-sensor health diagnosis using deep belief network based state classification. ASME Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf., p.749–758. http://dx.doi.org/10.1115/DETC2011-48352
-
(2011)
ASME Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf.
, pp. 749-758
-
-
Tamilselvan, P.1
Wang, P.F.2
Youn, B.D.3
-
41
-
-
84893464266
-
An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
-
Tran, V.T., AlThobiani, F., Ball, A., 2014. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Syst. Appl., 41(9):4113–4122. http://dx.doi.org/10.1016/j.eswa.2013.12.026
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.9
, pp. 4113-4122
-
-
Tran, V.T.1
AlThobiani, F.2
Ball, A.3
-
42
-
-
84966507757
-
A fault diagnosis approach using SVM with data dimension reduction by PCA and LDA method
-
Xie, Y., Zhang, T., 2005. A fault diagnosis approach using SVM with data dimension reduction by PCA and LDA method. Chinese Automation Congress, p.869–874. http://dx.doi.org/10.1109/CAC.2015.7382620
-
(2005)
Chinese Automation Congress
, pp. 869-874
-
-
Xie, Y.1
Zhang, T.2
-
43
-
-
84921492033
-
Deep convo-lutional neural networks for multi-modality isointense infant brain image segmentation
-
Zhang, W.L., Li, R.J., Deng, H.T., et al., 2015. Deep convo-lutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108:214–224. http://dx.doi.org/10.1016/j.neuroimage.2014.12.061
-
(2015)
NeuroImage
, vol.108
, pp. 214-224
-
-
Zhang, W.L.1
Li, R.J.2
Deng, H.T.3
-
44
-
-
84961057958
-
Singular value decomposition packet and its application to extraction of weak fault feature
-
Zhao, X.Z., Ye, B.Y., 2016. Singular value decomposition packet and its application to extraction of weak fault feature. Mech. Syst. Signal Process., 70-71:73–86. http://dx.doi.org/10.1016/j.ymssp.2015.08.033
-
(2016)
Mech. Syst. Signal Process.
, vol.70-71
, pp. 73-86
-
-
Zhao, X.Z.1
Ye, B.Y.2
-
45
-
-
85006362021
-
Deep adaptive networks for visual data classification
-
Zhou, S.S., Chen, Q.C., Wang, X.L., 2014. Deep adaptive networks for visual data classification. J. Multim., 9(10):1142–1151.
-
(2014)
J. Multim.
, vol.9
, Issue.10
, pp. 1142-1151
-
-
Zhou, S.S.1
Chen, Q.C.2
Wang, X.L.3
|