메뉴 건너뛰기




Volumn 388, Issue , 2017, Pages 154-170

Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

Author keywords

Convolutional neural networks; Neural networks; Structural damage detection; Structural health monitoring; Vibration

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL EFFICIENCY; CONVOLUTION; FEATURE EXTRACTION; NEURAL NETWORKS; ONE DIMENSIONAL; STRUCTURAL ANALYSIS; STRUCTURAL HEALTH MONITORING; VIBRATIONS (MECHANICAL);

EID: 84997079451     PISSN: 0022460X     EISSN: 10958568     Source Type: Journal    
DOI: 10.1016/j.jsv.2016.10.043     Document Type: Article
Times cited : (1080)

References (35)
  • 1
    • 69949138999 scopus 로고    scopus 로고
    • Reference-free damage detection using instantaneous baseline measurements
    • [1] Anton, S.R., Inman, D.J., Park, G., Reference-free damage detection using instantaneous baseline measurements. AIAA J. 47 (2009), 1952–1964, 10.2514/1.43252.
    • (2009) AIAA J. , vol.47 , pp. 1952-1964
    • Anton, S.R.1    Inman, D.J.2    Park, G.3
  • 2
    • 84941962818 scopus 로고    scopus 로고
    • Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system
    • [2] Mansouri, M., Avci, O., Nounou, H., Nounou, M., Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system. J. Civil. Struct. Health Monit. 5 (2015), 493–508.
    • (2015) J. Civil. Struct. Health Monit. , vol.5 , pp. 493-508
    • Mansouri, M.1    Avci, O.2    Nounou, H.3    Nounou, M.4
  • 4
    • 84941363651 scopus 로고    scopus 로고
    • Fault diagnosis on beam-like structures from modal parameters using artificial neural networks
    • [4] Hakim, S.J.S., Abdul Razak, H., Ravanfar, S.A., Fault diagnosis on beam-like structures from modal parameters using artificial neural networks. Measurement 76 (2015), 45–61, 10.1016/j.measurement.2015.08.021.
    • (2015) Measurement , vol.76 , pp. 45-61
    • Hakim, S.J.S.1    Abdul Razak, H.2    Ravanfar, S.A.3
  • 5
    • 84893578580 scopus 로고    scopus 로고
    • Application of Bayesian-designed artificial neural networks in Phase II structural health monitoring benchmark studies
    • [5] Ng, C., Application of Bayesian-designed artificial neural networks in Phase II structural health monitoring benchmark studies. Aust. J. Struct. Eng. 15 (2014), 27–37, 10.7158/S12-042.2014.15.1.
    • (2014) Aust. J. Struct. Eng. , vol.15 , pp. 27-37
    • Ng, C.1
  • 6
    • 84875405680 scopus 로고    scopus 로고
    • Prediction of unmeasured mode shape using artificial neural network for damage detection
    • [6] Goh, L.D., Bakhary, N., Rahman, A.A., Ahmad, B.H., Prediction of unmeasured mode shape using artificial neural network for damage detection. J. Teknol. (Sci. Eng.) 61 (2013), 57–66, 10.11113/jt.v61.1624.
    • (2013) J. Teknol. (Sci. Eng.) , vol.61 , pp. 57-66
    • Goh, L.D.1    Bakhary, N.2    Rahman, A.A.3    Ahmad, B.H.4
  • 7
    • 44949170675 scopus 로고    scopus 로고
    • Damage detection of truss bridge joints using artificial neural networks
    • [7] Mehrjoo, M., Khaji, N., Moharrami, H., Bahreininejad, A., Damage detection of truss bridge joints using artificial neural networks. Expert Syst. Appl. 35 (2008), 1122–1131, 10.1016/j.eswa.2007.08.008.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1122-1131
    • Mehrjoo, M.1    Khaji, N.2    Moharrami, H.3    Bahreininejad, A.4
  • 8
    • 84997449173 scopus 로고    scopus 로고
    • Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms
    • [8] Betti, M., Facchini, L., Biagini, P., Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms. Meccanica 50 (2014), 875–886, 10.1007/s11012-014-0085-9.
    • (2014) Meccanica , vol.50 , pp. 875-886
    • Betti, M.1    Facchini, L.2    Biagini, P.3
  • 9
    • 33947209066 scopus 로고    scopus 로고
    • Damage detection in beams using spatial fourier analysis and neural networks
    • [9] Pawar, P.M., Venkatesulu Reddy, K., Ganguli, R., Damage detection in beams using spatial fourier analysis and neural networks. J. Intell. Mater. Syst. Struct. 18 (2006), 347–359, 10.1177/1045389X06066292.
    • (2006) J. Intell. Mater. Syst. Struct. , vol.18 , pp. 347-359
    • Pawar, P.M.1    Venkatesulu Reddy, K.2    Ganguli, R.3
  • 10
    • 10444262019 scopus 로고    scopus 로고
    • Neural networks-based damage detection for bridges considering errors in baseline finite element models
    • [10] Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B., Jung, H.Y., Neural networks-based damage detection for bridges considering errors in baseline finite element models. J. Sound Vib. 280 (2005), 555–578, 10.1016/j.jsv.2004.01.003.
    • (2005) J. Sound Vib. , vol.280 , pp. 555-578
    • Lee, J.J.1    Lee, J.W.2    Yi, J.H.3    Yun, C.B.4    Jung, H.Y.5
  • 11
    • 84968867048 scopus 로고    scopus 로고
    • Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data
    • [11] Meruane, V., Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data. J. Comput. Civil. Eng., 30, 2015, 4015042, 10.1061/(ASCE)CP.1943-5487.0000517.
    • (2015) J. Comput. Civil. Eng. , vol.30 , pp. 4015042
    • Meruane, V.1
  • 12
    • 84903649788 scopus 로고    scopus 로고
    • Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network
    • [12] Zhou, X.T., Ni, Y.Q., Zhang, F.L., Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network. Math. Probl. Eng., 2014, 2014.
    • (2014) Math. Probl. Eng. , vol.2014
    • Zhou, X.T.1    Ni, Y.Q.2    Zhang, F.L.3
  • 13
    • 33751185144 scopus 로고    scopus 로고
    • Structural damage detection by integrating data fusion and probabilistic neural network
    • [13] Jiang, S.F., Zhang, C.M., Koh, C.G., Structural damage detection by integrating data fusion and probabilistic neural network. Adv. Struct. Eng. 9 (2006), 445–458, 10.1260/136943306778812787.
    • (2006) Adv. Struct. Eng. , vol.9 , pp. 445-458
    • Jiang, S.F.1    Zhang, C.M.2    Koh, C.G.3
  • 14
    • 33847708376 scopus 로고    scopus 로고
    • Unsupervised fuzzy neural networks for damage detection of structures
    • [14] Wen, C.M., Hung, S.L., Huang, C.S., Jan, J.C., Unsupervised fuzzy neural networks for damage detection of structures. Struct. Control Health Monit. 14 (2007), 144–161, 10.1002/stc.116.
    • (2007) Struct. Control Health Monit. , vol.14 , pp. 144-161
    • Wen, C.M.1    Hung, S.L.2    Huang, C.S.3    Jan, J.C.4
  • 15
    • 84944222223 scopus 로고    scopus 로고
    • Bridge damage severity quantification using multipoint acceleration measurement and artificial neural networks
    • [15] Chun, P., Yamashita, H., Furukawa, S., Bridge damage severity quantification using multipoint acceleration measurement and artificial neural networks. Shock Vib., 2015, 2015.
    • (2015) Shock Vib. , vol.2015
    • Chun, P.1    Yamashita, H.2    Furukawa, S.3
  • 16
    • 78650375456 scopus 로고    scopus 로고
    • Dynamic-based damage identification using neural network ensembles and damage index method
    • [16] Dackermann, U., Li, J., Samali, B., Dynamic-based damage identification using neural network ensembles and damage index method. Adv. Struct. Eng. 13 (2010), 1001–1016, 10.1260/1369-4332.13.6.1001.
    • (2010) Adv. Struct. Eng. , vol.13 , pp. 1001-1016
    • Dackermann, U.1    Li, J.2    Samali, B.3
  • 17
    • 84903934489 scopus 로고    scopus 로고
    • Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks
    • [17] Dackermann, U., Smith, W.A., Randall, R.B., Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks. Struct. Health Monit. 13 (2014), 430–444, 10.1177/1475921714542890.
    • (2014) Struct. Health Monit. , vol.13 , pp. 430-444
    • Dackermann, U.1    Smith, W.A.2    Randall, R.B.3
  • 18
    • 84880254305 scopus 로고    scopus 로고
    • The three-stage artificial neural network method for damage assessment of building structures
    • [18] Bandara, R.P., Chan, T.H.T., Thambiratnam, D.P., The three-stage artificial neural network method for damage assessment of building structures. Austr. J. Struct. Eng., 14, 2013.
    • (2013) Austr. J. Struct. Eng. , vol.14
    • Bandara, R.P.1    Chan, T.H.T.2    Thambiratnam, D.P.3
  • 19
    • 78649653038 scopus 로고    scopus 로고
    • Structure damage diagnosis using neural network and feature fusion
    • [19] Liu, Y.-Y., Ju, Y.-F., Duan, C.-D., Zhao, X.-F., Structure damage diagnosis using neural network and feature fusion. Eng. Appl. Artif. Intell. 24 (2011), 87–92, 10.1016/j.engappai.2010.08.011.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 87-92
    • Liu, Y.-Y.1    Ju, Y.-F.2    Duan, C.-D.3    Zhao, X.-F.4
  • 20
    • 80455123889 scopus 로고    scopus 로고
    • Machine learning algorithms for damage detection under operational and environmental variability
    • [20] Figueiredo, E., Park, G., Farrar, C.R., Worden, K., Figueiras, J., Machine learning algorithms for damage detection under operational and environmental variability. Struct. Health Monit. 10 (2011), 559–572, 10.1177/1475921710388971.
    • (2011) Struct. Health Monit. , vol.10 , pp. 559-572
    • Figueiredo, E.1    Park, G.2    Farrar, C.R.3    Worden, K.4    Figueiras, J.5
  • 21
    • 84949908086 scopus 로고    scopus 로고
    • Machine learning algorithms for damage detection: kernel-based approaches
    • [21] Santos, A., Figueiredo, E., Silva, M.F.M., Sales, C.S., Costa, J.C.W.A., Machine learning algorithms for damage detection: kernel-based approaches. J. Sound Vib. 363 (2016), 584–599, 10.1016/j.jsv.2015.11.008.
    • (2016) J. Sound Vib. , vol.363 , pp. 584-599
    • Santos, A.1    Figueiredo, E.2    Silva, M.F.M.3    Sales, C.S.4    Costa, J.C.W.A.5
  • 22
    • 84971467747 scopus 로고    scopus 로고
    • Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm
    • [22] Avci, O., Abdeljaber, O., Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm. J. Perform. Constr. Facil., 2015, 10.1061/(ASCE)CF.1943-5509.0000801.
    • (2015) J. Perform. Constr. Facil.
    • Avci, O.1    Abdeljaber, O.2
  • 23
    • 84970006585 scopus 로고    scopus 로고
    • Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps
    • [23] Abdeljaber, O., Avci, O., Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps. J. Arch. Eng., 2016, 10.1061/(ASCE)AE.1943-5568.0000205.
    • (2016) J. Arch. Eng.
    • Abdeljaber, O.1    Avci, O.2
  • 25
    • 84881289801 scopus 로고    scopus 로고
    • Substructure vibration narx neural network approach for statistical damage inference
    • [25] Yan, L., Elgamal, A., Cottrell, G.W., Substructure vibration narx neural network approach for statistical damage inference. J. Eng. Mech. 139 (2011), 737–747, 10.1061/(ASCE)EM.1943-7889.0000363.
    • (2011) J. Eng. Mech. , vol.139 , pp. 737-747
    • Yan, L.1    Elgamal, A.2    Cottrell, G.W.3
  • 26
    • 84855982987 scopus 로고    scopus 로고
    • Damage assessment with ambient vibration data using a novel time series analysis methodology
    • [26] Gul, M., Catbas, F., Damage assessment with ambient vibration data using a novel time series analysis methodology. J. Struct. Eng. 137 (2010), 1518–1526, 10.1061/(ASCE)ST.1943-541X.0000366.
    • (2010) J. Struct. Eng. , vol.137 , pp. 1518-1526
    • Gul, M.1    Catbas, F.2
  • 27
    • 78649669320 scopus 로고    scopus 로고
    • Deep, big, simple neural nets for handwritten digit recognition
    • [27] Cire/csan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J., Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22 (2010), 3207–3220, 10.1162/NECO_a_00052.
    • (2010) Neural Comput. , vol.22 , pp. 3207-3220
    • Cire/csan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 30
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • [30] Hubel, D.H., Wiesel, T.N., Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148 (1959), 574–591 〈http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/〉.
    • (1959) J. Physiol. , vol.148 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 31
    • 84962128752 scopus 로고    scopus 로고
    • Real-time patient-specific ECG classification by 1-D convolutional neural networks
    • [31] Kiranyaz, S., Ince, T., Gabbouj, M., Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63 (2016), 664–675, 10.1109/TBME.2015.2468589.
    • (2016) IEEE Trans. Biomed. Eng. , vol.63 , pp. 664-675
    • Kiranyaz, S.1    Ince, T.2    Gabbouj, M.3
  • 32
    • 84994474581 scopus 로고    scopus 로고
    • Real-time motor fault detection by 1-D convolutional neural networks
    • [32] Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M., Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 63 (2016), 7067–7075, 10.1109/TIE.2016.2582729.
    • (2016) IEEE Trans. Ind. Electron. , vol.63 , pp. 7067-7075
    • Ince, T.1    Kiranyaz, S.2    Eren, L.3    Askar, M.4    Gabbouj, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.