-
1
-
-
69949138999
-
Reference-free damage detection using instantaneous baseline measurements
-
[1] Anton, S.R., Inman, D.J., Park, G., Reference-free damage detection using instantaneous baseline measurements. AIAA J. 47 (2009), 1952–1964, 10.2514/1.43252.
-
(2009)
AIAA J.
, vol.47
, pp. 1952-1964
-
-
Anton, S.R.1
Inman, D.J.2
Park, G.3
-
2
-
-
84941962818
-
Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system
-
[2] Mansouri, M., Avci, O., Nounou, H., Nounou, M., Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system. J. Civil. Struct. Health Monit. 5 (2015), 493–508.
-
(2015)
J. Civil. Struct. Health Monit.
, vol.5
, pp. 493-508
-
-
Mansouri, M.1
Avci, O.2
Nounou, H.3
Nounou, M.4
-
3
-
-
84945538232
-
-
[3] M.Mansouri, O.Avci, H.Nounou, M.Nounou, A comparative assessment of nonlinear state estimation methods for structural health monitoring, in: Proceedings of IMAC XXXIII Conference and Exposition on Structural Dynamics, Orlando, FL, USA, 2015.
-
M.Mansouri, O.Avci, H.Nounou, M.Nounou, A comparative assessment of nonlinear state estimation methods for structural health monitoring, in: Proceedings of IMAC XXXIII Conference and Exposition on Structural Dynamics, Orlando, FL, USA, 2015.
-
-
-
4
-
-
84941363651
-
Fault diagnosis on beam-like structures from modal parameters using artificial neural networks
-
[4] Hakim, S.J.S., Abdul Razak, H., Ravanfar, S.A., Fault diagnosis on beam-like structures from modal parameters using artificial neural networks. Measurement 76 (2015), 45–61, 10.1016/j.measurement.2015.08.021.
-
(2015)
Measurement
, vol.76
, pp. 45-61
-
-
Hakim, S.J.S.1
Abdul Razak, H.2
Ravanfar, S.A.3
-
5
-
-
84893578580
-
Application of Bayesian-designed artificial neural networks in Phase II structural health monitoring benchmark studies
-
[5] Ng, C., Application of Bayesian-designed artificial neural networks in Phase II structural health monitoring benchmark studies. Aust. J. Struct. Eng. 15 (2014), 27–37, 10.7158/S12-042.2014.15.1.
-
(2014)
Aust. J. Struct. Eng.
, vol.15
, pp. 27-37
-
-
Ng, C.1
-
6
-
-
84875405680
-
Prediction of unmeasured mode shape using artificial neural network for damage detection
-
[6] Goh, L.D., Bakhary, N., Rahman, A.A., Ahmad, B.H., Prediction of unmeasured mode shape using artificial neural network for damage detection. J. Teknol. (Sci. Eng.) 61 (2013), 57–66, 10.11113/jt.v61.1624.
-
(2013)
J. Teknol. (Sci. Eng.)
, vol.61
, pp. 57-66
-
-
Goh, L.D.1
Bakhary, N.2
Rahman, A.A.3
Ahmad, B.H.4
-
7
-
-
44949170675
-
Damage detection of truss bridge joints using artificial neural networks
-
[7] Mehrjoo, M., Khaji, N., Moharrami, H., Bahreininejad, A., Damage detection of truss bridge joints using artificial neural networks. Expert Syst. Appl. 35 (2008), 1122–1131, 10.1016/j.eswa.2007.08.008.
-
(2008)
Expert Syst. Appl.
, vol.35
, pp. 1122-1131
-
-
Mehrjoo, M.1
Khaji, N.2
Moharrami, H.3
Bahreininejad, A.4
-
8
-
-
84997449173
-
Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms
-
[8] Betti, M., Facchini, L., Biagini, P., Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms. Meccanica 50 (2014), 875–886, 10.1007/s11012-014-0085-9.
-
(2014)
Meccanica
, vol.50
, pp. 875-886
-
-
Betti, M.1
Facchini, L.2
Biagini, P.3
-
9
-
-
33947209066
-
Damage detection in beams using spatial fourier analysis and neural networks
-
[9] Pawar, P.M., Venkatesulu Reddy, K., Ganguli, R., Damage detection in beams using spatial fourier analysis and neural networks. J. Intell. Mater. Syst. Struct. 18 (2006), 347–359, 10.1177/1045389X06066292.
-
(2006)
J. Intell. Mater. Syst. Struct.
, vol.18
, pp. 347-359
-
-
Pawar, P.M.1
Venkatesulu Reddy, K.2
Ganguli, R.3
-
10
-
-
10444262019
-
Neural networks-based damage detection for bridges considering errors in baseline finite element models
-
[10] Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B., Jung, H.Y., Neural networks-based damage detection for bridges considering errors in baseline finite element models. J. Sound Vib. 280 (2005), 555–578, 10.1016/j.jsv.2004.01.003.
-
(2005)
J. Sound Vib.
, vol.280
, pp. 555-578
-
-
Lee, J.J.1
Lee, J.W.2
Yi, J.H.3
Yun, C.B.4
Jung, H.Y.5
-
11
-
-
84968867048
-
Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data
-
[11] Meruane, V., Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data. J. Comput. Civil. Eng., 30, 2015, 4015042, 10.1061/(ASCE)CP.1943-5487.0000517.
-
(2015)
J. Comput. Civil. Eng.
, vol.30
, pp. 4015042
-
-
Meruane, V.1
-
12
-
-
84903649788
-
Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network
-
[12] Zhou, X.T., Ni, Y.Q., Zhang, F.L., Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network. Math. Probl. Eng., 2014, 2014.
-
(2014)
Math. Probl. Eng.
, vol.2014
-
-
Zhou, X.T.1
Ni, Y.Q.2
Zhang, F.L.3
-
13
-
-
33751185144
-
Structural damage detection by integrating data fusion and probabilistic neural network
-
[13] Jiang, S.F., Zhang, C.M., Koh, C.G., Structural damage detection by integrating data fusion and probabilistic neural network. Adv. Struct. Eng. 9 (2006), 445–458, 10.1260/136943306778812787.
-
(2006)
Adv. Struct. Eng.
, vol.9
, pp. 445-458
-
-
Jiang, S.F.1
Zhang, C.M.2
Koh, C.G.3
-
14
-
-
33847708376
-
Unsupervised fuzzy neural networks for damage detection of structures
-
[14] Wen, C.M., Hung, S.L., Huang, C.S., Jan, J.C., Unsupervised fuzzy neural networks for damage detection of structures. Struct. Control Health Monit. 14 (2007), 144–161, 10.1002/stc.116.
-
(2007)
Struct. Control Health Monit.
, vol.14
, pp. 144-161
-
-
Wen, C.M.1
Hung, S.L.2
Huang, C.S.3
Jan, J.C.4
-
15
-
-
84944222223
-
Bridge damage severity quantification using multipoint acceleration measurement and artificial neural networks
-
[15] Chun, P., Yamashita, H., Furukawa, S., Bridge damage severity quantification using multipoint acceleration measurement and artificial neural networks. Shock Vib., 2015, 2015.
-
(2015)
Shock Vib.
, vol.2015
-
-
Chun, P.1
Yamashita, H.2
Furukawa, S.3
-
16
-
-
78650375456
-
Dynamic-based damage identification using neural network ensembles and damage index method
-
[16] Dackermann, U., Li, J., Samali, B., Dynamic-based damage identification using neural network ensembles and damage index method. Adv. Struct. Eng. 13 (2010), 1001–1016, 10.1260/1369-4332.13.6.1001.
-
(2010)
Adv. Struct. Eng.
, vol.13
, pp. 1001-1016
-
-
Dackermann, U.1
Li, J.2
Samali, B.3
-
17
-
-
84903934489
-
Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks
-
[17] Dackermann, U., Smith, W.A., Randall, R.B., Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks. Struct. Health Monit. 13 (2014), 430–444, 10.1177/1475921714542890.
-
(2014)
Struct. Health Monit.
, vol.13
, pp. 430-444
-
-
Dackermann, U.1
Smith, W.A.2
Randall, R.B.3
-
18
-
-
84880254305
-
The three-stage artificial neural network method for damage assessment of building structures
-
[18] Bandara, R.P., Chan, T.H.T., Thambiratnam, D.P., The three-stage artificial neural network method for damage assessment of building structures. Austr. J. Struct. Eng., 14, 2013.
-
(2013)
Austr. J. Struct. Eng.
, vol.14
-
-
Bandara, R.P.1
Chan, T.H.T.2
Thambiratnam, D.P.3
-
19
-
-
78649653038
-
Structure damage diagnosis using neural network and feature fusion
-
[19] Liu, Y.-Y., Ju, Y.-F., Duan, C.-D., Zhao, X.-F., Structure damage diagnosis using neural network and feature fusion. Eng. Appl. Artif. Intell. 24 (2011), 87–92, 10.1016/j.engappai.2010.08.011.
-
(2011)
Eng. Appl. Artif. Intell.
, vol.24
, pp. 87-92
-
-
Liu, Y.-Y.1
Ju, Y.-F.2
Duan, C.-D.3
Zhao, X.-F.4
-
20
-
-
80455123889
-
Machine learning algorithms for damage detection under operational and environmental variability
-
[20] Figueiredo, E., Park, G., Farrar, C.R., Worden, K., Figueiras, J., Machine learning algorithms for damage detection under operational and environmental variability. Struct. Health Monit. 10 (2011), 559–572, 10.1177/1475921710388971.
-
(2011)
Struct. Health Monit.
, vol.10
, pp. 559-572
-
-
Figueiredo, E.1
Park, G.2
Farrar, C.R.3
Worden, K.4
Figueiras, J.5
-
21
-
-
84949908086
-
Machine learning algorithms for damage detection: kernel-based approaches
-
[21] Santos, A., Figueiredo, E., Silva, M.F.M., Sales, C.S., Costa, J.C.W.A., Machine learning algorithms for damage detection: kernel-based approaches. J. Sound Vib. 363 (2016), 584–599, 10.1016/j.jsv.2015.11.008.
-
(2016)
J. Sound Vib.
, vol.363
, pp. 584-599
-
-
Santos, A.1
Figueiredo, E.2
Silva, M.F.M.3
Sales, C.S.4
Costa, J.C.W.A.5
-
22
-
-
84971467747
-
Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm
-
[22] Avci, O., Abdeljaber, O., Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm. J. Perform. Constr. Facil., 2015, 10.1061/(ASCE)CF.1943-5509.0000801.
-
(2015)
J. Perform. Constr. Facil.
-
-
Avci, O.1
Abdeljaber, O.2
-
23
-
-
84970006585
-
Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps
-
[23] Abdeljaber, O., Avci, O., Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps. J. Arch. Eng., 2016, 10.1061/(ASCE)AE.1943-5568.0000205.
-
(2016)
J. Arch. Eng.
-
-
Abdeljaber, O.1
Avci, O.2
-
24
-
-
84978674876
-
-
[24] O.Abdeljaber, O.Avci, N.T.Do, M.Gul, O.Celik, F.N.Catbas, Quantification of structural damage with self-organizing maps BT – structural health monitoring, damage detection & mechatronics, in: A. Wicks, C. Niezrecki (Eds.), Proceedings of the 34th IMAC, a Conference and Exposition on Structural Dynamics 2016, vol. 7, Springer International Publishing, Cham, 2016, pp. 47–57. doi:10.1007/978-3-319-29956-3_5.
-
O.Abdeljaber, O.Avci, N.T.Do, M.Gul, O.Celik, F.N.Catbas, Quantification of structural damage with self-organizing maps BT – structural health monitoring, damage detection & mechatronics, in: A. Wicks, C. Niezrecki (Eds.), Proceedings of the 34th IMAC, a Conference and Exposition on Structural Dynamics 2016, vol. 7, Springer International Publishing, Cham, 2016, pp. 47–57. doi:10.1007/978-3-319-29956-3_5.
-
-
-
25
-
-
84881289801
-
Substructure vibration narx neural network approach for statistical damage inference
-
[25] Yan, L., Elgamal, A., Cottrell, G.W., Substructure vibration narx neural network approach for statistical damage inference. J. Eng. Mech. 139 (2011), 737–747, 10.1061/(ASCE)EM.1943-7889.0000363.
-
(2011)
J. Eng. Mech.
, vol.139
, pp. 737-747
-
-
Yan, L.1
Elgamal, A.2
Cottrell, G.W.3
-
26
-
-
84855982987
-
Damage assessment with ambient vibration data using a novel time series analysis methodology
-
[26] Gul, M., Catbas, F., Damage assessment with ambient vibration data using a novel time series analysis methodology. J. Struct. Eng. 137 (2010), 1518–1526, 10.1061/(ASCE)ST.1943-541X.0000366.
-
(2010)
J. Struct. Eng.
, vol.137
, pp. 1518-1526
-
-
Gul, M.1
Catbas, F.2
-
27
-
-
78649669320
-
Deep, big, simple neural nets for handwritten digit recognition
-
[27] Cire/csan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J., Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22 (2010), 3207–3220, 10.1162/NECO_a_00052.
-
(2010)
Neural Comput.
, vol.22
, pp. 3207-3220
-
-
Cire/csan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
28
-
-
78049408551
-
-
[28] D.Scherer, A.Müller, S.Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, in: Proceedings of the 20th International Conference on Artificial Neural Networks: Part III, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 92–101. 〈http://dl.acm.org/citation.cfm?Id=1886436.1886447〉.
-
D.Scherer, A.Müller, S.Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, in: Proceedings of the 20th International Conference on Artificial Neural Networks: Part III, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 92–101.
-
-
-
29
-
-
85006821458
-
-
[29] S.Kiranyaz, M.A.Waris, I.Ahmad, R.Hamila, M.Gabbouj, Face segmentation in thumbnail images by data-adaptive convolutional segmentation networks, in: Proceedings of IEEE International Conference on Image Processing (ICIP), 2016, pp. 2306–2310. doi:10.1109/ICIP.2016.7532770, 2016.
-
S.Kiranyaz, M.A.Waris, I.Ahmad, R.Hamila, M.Gabbouj, Face segmentation in thumbnail images by data-adaptive convolutional segmentation networks, in: Proceedings of IEEE International Conference on Image Processing (ICIP), 2016, pp. 2306–2310. doi:10.1109/ICIP.2016.7532770, 2016.
-
-
-
30
-
-
70449311374
-
Receptive fields of single neurones in the cat's striate cortex
-
[30] Hubel, D.H., Wiesel, T.N., Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148 (1959), 574–591 〈http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/〉.
-
(1959)
J. Physiol.
, vol.148
, pp. 574-591
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
31
-
-
84962128752
-
Real-time patient-specific ECG classification by 1-D convolutional neural networks
-
[31] Kiranyaz, S., Ince, T., Gabbouj, M., Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63 (2016), 664–675, 10.1109/TBME.2015.2468589.
-
(2016)
IEEE Trans. Biomed. Eng.
, vol.63
, pp. 664-675
-
-
Kiranyaz, S.1
Ince, T.2
Gabbouj, M.3
-
32
-
-
84994474581
-
Real-time motor fault detection by 1-D convolutional neural networks
-
[32] Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M., Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 63 (2016), 7067–7075, 10.1109/TIE.2016.2582729.
-
(2016)
IEEE Trans. Ind. Electron.
, vol.63
, pp. 7067-7075
-
-
Ince, T.1
Kiranyaz, S.2
Eren, L.3
Askar, M.4
Gabbouj, M.5
-
33
-
-
84966661753
-
Dynamic testing of a laboratory stadium structure
-
[33] Abdeljaber, O., Younis, A., Avci, O., Catbas, N., Gul, M., Celik, O., Zhang, H., Dynamic testing of a laboratory stadium structure. ASCE Geotech. Struct. Eng. Congr., 2016, 1719–1728, 10.1061/9780784479742.147.
-
(2016)
ASCE Geotech. Struct. Eng. Congr.
, pp. 1719-1728
-
-
Abdeljaber, O.1
Younis, A.2
Avci, O.3
Catbas, N.4
Gul, M.5
Celik, O.6
Zhang, H.7
|