메뉴 건너뛰기




Volumn 9642, Issue , 2016, Pages 214-228

Deep convolutional neural network based regression approach for estimation of remaining useful life

Author keywords

Convolutional neural networks; Deep learning; Multivariate time series analysis; Prognostics; Regression methods; Remaining useful life; Supervised learning

Indexed keywords

ALGORITHMS; COMPUTER VISION; CONVOLUTION; DATABASE SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; REGRESSION ANALYSIS; SPEECH RECOGNITION; SUPERVISED LEARNING; SYSTEMS ENGINEERING; TIME SERIES ANALYSIS;

EID: 84962468883     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-32025-0_14     Document Type: Conference Paper
Times cited : (799)

References (26)
  • 2
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1-127 (2009)
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1-27:27 (2011). http://www.csie.ntu.edu.tw/∼cjlin/libsvm
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , pp. 27
    • Chang, C.C.1    Lin, C.J.2
  • 5
  • 6
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240-254 (1994)
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 240-254
    • Connor, J.T.1    Martin, R.D.2    Atlas, L.E.3
  • 7
    • 84956802323 scopus 로고    scopus 로고
    • A tutorial survey of architectures, algorithms, and applications for deep learning
    • Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Sig. Inf. Process. 3, 29 (2014)
    • (2014) APSIPA Trans. Sig. Inf. Process , vol.3 , pp. 29
    • Deng, L.1
  • 8
    • 0019152630 scopus 로고
    • Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K.: Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193-202 (1980)
    • (1980) Biol. Cybern , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 13
    • 0002263996 scopus 로고    scopus 로고
    • Convolutional networks for images, speech, and time series
    • In: Arbib, M.A. (ed.), MIT Press, Cambridge
    • LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255-258. MIT Press, Cambridge (1998)
    • (1998) The Handbook of Brain Theory and Neural Networks , pp. 255-258
    • Lecun, Y.1    Bengio, Y.2
  • 14
    • 0001857994 scopus 로고    scopus 로고
    • Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, Springer, Heidelberg
    • LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, p. 9. Springer, Heidelberg (1998)
    • (1998) Efficient Backprop , vol.1524 , pp. 9
    • Lecun, Y.1    Bottou, L.2    Orr, G.B.3    Müller, K.-R.4
  • 15
    • 84920540888 scopus 로고    scopus 로고
    • Estimation of remaining useful life based on switching kalman filter neural network ensemble
    • Lim, P., Goh, C.K., Tan, K.C., Dutta, P.: Estimation of remaining useful life based on switching kalman filter neural network ensemble. Ann. Conf. Prognostics Health Manag. Soc. 2014, 1-8 (2014)
    • (2014) Ann. Conf. Prognostics Health Manag. Soc , vol.2014 , pp. 1-8
    • Lim, P.1    Goh, C.K.2    Tan, K.C.3    Dutta, P.4
  • 17
    • 84920519857 scopus 로고    scopus 로고
    • Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset
    • Ramasso, E., Saxena, A.: Review and analysis of algorithmic approaches developed for prognostics on CMAPSS dataset. Ann. Conf. Prognostics Health Manag. Soc. 2014, 1-11 (2014)
    • (2014) Ann. Conf. Prognostics Health Manag. Soc , vol.2014 , pp. 1-11
    • Ramasso, E.1    Saxena, A.2
  • 18
    • 0141853652 scopus 로고
    • Learning representations by back-propagating errors
    • In: Anderson, J.A., Rosenfeld, E. (eds.), MIT Press, Cambridge
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. In: Anderson, J.A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research, pp. 696-699. MIT Press, Cambridge (1988). http://dl.acm.org/citation.cfm?id=65669.104451
    • (1988) Neurocomputing: Foundations of Research , pp. 696-699
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 21
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • Solla, S.A., Leen, T.K., M¨uller, K.R. (eds.), MIT Press, Cambridge
    • Tipping, M.E.: The relevance vector machine. In: Solla, S.A., Leen, T.K., M¨uller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 652-658. MIT Press, Cambridge (2000)
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 652-658
    • Tipping, M.E.1
  • 22
    • 84857355189 scopus 로고    scopus 로고
    • A generic probabilistic framework for structural health prognostics and uncertainty management
    • Wang, P., Youn, B.D., Hu, C.: A generic probabilistic framework for structural health prognostics and uncertainty management. Mech. Syst. Sig. Process. 28, 622-637 (2012)
    • (2012) Mech. Syst. Sig. Process , vol.28 , pp. 622-637
    • Wang, P.1    Youn, B.D.2    Hu, C.3
  • 26
    • 84958543676 scopus 로고    scopus 로고
    • Time series classification using multi-channels deep convolutional neural networks
    • In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.), Springer, Heidelberg
    • Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298-310. Springer, Heidelberg (2014)
    • (2014) WAIM 2014. LNCS , vol.8485 , pp. 298-310
    • Zheng, Y.1    Liu, Q.2    Chen, E.3    Ge, Y.4    Zhao, J.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.